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ABSTRACT

Multi-Source data plays an important role in the evolution of media convergence. Its fusion processing enables the
further mining of data and utilization of data value and broadens the path for the sharing and dissemination of
media data. However, it also faces serious problems in terms of protecting user and data privacy. Many privacy
protection methods have been proposed to solve the problem of privacy leakage during the process of data sharing,
but they suffer from two flaws: 1) the lack of algorithmic frameworks for specific scenarios such as dynamic datasets
in the media domain; 2) the inability to solve the problem of the high computational complexity of ciphertext in
multi-source data privacy protection, resulting in long encryption and decryption times. In this paper, we propose
a multi-source data privacy protection method based on homomorphic encryption and blockchain technology,
which solves the privacy protection problem of multi-source heterogeneous data in the dissemination of media and
reduces ciphertext processing time. We deployed the proposed method on the Hyperledger platform for testing and
compared it with the privacy protection schemes based on k-anonymity and differential privacy. The experimental
results show that the key generation, encryption, and decryption times of the proposed method are lower than those
in data privacy protection methods based on k-anonymity technology and differential privacy technology. This
significantly reduces the processing time of multi-source data, which gives it potential for use in many applications.
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1 Introduction

With the evolution of the Internet, network topology is becoming more complex, and the scale
is also expanding. The number of Internet users continues to grow, and the amount of global data is
doubling every year. According to market intelligence firm IDC, the global data volume will increase to
175 zettabytes in 2025. The transmission, storage, and mining of the large amounts of multi-source data
will become increasingly important. If privacy protection measures are not taken, users’ data security
and privacy will be compromised [1]. User data can be leaked by malicious attacks by hackers, phishing
websites, webpage forgery, and theft, which can bring huge economic losses to enterprises and threaten
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the security of users’ sensitive information. As long as the problem of data privacy goes unsolved, IT
innovation will be restricted, which will hinder the further evolution of the Internet.

In an era where the Internet is constantly changing, the connotation of privacy protection is
constantly changing too. The development of converged media means that users continuously generate
data and disseminate and share them through converged media. However, these data will expose
privacy risks. At present, most research on privacy protection issues focuses on three points:

• Achieving reliable and efficient privacy protection in a decentralized network environment. In
most Internet architectures, data generated by users are managed and secured by a central server
provided by the service provider. However, as the amount of data increases, so does the load
carried by the central server. Although bottlenecks can be avoided by distributed solutions, it
still does not solve the problem of a single point of failure.

• Maintaining a balance between the openness of data sharing and the efficiency of privacy
protection. With the rise of the digital economy, data are increasingly shared by users, par-
ticularly for the mining and utilization of data. However, when it comes to data sharing,
it is difficult to balance user requirements and privacy protection. Although strong privacy
protection technology can bring about the safe use of data, it requires complex operations,
resulting in low computational efficiency, which in turn restricts the ability to share data.

• Protecting both data privacy and identity privacy in complex network environments. In a
complex and dynamic network environment, the data generated by users cannot be predicted
in real-time through the network. Traditional data desensitization, data cleaning, and password
technologies can only partly protect privacy. Dynamic adjustment of a combination of privacy
protection schemes is needed to achieve complete data integrity. At the same time, for different
scenarios, a single user identity cannot guarantee privacy and security. Users need to generate
various virtual identities to obtain services in multiple security domains.

Existing privacy protection schemes are mainly based on specific algorithms for local datasets
in specific scenarios. However, they lack an algorithmic framework for dynamic datasets in specific
scenarios and lack a universal algorithm framework for dynamic datasets in multiple scenarios.
Sun et al. [2] designed a location-selection attack algorithm for testing the security of the emerging
Internet of Things (IoT). Yang et al. [3] proposed a privacy-preserving social media data publishing
framework called PrivRank, which used a data perturbation mechanism to implement personalized
ranking-based recommendations. Li et al. [4] introduced a differential privacy model based on data
perturbation and proposed a privacy protection algorithm to achieve personalized and unified privacy
protection of user trajectory data. To minimize the dependence on servers in a cloud environment,
Yang et al. [5] proposed a decentralized secure cloud storage data access control scheme based on
blockchain and attribute-based encryption (ABE). Protecting the privacy of shared information on
social media platforms is a significant challenge. Zhu et al. [6] proposed a novel hybrid blockchain
crowdsourcing platform to achieve decentralization and privacy preservation. However, the platform
has a complex structure and uses a large amount of data, resulting in low operating efficiency.

To solve the abovementioned problems, we propose a multi-source data privacy protection
method based on homomorphic encryption and blockchain technology. Homomorphic encryption
can accomplish ciphertext data operation, and the decryption result directly corresponds to the
operation result, thereby protecting data privacy. In addition, blockchain has the characteristics of
decentralization and responsibility traceability. It can identify different sources in the link process
and correspond the generated records to the same entity, to reduce the risk of leakage of users’
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information. Therefore, the proposed multi-source data privacy protection method encrypts the multi-
source data and stores it in the blockchain. The information obtained after user access is encrypted
data. This method can significantly reduce the processing time and encryption and decryption times of
multi-source data and reduce the computational complexity of ciphertext in multi-source data privacy
protection. We set the blockchain as a six-tier architecture and establish a data structure for ensuring
data integrity. We design a data sharing protocol based on blockchain technology, send the protocol
to the network in ciphertext, and generate blockchain parameters and public–private key pairs. A
random number is decrypted using the blockchain parameters, and the approximate classification
algorithm of ciphertext is designed using homomorphic encryption. The user decrypts the ciphertext
with the private key and obtains the approximate classification results. On this basis, the proposed
model protects the privacy of multi-source data.

The main contributions of this paper are summarized as follows:

• We propose a privacy protection method for multi-source heterogeneous data, which uses the
characteristics of blockchain technology to provide safe and reliable conditions for the open
sharing of media data and uses homomorphic encryption to process encrypted data to save
computational time and speed up data circulation. The security of media data is guaranteed.

• To reduce the complexity of the ciphertext calculation, we propose a ciphertext approximate
classification algorithm based on homomorphic encryption.

• Our experimental results show that our method has lower computational complexity and
higher encryption and decryption efficiency than other privacy-preserving methods based on
k-anonymity and differential privacy techniques.

The rest of this paper is organized as follows. Section 2 explains blockchain and homomorphic
encryption and examines related work. Section 3 describes our proposed method. Section 4 describes
the construction of the simulation experiment platform of our proposed method. Section 5 is devoted
to a feasibility analysis of the proposed method. We present our final conclusions in Section 6.

2 Related Work

This section offers an overview of blockchain and homomorphic encryption. Then, we review the
literature on privacy protection issues.

2.1 Blockchain
Blockchain is a distributed network architecture, involving functions such as data storage and file

operations. In this paper, the blockchain network structure is set as a six-tier architecture, with each
layer containing core content. Decentralized operations are performed through mutual coordination.

The six-tier architecture of blockchain is shown in Fig. 1. The bottom layer is the data layer,
which uses data encryption and decryption technology to store transaction information, and each
block is linked by hash pointers. In the network layer, the node realizes the user’s communication
function by receiving and sending information. The third layer is the consensus layer, which disperses
and stores the node data. The fourth layer is the incentive layer. It encourages nodes to participate
in blockchain transactions, and it charges transaction fees to control the balance of rewards and
punishments for transactions. The fifth layer is the contract layer, which uses virtual machines to
complete code operations, realize programmable operations, and improve transaction details. The
top layer is the application layer, which achieves the information interaction between the application
backend and the client through smart contracts [7]. The data layer is the main focus of this paper. To
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protect the privacy of multi-source data, the blockchain data structure is first constructed. Storage of a
significant amount of multi-source data requires the establishment of a self-reference structure. First,
a starting block is created, and then a block with the same structure as the starting block is generated,
using the same rules [8]. Each block forms a chain structure in sequence, and the block of the previous
block is connected to the block header of the next block. The data structure of the blockchain is shown
in Fig. 2.

Figure 1: Six-layer architecture of blockchain
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Figure 2: Blockchain data architecture

As shown in Fig. 2, the block header includes the version number, timestamp, transaction hash
value, and random number. The hash calculation can convert data into a sign that has a close
relationship with each byte of the source data. Each block obtains a pointer through hash calculation
and holds it in the block header, then links the preceding and following blocks. This forms a linked-
table storage structure. The block body contains the transaction information of the Merkle tree
structure, and the data is divided into small data blocks, which correspond to the hash value one
by one [9]. The hash value of the parent node is obtained by merging calculations upwards to update
the data, the final root hash value is stored in the block body, and data integrity is ensured by fast
induction.

2.2 Homomorphic Encryption
With the rapid growth of blockchain applications, research on privacy issues has become more

important than ever [10]. The homomorphic encryption technology in cryptography has been intro-
duced into the blockchain field to ensure the privacy of the blockchain in financial transaction
scenarios. Homomorphic encryption is a special encryption method that directly processes the
ciphertext and then encrypts the processing result after processing the plaintext, so that the obtained
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result is the same as the result of the same processing on the ciphertext. There are four types of
homomorphism: addition, subtraction, multiplication, and division homomorphism.

Definition 1: Suppose Enc (K, x) represents the use of the encryption algorithm Enc and key
K to encrypt x, and F represents an n-ary operation. If the encryption algorithm Enc and the n-ary
operation F satisfy:

Enc (K, F (x1, x2, . . . , xn)) = F (Enc (K, x1) , Enc (K , x2) , . . . , Enc (K , xn)) . (1)

The encryption algorithm Enc is homomorphic for the n-ary operation F . Homomorphic encryp-
tion can be partially, somewhat, hierarchical fully, or fully homomorphic encryption. Unlike most
integer-based homomorphic encryption schemes, a novel homomorphic encryption method called
CKKS was proposed by Cheon et al. [11] in 2017, which supported approximate addition and
multiplication in the ciphertext state and could encrypt real numbers. This approach involved the
evaluation of arbitrary circuits of bounded (pre-determined) depth. These circuits can include ADD
(X-OR) and Multiply (AND). The HEAAN open-source homomorphic encryption software library
uses a rescaling procedure for the size of the plaintext. It then produces an approximate rounding
due to the truncation of the ciphertext into a smaller modulus. This method is especially useful in
that it can be applied to carry-out encryption computations in parallel. Unfortunately, the ciphertext
modulus can become so small that it cannot carry out any more operations. The HEAAN method
uses approximate arithmetic over complex numbers (C) and is based on Ring Learning With Errors
(RLWE). It focuses on defining an encryption error within the computational error that will occur in
approximate computations.

Currently, the application of blockchain technology is still in its nascency. It was widely used in
financial applications, but now there are attempts to apply it to the fields of copyright protection,
supply chain management, gaming and entertainment, industrial IoT, social welfare, education, and
medical care. In the traditional blockchain application model, the transaction data is open and
transparent to every participant in the blockchain network. This means that the data has no privacy,
and attackers can easily obtain key transaction information through network topology analysis [12],
address tracking [13], transaction forwarding control [14], or malicious code mining technology [15].
Using homomorphic encryption technology, the lack of privacy in blockchain transactions has been
resolved. During a financial transfer transaction, what is seen in the blockchain smart contract is the
homomorphically encrypted ciphertext data, which is directly calculated from the ciphertext data to
obtain the transferred amount. The data in the entire calculation process, including the data recorded
in the blockchain ledger, is all encrypted by the homomorphic public key. Only the client node holding
the corresponding private key can decrypt the personal data and view the plaintext. Other nodes
cannot obtain the plaintext content, thereby ensuring the privacy of the entire financial transaction.
Fig. 3 compares the traditional blockchain application model with the blockchain application model
based on homomorphic encryption.
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Figure 3: Comparison of two model architectures

2.3 Literature Review
In recent years, there has been a great deal of research to address privacy protection issues.

Song et al. [16] proposed a k-anonymity privacy protection scheme based on bilinear pairing.
Through the terminal, 2k false locations are uniformly generated within the Euclidean distance
ring area, and k–1 false locations are filtered out using location entropy, location dispersion, and
map background information, thereby achieving a better k-anonymity effect. This privacy protection
scheme has strong security features and can resist tracking attacks. Feng et al. [17] proposed a study
on location trajectory publishing technology based on a differential privacy model. They increased
or decreased records in the statistical database to form two datasets, reduced the risk of privacy
leakage by querying the datasets, and built a trajectory data protection model based on differential
privacy technology to achieve real-time protection of continuous data. The existing location privacy
enhancement technology based on k-anonymity technology and differential privacy technology to
construct hidden areas has advantages in privacy protection and service quality. However, due to the
large generation of hidden areas, the efficiency of query processing and communication is low. A data
privacy protection method based on the DIKW architecture was proposed by Duan et al. [18]. By
mapping the private content of multiple sources to the DIKW architecture data and information and
using knowledge resources to model them, the content objects and relations are uniformly classified
into typed resources of data, information, and knowledge. The architecture consists of a DIKW
meta-model and extended data graph, information graph, and knowledge graph. The target privacy
resources of data and information are divided into explicit and implicit, and protection solutions are
proposed according to the explicit and implicit division of privacy targets of related types of data
to achieve full data privacy protection. Qiao et al. [19] proposed an effective data privacy protection
algorithm based on differential privacy and used a partitioning algorithm based on a greedy algorithm
to obtain a better partition structure. They used wavelet transform to add noise. For the authenticity
and usability of the histogram, the original histogram structure is restored. The complexity of the
wavelet tree constructed by the wavelet transform is reduced, the query noise changes from linear
growth to multiple logarithmic growth, and the accuracy of the histogram count query is improved.
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Sun et al. [20] proposed a new privacy-preserving location-sharing service scheme for social networking
applications, which enables users to browse the exact location of friends within a certain distance
without sharing information with any other users or social media ISPs, so as not to reveal their
location information. However, in the proposed scheme, location-sharing services do not take attacks
from friends into account. Luo et al. [21] proposed research on multi-source data privacy protection
based on an improved GBDT Federation integration method. The average gradient and the gradient
of similar samples are taken as new gradients to improve the accuracy of the local model. Different
ensemble learning methods are used to integrate the parameters of the local model, which improves
the accuracy of the updated global model. Although all these methods can provide effective privacy
protection, when new attacks appear, the computational complexity of the ciphertext is relatively high,
the encryption and decryption times are relatively long, and there is still room for optimization.

The traditional method of privacy protection is a user authorization model. Its degree of
protection depends on trusted third parties, and the breach of the centralized institution will lead
to the leakage of data for a large number of users. The inherent privacy and security features of
blockchain have inspired researchers to apply blockchain technology to solving privacy protection
issues. Combined with cryptography, Qiao et al. [22] proposed a novel blockchain signature scheme
based on an aggregated signature scheme for the privacy protection of transaction addresses in
the blockchain. This scheme reduced the computational overhead of the signature and verification
processes, reduced the storage overhead of the blockchain, and improved communication efficiency.
Unlike the scheme proposed by Qiao et al. [22], Li et al. [23] constructed a blockchain privacy
protection scheme based on ring signature. This scheme can ensure data security and user identity
privacy security in blockchain applications, and its security is based on the elliptic curve discrete
logarithm problem. Li et al. [24] systematically introduced the privacy protection scheme of encrypted
currency—typically Monero, Zerocash, and Mixcoin—studied the privacy protection and supervision
methods of blockchain user identity, and proposed a new direction of blockchain privacy protection
anonymity and traceability technology. Muh et al. [25] discussed the integration of differential privacy
at each layer of the blockchain and in some blockchain-based scenarios and proposed a new approach
to protect blockchain data privacy using data perturbation strategies such as differential privacy.
Liu et al. [26] designed a blockchain system based on the access scheme combined with the secure
multi-computing protocol. Users in the system can only transmit data through authentication, which
greatly improves privacy and security in complex multimedia communication scenarios.

3 Our Proposed Method

We first designed a data sharing protocol based on blockchain technology, in which data
sharing is more secure. Then we generated blockchain parameters and public-private key pairs in
blockchain transactions. To solve the high-order problem of ciphertext calculation, we introduced a
ciphertext approximate classification algorithm based on homomorphic encryption. This led to our
final multivariate data privacy protection model.

3.1 Data-Sharing Protocol Based on Blockchain Technology
Since transaction information is visible on the entire network, data can be easily mined and

collected, causing an invasion of user privacy. The data protocol is sent to the blockchain network
in the form of ciphertext, and the existence and rationality of the transaction can be verified without
decryption. When the transaction initiator distributes information, it needs to provide its public key
and the ciphertext of the recipient, and the ciphertext of the transaction contains the same plaintext
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information [27]. Due to the high cost of interaction with the blockchain, as the number of interactions
increases, operating efficiency is significantly reduced. In this regard, the constructed data sharing
protocol only needs to send a message to the receiver to realize the interaction, thereby reducing the
amount of data interaction. The initiator uses its public key to encrypt the transaction amount to
form a set of random vectors and uses the receiver’s public key for incentives to obtain another set
of random vectors [28]. At this time, the information in the ciphertext and the plaintext is equal. The
formula for calculating the sum of the ciphertext of the transaction number and the random number
is:

zα = xj + yi (2)

where zα represents the sum of ciphertexts; α epresents the initiator; xj represents the ciphertext of the
transaction amount; j represents the transaction amount; yi represents the ciphertext of the random
number; and i represents the random number. In the same way, the sum of the ciphertext of the receiver
can be obtained. After receiving the ciphertext, we randomly select the number of bits from [0, 1] and
give different answers to the receiver according to the number of bits. For example, when the number
of bits is 0, the transmitted plaintext information of yi and encrypted random vector are transmitted;
when the number of bits is 1, the plaintext information of xj +yi and encrypted random vector are sent.
For the receiver on the blockchain to verify whether the transaction amount is consistent, the initiator
only needs to publish the interactive information in the link once, and the ciphertext corresponds
to the plaintext information or the random vector [29]. Assuming that the transaction amount and
the random number have the private key of the homomorphic encryption scheme, one party has the
point (α, β), and the other party has the point (χ , δ). The online formula for marking homomorphic
encryption is as follows:

r
(
yδ − yβ

)
r
(
yχ − yα

) = yδ − yβ

yχ − yα

= �y
�x

(3)

The verification random number can be used for the public key encryption of the initiator and the
receiver, respectively. Since random numbers are uniformly distributed, the plaintext is also randomly
distributed uniformly. When all ciphertexts are passed, the transaction satisfies the data-sharing
agreement; otherwise, the receiver cannot obtain any information about the transaction.

3.2 Blockchain Parameters and Public–Private Key Pairs
When using homomorphic encryption technology to complete a transaction in the blockchain,

the application layer not only needs to encrypt the data with the public key but also needs to generate
evidence for the zero-knowledge proof. The generated evidence is then sent to each node together with
the encrypted data, and the verification is completed. If the verification fails, the transaction is rejected
and the result is returned to the application side [30]. If the verification is successful, the transaction
data will be stored in the blockchain, and the transaction data update will be completed [31]. In this
process, the transaction information of each node is in a ciphertext state, ensuring user privacy and
security. Each blockchain network has its parameters, which, once set, cannot be modified, ensuring
the uniqueness of the parameters during use. The process of parameter generation is as follows: First,
two large prime numbers are randomly selected, and their product and common multiple parameters
are calculated. The calculation formula is as follows:
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{
χ = mn
ϕ = lcm (m − 1, n − 1)

(4)

where m and n represent random large prime numbers; χ represents a product parameter; ϕ represents
a common multiple parameter; and lcm represents a least common multiple. Then, a random integer
is selected and the common divisor parameter calculated. The calculation formula is as follows:⎧⎪⎨⎪⎩

γ = p mod χ 2

gcd
(

χ ,
1
χ

p mod χ 2

)
= 1

(5)

In formula (5), γ represents the common divisor parameter; p represents a random integer; and
gcd represents the greatest common divisor. The three parameters obtained above will be set and
saved as blockchain parameters. After the parameters are generated, they are saved in the application
and smart contract for use when the transaction is completed [32]. On this basis, the blockchain
needs to generate public-private key pairs for each user. The public-private key pair is used as the
transaction address at the same time, the public key is stored in the blockchain, and the private key is
stored separately by the user [33]. The generation of public-private key pairs is related to blockchain
parameters. In the range of less than χ , a random integer is selected as the user’s private key, and the
user’s public key is generated according to the parameters χ and γ . This process can be expressed as:

k = γ mod χ 2 (6)

In formula (6), k represents the user’s public key. When the application side initiates a transaction,
it needs to encrypt the amount and other information. For plaintext information, we use blockchain
parameters and public keys to generate the ciphertext to complete encryption. In the process of
decrypting the plaintext, a random number is used to prove that the input and output data are equal,
and the blockchain parameters are used to decrypt the random number.

3.3 Ciphertext Approximate Classification Algorithm Based on Homomorphic Encryption
Because the progressive order of the ciphertext is so high, the calculation order needs to be adjusted

reasonably to reduce the complexity of the ciphertext calculation. This paper proposes a ciphertext
approximate classification algorithm based on homomorphic encryption to reduce the approximate
error of calculation and to improve security. The ciphertext data cannot be directly classified using
a decision tree. In this paper, the decision tree model is transformed into a polynomial, and the
homomorphic calculation of the ciphertext is promoted by the gradient. For a given decision tree, the
threshold corresponding to its internal nodes corresponds to the category of the decision root node
[34]. Among the generated polynomials, the ciphertext samples of unknown categories correspond to
decision samples, the calculation result of decision depth is in ciphertext form, and the corresponding
plaintext is 0 or 1. First, considering the number of ciphertext additions, the result of the left tree and
the right tree of the internal node is added, which represents a ciphertext addition, and the result is
still a ciphertext [35]. The ciphertext is recursively downward in turn until it reaches the leaf node.
Then, considering the number of scalar multiplications of the ciphertext and the plaintext, in the
classification decision, the internal nodes are ciphertext, and the leaf nodes are plaintext. Finally,
considering the number of ciphertext multiplications, the ciphertext result is multiplied by the left-
tree ciphertext, and a total of two multiplications occur. The number of leaf nodes is the same as the
number of multiplications and is a multiple of the number of internal nodes. The specific multiple is
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the number of cross-classifications [36]. The approximate ciphertext calculation model is constructed
as follows:

σ (x, λ) = 1
1 + e−λx

(7)

In formula (7), σ (x, λ) represents the approximate ciphertext; x represents transaction data; λ

represents steepness factor; and e is the natural constant. In this paper, σ (x, λ) is transformed into
polynomial form by approximate substitution, and its process can be expressed as follows:

σ ′ (x, λ) = cos (δ arccos x) (8)

where σ ′ (x, λ) represents the polynomial form, and δ represents the degree of Chebyshev polynomial.
At this time, the constructed polynomial is in an orthogonal form, which can realize the optimal
uniform approximation to obtain the nearest similar solution. Algorithm 1 describes the overall design
process.

Algorithm 1: Blockchain-based ciphertext approximate classification algorithm
Input: Unclassified ciphertext dataset Ct = {x|xi ∈ I , i = 1, 2, . . . , N}, the minimum unit block size N
Output: Ciphertext dataset classification prediction results C̃t = ∅ (Ct)

1. initialize f0 = argminγ

∑N

i=1S (yi, γ )

2. for m = 1 to M do
for i = 1, 2, . . . , N do
calculate

γim =
[
∂S (yi, f (xi))

∂f (xi)

]
f =fm−1

3. fit a regression tree to the targets γim giving terminal regions Rjm, j = 1, 2, . . . , Jm

4. for (j = 1, 2, . . . , Jm) do
calculate

γim = argminγ

∑
xi∈Rjm

S (yi, fm−1 (xi) + γ )

5. update fm (x) ← fm−1 (x) + ∑Jm
j=1γjmI

(
x ∈ Rjm

)
//Step 1. Generate Gradient Boosting Decision Tree Models DT = {γm, f (xi)}

6. for (j = 1, 2, . . . , M) do
7. if (ξ ≤ ϑ) then
8. if(n == 0)
9. k = 1;
10. else if(n == 1)
11. k = x;
12. else
13. k = 2 ∗ x ∗ T(n−1, x)−T(n−2, x);
14. return k;
15. update Fi ← Chebyshev (yi, ξ, xi−1)

//Step 2. Convert the decision tree DTi to a Chebychev polynomial F (ϑ , x)

16. for (m = 1 to N) do
Calculate

Ct (Fm) ← HE.Add
(
C̃t (Fm−1)

) ⊕ HE.Mult
(
C̃t (Fm−1) : γim

)
//Step 3. Perform additive and multiplicative homomorphic multilevel operations on datasets

17. return C̃t
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Based on this polynomial transformation, the approximate classification of the ciphertext is
realized by the sigmoid function. On the user side, the server classifies the data using a preset
polynomial and sends the results to the user. The user decrypts the data with the private key and
obtains approximate classification results.

3.4 Multiple Data Privacy Protection Model
The multivariate data privacy protection model includes a permission setting module, a privacy

data access module, a privacy data coloring module, and a data monitoring module. The overall
framework of the multivariate data privacy protection model is shown in Fig. 4.
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Privacy data coloring
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Figure 4: Overall framework of the multivariate data privacy protection model

As shown in Fig. 4, the permission setting module provides users with fine-grained permission
settings for the application. These include the permission setting and the permission extension slot
of the package manager and the permission setting content provider. The privacy data access module
includes the permission check extension slot of the privacy data source, specifically referring to the
expansion slot added in the privacy content provider and service module; the privacy data coloring
module colorizes the privacy data at the middleware level to realize the privacy data monitoring,
which includes monitoring the fine-grained permission labels of the coloring type and permission
setting module. The data monitoring module includes the application permission policy configuration
query service and the mandatory access control module expansion slot, which is triggered when data
exchange occurs in the communication between programs.

Based on the approximate ciphertext classification, a multivariate data privacy protection model
is established. The model can be expressed as:

w = (u, ϑ , l, β, d, s, e) (9)

In formula (9), w represents the privacy protection model; u represents the node-set; ϑ represents
the mapping relationship between user and node; l represents the blockchain network; β represents
the interactive operation of nodes; d represents multi-source data; s represents a collection of smart
contracts; and e represents a collection of user requirements. The model uses the blockchain network
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based on a whitelist to complete node communication. Tuple data is stored in the block data structure
in the form of transactions. The device information is saved in the whitelist in the form of a public
key and data value. For tuple data privacy, it is deployed in the contract layer to ensure the security of
sensitive information such as node location [37]. The received information and node information are
stored in the block.

First, the hash value of the transaction is recursively calculated, and the root hash value is
calculated using the dictionary structure to prevent data from being tampered with. Then, the secret
key information is stored in the whitelist of the block body to verify the user’s information. Because the
blockchain nodes change dynamically, the interaction behavior is recorded in the block body structure,
so that the descending level and compressed space are reduced. The device with minimal hardware
configuration is set as a light node, which saves only the data of the block header, which can quickly
verify the data. The location in the blockchain network is mapped into a tree structure, and its distance
is obtained by XOR operation [38]. Through this calculation method, the real topology can avoid being
exposed. Each node finds the nearest location and adds the corresponding whitelist information to
its communication protocol. When a new node applies to join the blockchain, it needs to be guided
by the original node to spread the information to the entire network. The original node adds the
nearest location information to the new node, and the new node adds the returned information to
its communication protocol [39]. Accordingly, other nodes complete the same data update operation.
In this way, the same quasi-identifier of multi-source data is recorded in each node, and the attacker
cannot obtain the user’s privacy record through the connection record. Based on the above process,
we designed the multi-source data privacy protection method.

The abovementioned analysis obtains the design process of the multiple data privacy protection
model. The flowchart is shown in Fig. 5. It can be seen that the establishment of a blockchain data
structure is the first step in the model. Because the transaction information is visible across the
network, the data is easily mined and collected, and a data-sharing protocol needs to be designed. In the
process of decrypting the plaintext, a random number is used to prove that the input and output data
are equal, using the blockchain parameters to decrypt the random number. Adding homomorphic
encryption to design an approximate ciphertext classification algorithm, based on the approximate
ciphertext classification, a multivariate data privacy protection model is established.

4 Experimental Evaluation

We built a simulation experiment platform, created the initial settings, and analyzed the perfor-
mance of the proposed method.

4.1 Establishing the Experimental Environment
To verify the performance of the proposed multi-source data privacy protection method based

on homomorphic encryption and blockchain technology, we used the Fabric project to conduct
experimental tests on the method. Based on building a fabric-based blockchain scenario, experiments
were carried out on the application effects of the proposed method to verify its feasibility and efficiency
in privacy protection. We used the Java programming language to create a homomorphic encryption
scheme (HES) and used the JDK 14 software development kit. We used the Python 2.7 design language
to build the blockchain network (BN). The details of the experimental settings are shown in Tables 1
and 2.
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Figure 5: Design process of the multiple data privacy protection model

Table 1: Construction of the experimental platform

System support Development tools

Vmware 15.0.1
ubuntu18.04 (Intel® Xeon(R) CPU E5-2640

v4 @ 2.40 GHz × 4,4G RAM,64 bit)

ide language

visual studio code 1.60
JDK 14 for HES

Python 2.7 for BN

Table 2: Construction of the blockchain network

Basic network support Fabric 2.0

Membership structure
Org: Alice, Bob
Peer nodes: cuc, agc
Orderer node

(Continued)
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Table 2 (continued)

Basic network support Fabric 2.0

Services

client
orderer.test.com
cuc.Alice.test.com
cuc.Bob.test.com
agc.Alice.test.com
agc.Bob.test.com
chaincode (web application)

In this experiment, two organizations, Alice and Bob, are selected from the fabric network for
basic networking. Each organization provides two-node maintenance networks, namely, cuc and agc.
The network consists of an orderer node and peer nodes to form a solo consensus, and the certificates
and keys distributed to the nodes are generated by the cryptogen utility. The application side accesses
the blockchain service through the Go SDK and provides an external web interface for the client. To
better test the adaptation effect of the data privacy protection method in the blockchain scenario, this
experiment used a virtual machine to build a multinode environment in the VMware 15.0.1 mode to
simulate the composition and release of multi-source data. In this experiment scenario, seven servers
were set up, of which five constituted the peer operating environment, one the orderer environment,
and the remaining one the web environment. In the fabric network, the docker pull command on the
peer and orderer was used to pull the image and start the client container. After the image download
was completed, the certificate and key of the blockchain network were generated, and the application
configuration and transaction files were created. We wrote a file template to start the container
on all nodes and started the container through the “compose up” subcommand. After setting the
environmental variables, we used command operations to add the cuc node of Alice organization to
the same channel and created an initial block file based on the configuration file. We copied the file
to other peer nodes and joined the application channel in the same way. Based on this, the blockchain
network was established. After the experimental environment was set up, the effect of the proposed
data privacy protection method was tested, and its feasibility and efficiency were evaluated.

4.2 Experiment and Analysis of Results
Based on the construction of the experimental environment, using the transfer from user A to user

B as an example, the secret key generation, encryption, and decryption processes in homomorphic
encryption were tested. The application side needed to generate a variety of data, and the data were
independent of each other, and in no chronological order. Therefore, multiple threads were used
to generate and transmit data in parallel, and parallel verification was used to process data at the
chaincode end, to shorten the running time of the application end and chaincode end. In the actual
data environment, the efficiency of the privacy protection method was determined by the longest-
running step, and the guarantee of security was based on the solution of a discrete logarithm. As
long as the length of the secret key reached a certain length, the security of the method could be
guaranteed. Generally, when the length of the secret key was 3072 bits, the security of the method
was guaranteed. Therefore, the length of the secret key set in this experiment was less than 3072 bits.
Considering the characteristics of large volume, multi-source heterogeneity, and the strong mobility of
converged media data, we used the differential privacy scheme based on the exponential mechanism
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as the baseline and set privacy budget ε = 1. We compared the application effect of our method
with the data privacy protection methods based on k-anonymity technology and differential privacy
technology. K-anonymity technology replaces the quasi-identification column of data with general
data with consistent semantics so that the attacker cannot distinguish the specific attributes of sensitive
information. Differential privacy technology adds or reduces records in the statistical database to form
two datasets and reduces the risk of privacy disclosure by querying the datasets. In the actual financial
transactions, 64-bit integers were used to test the running time of our proposed privacy protection
method. In the same experimental environment, the abovementioned two comparison methods and
this method were used to test the privacy protection of transfer transactions. Each performance test
was performed 100 times, and then they were averaged. The transaction data results are shown in
Tables 3–5.

Table 3: Experimental results of key generation time (ms)

Key length (bits) The method of
this paper

The method based on
k-anonymity technology

The method based on
differential privacy technology

64 3.1 32.1 6.2
128 3.8 45.3 9.6
256 4.3 61.3 11.9
512 6.0 92.1 16.3
1024 6.4 109.3 23.4
2048 7.1 152.3 28.1
3072 7.9 183.3 34.2

Table 4: Experimental results of encryption time (ms)

Key length (bits) The method of this
paper

The method based on
k-anonymity technology

The method based on
differential privacy technology

64 16.2 110.7 78.4
128 30.3 214.6 112.9
256 53.5 418.3 216.2
512 107.2 725.7 323.8
1024 186.4 1245.2 640.6
2048 310.9 2155.1 1148.3
3072 549.8 2461.2 1442.9

Table 5: Experimental results of decryption time (ms)

Key length (bits) The method of
this paper

The method based on
k-anonymity technology

The method based on
differential privacy technology

64 9.8 94.3 43.8
128 14.6 126.1 85.6

(Continued)
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Table 5 (continued)

Key length (bits) The method of
this paper

The method based on
k-anonymity technology

The method based on
differential privacy technology

256 25.7 219.2 138.7
512 46.4 433.8 212.1
1024 90.2 833.6 430.6
2048 143.5 1588.5 872.4
3072 255.4 2152.4 1410.7

According to the experimental results in Tables 3–5, with the increase in the length of the secret
key, the secret key generation, encryption, and decryption times of all three methods increase, and the
encryption time is greater than the decryption time. This shows that decryption is more sensitive to
the change of secret key length. When the length of the secret key does not reach 1024 bits, the growth
rate of encryption and decryption time is not obvious, and the time consumed for encryption and
decryption for a single method is close under different key strengths. When 1024 bits are reached, the
growth rate increases significantly, and it takes more time to implement encryption and decryption.
When the key length is the same, the key generation, encryption, and decryption times of the proposed
method are less than those of the methods based on k-anonymity technology and differential privacy
technology. Using the key length of 2048 bits as an example, the encryption time of the proposed
method is 310.9 ms, which is 1844.2 and 837.4 ms shorter, respectively, than the method based on k-
anonymity technology and differential privacy technology. The key generation time of the proposed
method is 7.1 ms, which is 145.2 and 21 ms shorter, respectively, than the method based on k-anonymity
technology and differential privacy technology. The decryption time of the method in this paper is
143.5 ms, which is 1445 and 728.9 ms shorter, respectively, than the methods based on k-anonymity
technology and differential privacy technology.

Obviously, due to the huge volume of media data, the privacy protection effect of k-anonymity
is significantly worse than the other two methods. During data processing, a minimum of k records
is required for the same quasi-identifier, which requires high database quality and increases the
computational burden. Differential privacy protects privacy by adding noise. It needs to operate on a
single data point in the database. As the amount of data increases, the computational burden of noise
processing also increases. Homomorphic encryption processes all data uniformly, reducing the inter-
mediate processing of a single data point, but the cryptographic operation process is complicated. In a
simulation environment with relatively sufficient computing power, its privacy protection efficiency is
still relatively high. Based on the above results, the method proposed in this paper can significantly
reduce the processing time of multi-source data, creates little operating burden on the blockchain
network, and consumes less time than the other methods. This means it is suitable for data privacy
protection and has good potential for use in other applications.

Time complexity refers to the time it takes for an algorithm to run after it is written into an
executable program. Three methods were used to test the running time of the program. The test results
are shown in Fig. 6.
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Figure 6: Comparison results of time complexity of the three methods

It can be seen from Fig. 6 that the running time of the three methods increases with the increase
in key length. When the key length reaches 500 bits, the running time of our proposed method is about
100 ms, while the running time of the method based on k-anonymity is approximately 670 ms, and
the running time based on the differential privacy technology method is almost 320 ms. These results
prove that our method can significantly reduce the running time of multi-source data, creates little
operating burden on the blockchain network, and is less time-consuming. Because this method uses
the six-layer structure set up by the blockchain to establish the data structure, it ensures the integrity of
the data, thereby greatly reducing the running time of multi-source data and reducing the complexity
of ciphertext calculation.

5 Feasibility Analysis

We next analyzed the feasibility of applying the proposed method to multi-source data privacy
protection. First, we conducted a demand analysis of media big data privacy protection. As part of
the analysis, we examined the technical characteristics of blockchain technology.

5.1 Demand Analysis
The process of media convergence development is characterized by a large amount of data, many

types of data, large differences between those types, and complex input and output operations. In
recent years, the impact of media data leakage and invasions of user privacy has been increasing. For
media data privacy protection, three requirements should be met:

• An effective copyright management mechanism: Digital media content spreads rapidly through
the Internet. Much of it, including video, audio, IP creative, and other media big data, is facing
copyright protection issues.

• An environment conducive to media consumption: Large user groups and the free release of
information preclude the supervision of the rapid spread of media data, resulting in a large
number of spam attacks.
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• A secure information sharing platform: Because in the production of media data there are no
restrictions put on anyone, the media database is flooded with all kinds of information. With
users often unable to discern facts, they cannot know the authenticity and accuracy of the
information itself. As a result, false information is widely spread, often in the form of rumors.

5.2 Description of Technical Characteristics
Blockchain technology can be used in many fields [40], because it has the following characteris-

tics:

• Decentralization: In traditional transaction systems, there is a central authority that is generally
trusted. Every transaction is verified by institutions, which, however, inevitably increases
management costs and performance bottlenecks on central servers, as well as the risk of single
points of failure and cyberattacks. In a blockchain network, all transactions can be verified
between any two peer entities without the involvement of a central authority.

• Immutability: In the blockchain, the current block stores the hash value of the previous block
in the form of a hash pointer to ensure connectivity between blocks. When any data on the
chain is modified, the hash of the block will change and the system will not allow it. Every
transaction generated needs to be confirmed and recorded in blocks backed up by the entire
network, which is nearly impossible to tamper with, as all blocks are broadcast across the
network and backed up by a single node. Additionally, each broadcast block will be verified by
other nodes, confirming the authenticity and validity of the transaction. Therefore, any forgery
is easy to spot.

• Anonymity: In a blockchain system, there is no need to trust data to interact with other users.
Because the rules of the blockchain plan determine whether the activity is valid or not, parties
do not have to disclose their identities. In addition, the blockchain provides each user with a
secure key through cryptographic tools and interacts with the blockchain network through the
generated addresses. Users can generate multiple different addresses to prevent revealing their
true identity.

• Auditability: Because every transaction on the blockchain is verified and recorded using
timestamps, users can easily verify and track previous records by accessing any node in the
distributed network. Furthermore, each transaction in the blockchain can be iteratively traced
back to previous transactions. This auditability improves the traceability and transparency of
data stored in the blockchain.

There is no centralized server in the blockchain, and interactions are completed by peer nodes,
which can eliminate the risks of a centralized server. In the blockchain system, the multi-party
distributed accounting model is adopted to ensure that the data is visible and consistent to all
participants, achieving multi-party sharing of data and solving the problem of information asymmetry.
Through the use of chain storage and a node consensus mechanism to realize data confirmation
and authorization, data sharing and circulation are promoted. The use of encryption and decryption
authorization, zero-knowledge proof, and other cryptographic technologies enables the protection of
data privacy. At the same time, users participate in network affairs anonymously to ensure that their
identity is not leaked. Given the three main points of current research on privacy protection issues,
the method proposed in this paper provides a concept that combines blockchain and homomorphic
encryption.
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6 Conclusion

In this paper, we use blockchain technology and homomorphic encryption technology to study
the privacy protection of multi-source data in the media field, and propose a multi-source data
privacy protection method. The experimental results show that the method can shorten the time
required for key generation, encryption and decryption, and has high time efficiency, which can
meet the needs of practical applications. However, the proposed method has some disadvantages.
Due to the limited experimental environment, a virtual machine is used to simulate the blockchain
environment. Some research results have been achieved under experimental theoretical conditions, but
this is far from real-world industrial applications. Subsequent research should consider the effect of
protecting data privacy under real blockchain conditions. In the future, we will focus on improving the
efficiency of data sharing protocols and optimizing the generalization ability of ciphertext approximate
clustering algorithms on the Media Alliance blockchain platform. In addition, in terms of ensuring
data compatibility, we can consider establishing data standards in combination with current business
processes to ensure efficient data flow between the initiator and the receiver.
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