
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.025166

ARTICLE

A New Hybrid Hierarchical Parallel Algorithm to Enhance the Performance of
Large-Scale Structural Analysis Based on Heterogeneous Multicore Clusters

Gaoyuan Yu1, Yunfeng Lou2, Hang Dong3, Junjie Li1 and Xianlong Jin1,*

1School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
2Aerospace System Engineering Shanghai, Shanghai, 201108, China
3School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney, NSW, 2006, Australia

*Corresponding Author: Xianlong Jin. Email: jxlong@sjtu.edu.cn

Received: 24 June 2022 Accepted: 07 September 2022

ABSTRACT

Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great
computing power and cost-to-performance effectiveness nowadays. Nevertheless, parallel efficiency degradation is
still a problem in large-scale structural analysis based on heterogeneous multicore clusters. To solve it, a hybrid hier-
archical parallel algorithm (HHPA) is proposed on the basis of the conventional domain decomposition algorithm
(CDDA) and the parallel sparse solver. In this new algorithm, a three-layer parallelization of the computational
procedure is introduced to enable the separation of the communication of inter-nodes, heterogeneous-core-groups
(HCGs) and inside-heterogeneous-core-groups through mapping computing tasks to various hardware layers. This
approach can not only achieve load balancing at different layers efficiently but can also improve the communication
rate significantly through hierarchical communication. Additionally, the proposed hybrid parallel approach in this
article can reduce the interface equation size and further reduce the solution time, which can make up for the
shortcoming of growing communication overheads with the increase of interface equation size when employing
CDDA. Moreover, the distributed sparse storage of a large amount of data is introduced to improve memory access.
By solving benchmark instances on the Shenwei-Taihuzhiguang supercomputer, the results show that the proposed
method can obtain higher speedup and parallel efficiency compared with CDDA and more superior extensibility
of parallel partition compared with the two-level parallel computing algorithm (TPCA).

KEYWORDS
Heterogeneous multicore; hybrid parallel; finite element analysis; domain decomposition

Nomenclature

HHPA Hybrid hierarchical parallel algorithm proposed in this paper
CDDA Conventional domain decomposition algorithm
TPCA Two-level parallel computing algorithm
HCG Heterogeneous-core-group
DOF Degree of freedom
UI(t +Δt) Displacement at the moment of t + �t to the internal node

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.025166
https://www.techscience.com/doi/10.32604/cmes.2023.025166
mailto:jxlong@sjtu.edu.cn

136 CMES, 2023, vol.136, no.1

UB(t + Δt) Displacement at the moment of t + �t to the boundary node
FI(t +Δt) External load at the moment of t + �t to the internal node
FB(t +Δt) External load at the moment of t + �t to the boundary node
∧
K∗∗ Effective stiffness matrix
∧
F∗∗ Effective external load vector
I Internal DOF
B Boundary DOF
K Stiffness matrix
M Mass matrix
F External load vector
un Node displacement at nth time step
·
u Node velocity at nth time step
··
u Node acceleration at nth time step
K̃ Condensed stiffness matrix
F̃ Condensed external load vector
XB(t +Δt) Boundary node displacement
L̃ Differential operator
N Interpolation matrix
D Elastic matrix for the finite element analysis
n Number of DOFs
Niter Number of substeps in structural transient finite element analysis
K Iterations of parallel PCG

1 Introduction

With the development of transportation, energy exploration and exploitation, aerospace industry,
etc., there have been increasing demands for developing complex large or ultra-large systems, such as
highspeed-multiple-unit trains, 3000-meter-ultradeep drilling rigs, large aircraft, heavy-duty fracturing
trucks, and optimizing major engineering projects, including cross-river tunnels and skyscrapers [1,2].
Research and development related to these particular equipment systems usually involve systemic
complex dynamical evaluations for their performance and utilize the finite element method to execute
high-performance computing [3]. However, applying finite element analysis in complex systems faces
a high degree of freedom (DOF) and contains various factors such as nonlinear and complicated
boundary conditions, making it high computational complexity and requiring enormous amounts of
computational power. Therefore, it challenges the traditional finite element method and tools [4]. In
the conventional finite element approach, some vital local details are often sacrificed for a simplified
model to guarantee the calculation efficiency in large or ultra-large systems. As a result, the prediction
ability for these details will be lost, accompanied by a lower computational precision. Compared to the
conventional finite element method, fine modeling of complex dynamical systems has higher accuracy
and can predict essential details, but it requires heavy computing based on large-scale or ultra-large-
scale finite element models. Consequently, efficient solutions of fine modeling cannot be obtained on
traditional serial computers [5]. Nowadays, parallel supercomputers have been developed rapidly. The
research and explorations of parallel algorithms provide a feasible way to solve large and ultra-large
complex systems and thus attract researchers’ attention worldwide.

Currently, two main research algorithms are commonly used as finite element parallel solution
algorithms. One is starting from the most time-consuming linear equations in the finite element

CMES, 2023, vol.136, no.1 137

structural analysis to find the effective parallel computing method for solving linear equations [6–
8]. The other one starts from the parallelism of the finite element method itself to develop a parallel
domain decomposition method [9–11]. Specifically, the research of parallel algorithms for linear
equations is mainly focusing on two methods, the direct scheme [6,12] and the iterative scheme [13,14].
In the direct method, the exact solution of the system can be obtained within the expected calculation
steps through sorting algorithm, triangular decomposition, and back substituting. However, the
required memory space and computing power will grow rapidly with the increase of the calculation
scale, so its scalability is not as good as the iterative method [6,12]. The iterative approach improves
the solution results through multiple iterations to achieve a convergence interval within the allowable
error range of the exact solution. The memory required in the iterative process is relatively small, and
it is easy to achieve parallelization. However, the iterative method cannot guarantee a convergence
within a reasonable time, and the convergence of ill-conditioned problems with considerable condition
number [7,13]. In the field of parallel computing on CDDA, the hybrid method with direct and
iterative approaches has been employed by researchers. They start from the parallelism of the finite
element problem itself, dividing the complex problem into smaller sub-tasks for parallel processing,
and applying the direct method on sub-tasks and iterative method on sub-domains. The hybrid method
takes both advantage of direct and iterative schemes, which can improve parallel efficiency. And
thus, it has been widely used in the finite elements structural field [2,15–19]. Based on the CDDA,
Miao et al. [15] designed a hierarchical parallel calculation method in finite element analysis for
static structures. This method was later applied to a high-rise building to find its parallel solution
to static structural characteristics. El Gharbi et al. [16] utilized the CDDA to design a two-level
parallel mesh algorithm. And they applied the algorithm to complete the mesh for a turbine blade.
Koric et al. [17] brought the CDDA to solve the static structural characteristics of a charge air cooler
under the unstructured grids. Fialko et al. [18] used the CDDA to obtain the parallel solution of the
static characteristics of a multi-storey building. Klawonn et al. [19] also combined CDDA with the
FE2 approach to take advantage of the largest supercomputers available and those of the upcoming
exascale era for virtual material testing of micro-heterogeneous materials. However, with the increased
number of sub-tasks in complex problems, the scale of the interface equations formed by each sub-
task and their condition number also increases dramatically. Moreover, applying the iterative method
to solve the interface equations involves the overheads generated by global communication between the
sub-tasks and local communication within sub-tasks, which further reduces the efficiency of parallel
computing.

Regarding the hardware in high-performance computing, parallel computing systems usually
employ distributed storage parallel mode, which mainly includes the homogeneous supercomputers
[20] and the heterogeneous supercomputers [21]. Specifically, heterogeneous supercomputers have
become the mainstream in high-performance computers due to their excellent computing power
and high cost-to-performance effectiveness. Heterogeneous supercomputers are often equipped with
multicore CPUs, also with GPUs and many integrated cores (MIC) processors or heterogeneous
groups to complete the computing tasks. The APU project from the AMD Company is such an
example [22]. Other examples include the Echolen project, led by the NVIDIA [23], The Runnemede
project, led by Intel Corporation [24], the ‘Shenwei-Taihuzhiguang’ project from Wuxi-Hending
Company [2], etc. On this basis, researchers have ported and improved CDDA to solve the structural
performance of large-scale and ultra-large-scale finite element systems and achieved remarkable results
[25,26]. Xue et al. [25] gained the numerical simulation of the three-dimensional compressible Euler
atmospheric model system using the CDDA based on the CPU-MIC architecture. With the base of

138 CMES, 2023, vol.136, no.1

CPU-MIC architecture on CDDA, Miao et al. [26] designed a new hybrid solver with TPCA for large-
scale structural analysis. And it was applied to the parallel computation of a tunnel to find its dynamic
characteristics. Moreover, the different storage mechanisms and non-uniform communication laten-
cies on the heterogeneous multicore distributed groups also introduce new challenges for the design
of efficient parallel algorithms in large-scale structural analysis [27]. Thus, the keys to improving
the efficiency of the finite element parallel algorithm of the heterogeneous supercomputer are: (1)
to balance loads of computational tasks and hardware topology architecture of the heterogeneous
multicore clusters; (2) to store the large-scale data generated in the computing process and (3) to
guarantee the communication between inter-node and intra-node, within and between heterogeneous
groups.

The main contribution of this paper is to provide a novel hybrid solver that is aware of the
characteristics of heterogeneous multicore clusters and fully exploits their computing power to achieve
optimal performance. In the proposed algorithm, the hybrid parallel partitioning is adopted based
on the mesh partition and data partition, which reduces the assembling scale of global interface
equations. And it improves the memory access efficiency of data by introducing distributed sparse
storage of data in the computing process. By utilizing the computing tasks and the mapping of
hardware topology structure on the heterogeneous multicore clusters, this method can also realize
a three-layer parallelization in the computation procedure: the inter-nodes parallelization, the HCGS
parallelization, and the inside-HCGs parallelization. This method not only achieves load balancing
at different levels in an effective way but also improves communication efficiency by separating the
communication. As a consequence, the work in this paper can be provided as a reference for porting
the finite element structural analysis on the ‘Shenwei’ heterogeneous multicore processor and other
heterogeneous processors to optimize the performance of large-scale parallel implementations.

The rest of this paper is organized as follows: In Section 2, the related works CDDA and TPCA
are introduced to solve the structural large-scale finite element analysis. Then, in Section 3, the HHPA
proposed with mesh partition, data partition and the implementation of HHPA with the best respect
for the architecture of the Shenwei heterogeneous multicore processor is described. In Section 4, two
numerical experiments are presented. Finally, conclusions are drawn in Section 5.

2 Related Works

To present the proposed algorithm, some parallel computing algorithms for large-scale finite
element analysis are introduced for better understanding.

2.1 Review of CDDA
Applying CDDA to solve the large-scale finite element structural analysis, the finite element mesh

will first be partitioned into series sub-domains [28], as shown in Fig. 1.

The system equations of partitioned sub-domains at the moment of t + �t can be expressed as the
following equation equivalently with Schur formulation [15–19]:[∧

K II

∧
K IB

∧
KBI

∧
KBB

] {
U I(t+�t)

UB(t+�t)

}
=

{ ∧
F I(t+�t)
∧
FB(t+�t)

}
(1)

CMES, 2023, vol.136, no.1 139

internal node
boundary node

partitioning

condensing and assembling

Figure 1: Partitioning and condensation of CDDA

∧
K and

∧
F can be calculated by Eqs. (2) and (3) with Newmark-HHT integral through the finite-

difference method [28–30]:
∧
K = a0M+ (

1 − αf

)
K (2)

∧
F = (

1 − αf

)
Fn+1 + αf Fn − αf Kun + M (a0un + a2u̇n + a3ün) (3)

In the Eqs. (2)∼(3), the values of a0∼a7 are decided by α, δ, αm, αf together, which are calculated
by Eq. (4):

a0 = 1/α�t2, a1 = δ/α�t, a2 = 1/α�t, a3 = 1/2α − 1
a4 = δ/α − 1, a5 = �t/2(δ/α − 2), a6 = �t(1 − δ), a7 = δ�t

}
(4)

Eliminate the internal DOFs to obtain the interface equation that only with the unknowns of the
boundary DOFs:

K̃XB(t+�t) = F̃ (t+�t) (5)

K̃ and F̃ can be solved by Eqs. (6) and (7):

K̃ = ∧
KBB − ∧

KBI

∧
K

−1

II KIB (6)

F̃ (t+�t) = ∧
FB(t+�t) − ∧

KBI

∧
K

−1

II

∧
F I(t+�t) (7)

Combining the interface equations from Eq. (5) in every sub-domain and solving them using
parallel PCG algorithm can determine XB(t+�t) for each sub-domain. And the internal displacement
of each sub-domain can be solved by back substituting according to Eq. (8):

XI(t+�t) = K−1
II

(
F̃ I(t+�t) − K̃ IBXB(t+�t)

)
(8)

Finally, calculate the stress σ /strain ε of each sub-domain through Eqs. (9) and (10) by substituting
the internal and boundary displacement synchronously as follows:

ε = L̃NX (t+�t) (9)

σ = Dε (10)

To reduce memory and calculation amount, the procedure of finding inverse matrixes should be
avoided [31]. Considered that KII is symmetric positive-definite and K−1

II is reused for many times in
Eqs. (6)∼(8), the LDLT algorithm is used in the calculation of condensation to avoid finding inverse

140 CMES, 2023, vol.136, no.1

matrixes, as shown in Eq. (11). Then matrix vector operations related to K−1
II can be converted into the

solution of linear equations.

KII = LDLT (11)

2.2 Review of TPCA
TPCA [16] was proposed to improve the parallel efficiency of large-scale structural dynamic

analysis through two-level partitioning and two-level condensation based on CDDA, as shown in
Fig. 2.

first
partitioning

second
partitioning

first
condensing

and
assembling

second
condensing and assembling

internal node

boundary node

(a) two-level partitioning (b) two-level condensation

Figure 2: Partitioning and condensation of TPCA

Compared with CDDA, TPCA can reduce the solution scale of the overall interface equations of
the system through multilayer partition and multi-condensation and thus can effectively improve the
parallel efficiency of finding the solution. However, TPCA will require additional time in condensing
sub-domains, assembling and solving the interface equations in sub-domains level 2 with the increasing
number of sub-tasks, and therefore will limit the efficiency of the parallel system to a certain degree.

3 Proposed HHPA Based on Shenwei Heterogeneous Multicore Processor
3.1 Proposed HHPA

To reduce time in condensing sub-domains, assembling and solving the interface equations in sub-
domains level 2 with the increasing number of sub-tasks, HHPA was proposed o the basis of CDDA
and parallel sparse solver, as shown in Fig. 3.

first
partitioning

-mesh

second
partitioning

-data

parallel
assembling

parallel
assembling

parallel
assembling

parallel
assembling

parallel
condensing

parallel
condensing

parallel
condensing

parallel
condensing

parallel
assembling

subdomain 0-data

subdomain 1-data

subdomain 2-data

subdomain 3-data

internal node

boundary node

Figure 3: Partitioning and condensation of HHPA

There are two partition methods, namely mesh partition and data partition. For each subdomain,
the nodes can be divided into internal node and boundary node according to mesh partition. The

CMES, 2023, vol.136, no.1 141

system equations of partitioned sub-domains at the moment of t + �t can be expressed as Eq. (1).
∧
K and

∧
F can be parallel calculated by Eqs. (2) and (3). Compressed sparse column techniques and

distributed storage are applied to store K and M according to data partition. Considering the
solution scale of KII and multiple reuses of KII , the parallel sparse solver was used in Eqs. (6)∼(8)
and Eq. (11). Then, combining the interface equations from Eq. (5) in every sub-domain and solving
them using parallel PCG algorithm can determine XB(t + Δt) for each sub-domain. Finally, the internal
displacement/stress σ /strain ε of each sub-domain can be calculated by parallel back substituting
according to Eqs. (8)∼(10).

The differences between the different approaches CDDA, TPCA and HHPA are shown in
Table 1. Also, Fig. 4 demonstrates the block diagram of the proposed algorithm. During the parallel
computing, each subdomain in level 1 is assigned to a node. All the subdomains in level 2 derived
from the same subdomain in level 1 are assigned to different cores within the same node. Besides, MPI
process 0 in each node is applied to take charge of operations of the corresponding subdomain in level
1 and the solution of global interface equations. The process of HHPA can be divided into steps as
follows.

Table 1: Differences between the different approaches CDDA, TPCA and HHPA

Differences CDDA TPCA HHPA

Number of MPI
processes

p × m p × m p × m

Number of
subdomain-level 1

p × m p p

Number of
subdomain-level 2

— m m

Solution scale of global
interface equation

(p × m) ∗ r p × r p × r

Mode of interface
equation of
subdomain-level 1

Calculated by 1 MPI
process

Calculated by m MPI
processes with CDDA

Calculated by m
MPI processes with
parallel sparse solver

Step 1: Prepare data for domain decomposition parallel computing of mesh partition. Data
contains information on finite element models (element stiffness matrix, mass matrix and external
load vector) and partition information files. There is no communication for this step.

Step 2: Create p × m processes on the node side synchronously. Every m of the MPI process
is responsible for one sub-domain data file data reading, where p represents the number of nodes
participating in parallel computing and m represents the number of heterogeneous cluster terminals
on each node. There is no communication for this step.

Step 3: Each MPI process will derive q threads from the heterogeneous group to assemble
∧
K∗∗ and

F within sub-domains, where q represents the number of computing cores.
∧
K∗∗ for each sub-domain

only needs to be calculated once in the first calculation. In later calculations, it only requires updating
the effective load vector in every step. There exists communication within the same MPI process.

142 CMES, 2023, vol.136, no.1

Figure 4: Block diagram of proposed HHPA

Step 4: Every MPI process of each node uses its derived q threads to join the condensing based
on Eqs. (5)∼(7) for each sub-domain synchronously. And then distribute and save K̃ and F̃ to its

CMES, 2023, vol.136, no.1 143

corresponding shared memory space in the MPI process. There exists communication within and
among the MPI process.

Step 5: Use the derived q threads to solve interface equations by parallel PCG algorithm with
communication among nodes.

Step 6: Use the heterogeneous clusters in each node to solve the internal displacement with parallel
back substituting according to Eqs. (9)∼(10). There exists communication within and among the MPI
process. There exists communication within and among the MPI process.

Step 7: Use the derived q threads to back substitute to get the value of the stress σ /strain ε for each
sub-domain. And then distribute and store the calculation results in corresponding shared memory
space in the MPI process. There exists communication within and among the MPI process.

Step 8: If there is no need for further iterations, stop calculation; else back to Step 2.

3.2 Architecture and Execution Mode of Shenwei Processor
Shenwei-Taihuzhiguang supercomputer is based on Shenwei heterogeneous multicore processor

[2]. The architecture of the Shenwei heterogeneous multicore is shown in Fig. 5. Every Shenwei
heterogeneous multicore processor includes four HCGs, and each HCG shares 32 G of memory. Every
single HCG consists of one computational control core and 64 computing cores. The communication
between the HCGs adopts the bidirectional 14 Gbits/s bandwidth. And the communication between
the computational control and the computing core adopts the DMA method to get bulk access to
the main memory. The local storage space of the computing core is 64 KB, and the command storage
space is 16 KB.

interface bus network on chip

memory

core
7,0

...

core
1,0

core
1,2

core
1,2

. . .

core
0,2

core
0,1

core
0,7

. . .

core
1,7

core
2,0

core
2,2

core
2,1

core
2,7

. . .

...

. . .

...

...8×8

core
7,1

core
7,2

core
7,7

core
0,0

memory

L1 cache

L2 cache

HCG

memory
controller

hub

computa-
tional

control core
comput-
ing core

array

memory

HCG

memory
controller

hub

computa-
tional

control core
comput-
ing core

array

memory

HCG

memory
controller

hub

computa-
tional

control core
comput-
ing core

array

HCG

memory
controller

hub

computa-
tional

control core
comput-
ing core

array

Figure 5: Architecture of Shenwei heterogeneous multicore processor

The application modes of Shenwei heterogeneous multicore processors mainly include the private
mode and the full-chip shared mode of the HCGs. For the private mode of heterogeneous-core groups,
every HCGs at each node shares 8 G memory space; On the other hand, for the full-chip mode of the
HCGs, the full-chip has 32 G memory, or 16 G memory can be used by one MPI process. Since the
computing power in the full-chip mode of the HCG is weaker, it is often used in the case of large
memory requirements. Therefore, our project mainly adopts the private mode of the HCG to design
the hybrid hierarchical parallel computing method for large-scale finite element structures.

144 CMES, 2023, vol.136, no.1

3.3 Task Mapping of Parallel Algorithms
Mapping the computing tasks to different hardware layers of heterogeneous multicore supercom-

puters can achieve a balance-load among different nodes, as well as implement efficacious partitioning
in communication, thereby significantly reducing communication overheads [32].

Based on CDDA, considering the hardware architecture of heterogeneous multicore supercom-
puters, the design of task mapping of HHPA for large-scale finite element structural analysis is shown
in Fig. 6. When performing task mapping, the initial mesh in the sub-domains and the interface
equation systems will be mapped according to the node order. The condensing of each sub-domain
and the internal back substituting within each sub-domain will be mapped corresponding to the
HCGs within the internal node. And the mapping of data calculations within HCGs is based on the
computing core.

heterogeneous multi-core
supercomputer

nodal
computer-0

nodal
computer-1

nodal
computer-p

HCG-
0

core
0,0

core
1,0

core
7,0

core
0,1

core
1,1

core
7,1

core
0,7

core
1,7

core
7,7

core
0,0

core
1,0

core
7,0

core
0,1

core
1,1

core
7,1

core
0,7

core
1,7

core
7,7

task
0

task
8

task
56

task
1

task
9

task
57

task
7

task
15

task
63

task
0

task
8

task
56

task
1

task
9

task
57

task
7

task
15

task
63

initial
mesh

mesh
region

inter-
face
mesh

partitioning

condensing

internal node
boundary node

solving interface
equation system

HCG-
1

HCG-
3

HCG-
2

HCG-
0

HCG-
1

HCG-
3

HCG-
2

HCG-
0

HCG-
1

HCG-
3

HCG-
2

Figure 6: Task mapping of HHPA for structural large-scale finite element analysis

3.4 Large-Scale Parallel Computing Mechanism
Consider the fact that the communication efficiency of intra-node is much higher than inter-

node. And the efficiency within the same HCG is much higher than that among the HCGs in
heterogeneous multicore distributed storage computers. Thus, the key to reducing the overheads
raised from communication and cooperation in the calculation is to separate and minimize the
communication between intra-node and inter-node and the communication among the HCG and
within the HCG. Based on the multilayer and multigrain parallel computing approach to large-scale
finite element structural analysis, a computing strategy with a three-parallel layer has been designed,
as shown in Fig. 7.

The first layer parallelization: In every node, m processes are responsible for processing one
mesh subdomain, and all processes are operated synchronously. There is no data interaction between
processes, but data interactions exist between the computational control cores and the computing cores
within the process. Data progress procedure including computational control cores read the model data
in sub-domain, and computing cores assemble the system equations for parallel computing of sub-
domains. To save the memory space and to reduce the amount of computation, compressed sparse
column techniques are applied to store the local stiffness matrix of each sub-domain.

CMES, 2023, vol.136, no.1 145

Figure 7: Scheme of three-layer parallelization

The second layer parallelization: In this layer, based on the LDLT algorithm, each node starts m
processes simultaneously to carry out condensation and back substitution for the corresponding mesh
sub-domain. Communications exist between different HCGs within the same node, and communica-
tions also exist in the computational control cores and the computing cores in one HCG. Compressed
sparse column techniques are used here for distributed storage of computational data in the procedure.
After calculations, the result data will be sent to the main HCG corresponding to each node named
No. 0, which is in charge of assembling the effective stiffness matrix and the effective load vector
corresponding to its mesh sub-domain.

SuperLU [33] is a library that implements algorithms for parallel and serially solving of sparse
linear equations. SuperLU_S can provide serial LDLT algorithm. And SuperLU_D can provide par-
allel LDLT algorithm, which is used in the second layer parallelization of proposed HHPA. However,
the SuperLU_D cannot use the computing cores of the HCG directly. Through MPI or OpenMPI
library, SuperLU_D can only call the computational control core of the HCG. Considering that the
implementation process of the parallel LDLT algorithm mainly includes parallel LDLT decomposition
and parallel solution of triangular systems of linear equations, the heterogeneous multicore accelera-
tion is utilized to improve process improvement. The primary operations for computing are matrix-
vector calculus and data communications. The communication procedure between different HCGs is
realized by adopting the MPI library, and Athread library is utilized to achieve communication within
each HCG. Matrix-vector calculus mainly includes addition, subtraction, multiplication and division.
Taking vector multiplication a = b × c as an example (a, b, c are storage arrays in the process of

146 CMES, 2023, vol.136, no.1

arbitrary matrix-vector operations), the implementation process is shown in Fig. 8. The 64 computing
cores on each HCG read the corresponding data from the memory space synchronously, where the
memory of this data segment must be less than 64 KB. And the data will return to specific locations
after calculation. The communication only exists in the computational control cores and computing
cores.

double a[];
double b[];
double c[];
int i;
int J;
#pragma acc parallel loop
copyin(b,c)
copyout(a)
for (i=0;i<J;i++)
{

a[i]=b[i]*c[i];
}

control code of computational
control core

code implementation for heterogeneous multi-core
acceleration

comput-
ing core

array

computatio
nal control

core

memory
controller

hub

private memory-8G

0,0
64kb

1,0
64kb

7,0
64kb

0,1
64kb

1,1
64kb

7,1
64kb

0,7
64kb

1,7
64kb

7,7
64kb

8×8

__thread_local double bs[],as[],cs[];
__thread_local int i,J;
athread_get(PE_MODE,&b[],&bs[],,,,,)
athread_get(PE_MODE,&c[],&cs[],,,,,)
for (i=0;i<J;i++){as[i]=bs[i]*cs[i];}
athread_put(PE_MODE,&as[],&a[],,,,)

Figure 8: Vector matrix multiplication on heterogeneous multicore acceleration

The third layer parallelization: In the third layer, interface equations of the sub-domains are solved
based on the parallel PCG algorithm. Only one HCG participates in computing and communication
in each node, as illustrated in Fig. 9. The diagonal preconditioners are constructed locally using the
condensed stiffness matrices of subdomains in level 1 [26,34]. The diagonal preconditioning requires
solving the system hi = D−1ri. Solving the preceding system is equivalent to dividing each element of r
by a diagonal entry of the corresponding row of the condensed stiffness matrices. Since the rows of the
stiffness matrix and the corresponding elements of the vectors reside in the same HCG, this operation
does not require any communications among HCGs.

During the solving procedure, the effective stiffness matrix and effective load vector of each sub-
domain are distributed and stored in the memory space of the corresponding HCG. Similarly, the
intermediate results are stored in matrix-vector product form based on compressed sparse column
distributed storage. Global communications only exist between neighboring sub-domains. And just a
few dot product operations and computations for overall iterative error require global communica-
tions. Local communications are restricted within the computational control core and the computing
cores of each HCG. Hence, this method can remarkably reduce the amount of communication and
speed up the computing efficiency.

To sum up, HHPA can limit the majority of local communications within the node and ensure
there is one HCG to participate in global communication for each node. At the same time, each
HCG confines a large amount of communication between the computational control cores and
the computing cores through multicore acceleration. And also guarantee that only the computing
control cores participate in the communication between the core groups for each HCG. Through this
operation, communications between intra-node and inter-node and the communication within and
among HCGs can be separated effectively. As a result, it reduces the communication and cooperation
overheads in the computing process and improves communication efficiency.

CMES, 2023, vol.136, no.1 147

Figure 9: Parallel PCG algorithms

4 Numerical Experiments and Discussion

To verify the performance of the proposed algorithm, the Shenwei-Taihuzhiguang supercomputer
is employed for testing, and each node operates four HCGs during the test.

4.1 Case of a Cube in Bending
A cube model was used to evaluate the performance of the parallel algorithm. The model and its

load-time curve are shown in Fig. 10. The cube is fixed at its left end face, and the right end face is
under a uniform sinusoidal load with a peak force of 106 N. The cube is 20 m in length, 10 m in width
and 10 m in height. After discretizing with tetrahedral element, the model contains 6,886,981 elements,
7,037,638 nodes, and 11,007,819 DOFs. The material assigned to this model with an Elastic Modulus
of 210 Gpa, Poisson’s ratio of 0.3 and density of 7850 Kg/m3.

x

y

z
0 0.5 1-1

0

1

time/s

lo
ad

co
ef

fi
ci

en
t

y

x

group1.4

load time curve of p

group1.2

group1.1 group1.3

group-1

group-2

group-3

Figure 10: Finite element model of cube and load time curve for p

148 CMES, 2023, vol.136, no.1

In parallel computing, the operating number of nodes should be 32, 64, 96, and 128, respectively.
The criterions of the parallel PCG in CDDA, TPCA and HHPA are 1e-8. The sub-domains should be
prepared in advance to correspond to the total number of nodes when applying HHPA proposed in
this article. When applying TPCA, the sub-domains in level 2 should be prepared to correspond to four
times the total node number [15]. And for CDDA, the pre-prepared sub-domains should also match
the 4 times total number of nodes. SuperLU_S is adopted by CDDA and TPCA in the condensation
of the subdomains.

In order to verify the accuracy of the parallel algorithm computation, 12 sampling points are
picked, as shown in Fig. 10. The goodness-of-fit with the theoretical solution is adopted to evaluate
the precision of the solution based on the three algorithms, as shown in Fig. 11. The definition of
goodness-of-fit is shown in Eq. (12):

R2 = 1 −
n∑

i=1

(Xi − Yi)
2/

n∑
i=1

(
Xi − X

)2
(12)

point position

gr
ou

p1
.1

gr
ou

p1
.2

gr
ou

p1
.3

gr
ou

p1
.4

gr
ou

p2
.1

gr
ou

p2
.2

gr
ou

p2
.3

gr
ou

p2
.4

gr
ou

p3
.2

gr
ou

p3
.1

gr
ou

p3
.3

gr
ou

p3
.4

te
st

ca
se

CDDA.x

CDDA.y

CDDA.z

TPCA.x

TPCA.y

TPCA.z

HHPA.x

HHPA.y

HHPA.z

0.99990

0.99991

0.99992

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1.00000

Figure 11: R2 value of different methods

In Eq. (12), n represents the number of the sampling points with the changing of the time curve,
which is 25. Yi is the theoretical solution (the displacement changes with time in x, y, and z directions).
Xi is the finite element solution (the displacement changes with time in x, y, and z directions).
X is the average value of the sampling points. The error becomes smaller when the value of R2

approaches 1.

It can be observed from Fig. 11 that whether using the CDDA, TPCA, or HHPA proposed in
this paper, the displacement-time curve in all directions for all sampling points is in good agreement
with the theoretical solution based on the elasticity and solid mechanics, with the goodness-of-
fit close to 1. Hence, the computational accuracy of the CDDA, TPCA and HHPA is reasonable.
However, there are some minor differences between CDDA, TPCA and HHPA. This is because the
ordering of operations and rounding errors in calculation with CDDA, TPCA and HHPA are slightly
different.

The detailed results for the cube model of the CDDA, TPCA, and HHPA are shown in Tables 2–3.
The performance of parallel algorithm for cube model of the CDDA, TPCA, and HHPA is shown in
Fig. 12.

CMES, 2023, vol.136, no.1 149

Table 2: Interface problem sizes and iteration for the cube model

Computing hardware CDDA TPCA HHPA

Nodes HCG Cores No. of
DOFs on
interface

Average
no. of
iterations

Level 1
no. of
DOFs on
interface

Average
no. of
iterations

Level 1
no. of
DOFs on
interface

Average
no. of
iterations

32 128 8192 219003 269 52361 159 52361 157
64 256 16384 456003 292 106112 171 106112 173
96 384 24576 651499 497 160307 218 160307 236
128 512 32768 879977 702 215650 273 215650 257

Table 3: Statistics of time and performance of parallel computing for the cube model

Computing
hardware CDDA TPCA HHPA

Nodes HCG Cores Interface
solving
time/s

Total
time/s

Speed
up

Parallel
effi-
ciency

Level-1
solving
time/s

Total
time/s

Speed
up

Parallel
effi-
ciency

Level-1
solving
time/s

Total
time/s

Speed
up

Parallel
effi-
ciency

32 128 8192 4326 98765 1 100% 90456 95656 1 100% 91113 96213 1 100%
64 256 16384 7561 56528 1.7472 87.36% 45997 51863 1.8444 92.22% 48678 53434 1.8006 90.03%
96 384 24576 8807 47942 2.0601 68.67% 39961 38856 2.4618 82.06% 39220 39491 2.4363 81.21%
128 512 32768 12965 44714 2.2088 55.22% 35625 2.6108 2.8108 65.27% 28998 33333 2.8864 72.16%

32 64 96 1281

2

3

4

Sp
ee

du
p

Number of nodes

TPCA
CDDA
Theoretical speedup

HHPA

Figure 12: Performance of parallel algorithms for cube

In Table 3, the total time for parallel computing starts from calculating system equations and ends
when obtaining the deformation/strain/stress solutions for every sub-domain. Solution time for level 1
with TPCA includes: assembling system equations of level 1 and the level 2 sub-domains, condensing

150 CMES, 2023, vol.136, no.1

level 2 sub-domains, solving interface equations with the parallel algorithm of level 1 and level 2 sub-
domains, and back substituting the internal DOFs for level 1 and level 2 sub-domains. Solution time
for level 1 with HHPA includes: assembling level 1 sub-domains, condensing level 1 sub-domains with
the parallel solution of level 2 sub-domains, solving interface equations with the parallel algorithm
of level 1 sub-domains, and parallel back substituting the internal DOFs for level 2 sub-domains.
Compared to the CDDA, both TPCA and HHPA proposed in this article can achieve higher speedup
and parallel efficiency, which is shown in Fig. 12. This is because the scale and condition number grow
dramatically with the increase of sub-domains in the CDDA, which results in longer solving time for
the interface equations, and a weaker overall parallel efficiency. Compared with the TPCA, when the
number of level-1 sub-domain is small, the computing efficiency and speedup of HHPA proposed in
this article are relatively low. But with the increase in the level-1 sub-domains, this algorithm comes
with relatively high parallel computing efficiency and speedup. From the mathematics point of view,
TPCA and CDDA have the same interface equations of level 1. When the number of level 1 sub-domain
is small, the scale and condition number of the system equations are larger. Although utilizing the
parallel solvers can save time for assembling the level 2 sub-domain system equations, condensing, and
solving time for the level 2 interface equations, the time to solve the sub-domain system is still relatively
high. Thus, it has lower parallel efficiency and speedup. Nevertheless, with more sub-domains in level
1, the scale and condition number of the system equations become smaller, and there is no need for
assembling, condensing and solving for the level 2 subdomains. Therefore, the parallel solvers take
advantage of reducing the total solving time. At the same time, HHPA realized the communication
separation of inter-nodes and the communication within and among heterogeneous groups through
the three-layer parallelization. As a consequence, it can noticeably reduce the time in solving the level
1 sub-domain and achieve better speedup and parallel efficiency under large-scale partitions.

The time complexity of CDDA, TPCA, and HHPA is analyzed as follows. It starts with the
calculation of Eqs. (2) and (3). All of them took O(n). The calculation of Eq. (5) took O(n2). And
the calculation of Eqs. (6)∼(10) took O(n3/2). Time complexity of CDDA is O(NIter × (n3/2

I + kn2
B +

n)). O(NIter × (n3/2
I + klevel−1n

2
B−level−1 + klevel−2n2

B−level−2 + n)) is the time complexity of TPCA. Time
complexity of HHPA is O(NIter × (4n3/2

I + klevel−1n
2
B−level−1 + n)).

4.2 Case of a Cable-Stayed Bridge in Shock Wave
A double-layer cable-stayed bridge system is used to perform dynamic structural analysis based

on the calculating system of HHPA. The development of the double-layer cable-stayed bridge system
is significant for solving the dual use of highways and light rails problem and improving traffic
efficiency. The strict and high requirements for the safety and stability of the system make it a tough
challenge for large-scale numerical modeling. The overall modeling of the finite element system needs
to consider detailed modeling and be able to reflect the local response. The overall finite element model
is shown in Fig. 13, including the H main tower base, H main tower crown, transitional pier, assistant
pier, girder, etc. After meshing with tetrahedral elements, this model is composed of 17,637,501
elements, 10,367,815 nodes and 21,835,902 DOFs. When under dangerous working conditions, the
main loads usually come from the seismic wave and their own weight. Therefore, the structural
dynamics analysis mainly considers the deformation and stress of the bridge under seismic loads and its
gravity. Specifically, the seismic waves are the MEX natural waves, which are input in three directions
of the bridge bottom simultaneously, and their overall amplitude is modulated proportionally.

In parallel computing, the operating number of nodes is 96, 192, 288, and 384, respectively. The
calculation results of TPCA and HHPA proposed in this article are presented in Tables 4–5. The

CMES, 2023, vol.136, no.1 151

performance of parallel algorithm for cable-stayed bridge of the CDDA, TPCA, and HHPA are shown
in Fig. 14.

Figure 13: Whole finite element model of cable-stayed bridge

96 192 288 384
1

2

3

4

Number of nodes

Sp
ee

du
p

HHPA
TPCA
Theoretical speedup

Figure 14: Performance of parallel algorithms for cable-stayed bridge

Table 4: Interface problem sizes and iteration for the cube model

Computing hardware TPCA HHPA

Nodes HCG Cores Level 1 no. of
DOFs on
interface

Average no. of
iterations

Level 1 no. of
DOFs on
interface

Average no.
of iterations

96 384 24576 69997 167 69997 161
192 768 49152 148867 198 148867 184
288 1152 73728 225621 229 225621 235
384 1536 98304 339872 278 339872 273

It can be seen from Table 5 that HHPA and TPCA almost obtain the same computing time for
the interface equations. This is because the scales of the interface equations of the two methods are

152 CMES, 2023, vol.136, no.1

approximately the same. When under 96 nodes or 192 nodes, the total computing time of HHPA in
this paper is higher than that of TPCA. This result is consistent with Miao’s [15] findings based on
the parallel computation under a multicore environment. The main reason behind the phenomenon
is when the partition scale is relatively small, the computing scale for the sub-domain is rather
large, causing the bandwidth of every sub-domain system to be too large in turn. This raises the
computing memory space requirements for each sub-system and accompanies a serious increment
in the computing amount. As a consequence, it affects the parallel computing efficiency. On the
contrary, when under 288 nodes or 384 nodes, our HHPA consumes less time than TPCA. This is
because when the partition scale gets larger, the sub-domain scale will effectively shrink in computing,
which will further cause a decrease in the bandwidth of every sub-domain system. Also, compared
to the homogeneous groups under a multicore environment, the heterogeneous groups under the
heterogeneous condition have superior computation ability, which can speed up the parallel solution
for equations. In general, these factors make the total computation time shorter in level 1 equations
based on HHPA than that time for the TPCA, considering the assembling, condensing, solving and
back substituting for the level 2 equations. And therefore, when under a larger scale partition, HHPA
proposed in this article owns a higher efficiency and speedup, which is shown in Fig. 14.

Table 5: Results of parallel computation for cable-stayed bridge

Computing hardware TPCA HHPA
Nodes HCG Cores Level 1

assembling
time/s

Total
interface
equation
solution
time/s

Total
time/s

Speed
up

Parallel
efficiency

Level 1
solution
time/s

Total
interface
equation
solution
time/s

Total
time/s

Speed
up

Parallel
efficiency

96 384 24576 200836 10231 256238 1 100% 217265 9003 275880 1 100%
192 768 49152 95399 15623 130706 1.9604 98.02% 106022 14012 144712 1.9064 95.32%
288 1152 73728 68705 21306 105175 2.4363 81.21% 67111 20535 102076 2.7027 90.09%
384 1536 98304 62134 30012 102791 2.4928 62.32% 28876 28876 91764 3.0064 75.16%

The calculation results of HHPA with different parallel solvers on the solving of global interface
equations are shown in Table 6.

In Table 6, the global interface equations are solved by different parallel solvers SuperLU_D,
KSPCG in PetSc and parallel PCG. It can be seen from the Table 6 that when using HHPA with
SuperLU_D to solve the global interface equations, the solution time increases sharply with the
increase of subdomains. Although the global interface equations adopt compressed sparse column
technique for storage and the SuperLU_D is only applied in the lower triangle decomposition when
conducting triangular decomposition, the global interface equations are still highly dense. Also, the
triangular decomposition will further increase the density of the original equations. As a consequence,
the sets and triangular decomposition require a large amount of memory. Besides, it also needs a lot
of communication and calculation. With the increase of subdomain, the scale of the global interface
equations also gets larger. Companies with more expense in storage, communication and computing,
and take a longer time to solve the global interface equations. On the contrary, when utilizing the
KSPCG and the parallel PCG, because of the use of the iterate method, the local communication
involved in the equation parallel solution only exists between neighbor subdomains. Only a few
dot product operations and computations for overall iterative errors need global communications.
Thus, the KSPCG and the parallel PCG can achieve the calculation in a shorter computing time.
Additionally, the solving time of parallel PCG is less than KSPCG. It is because all processes need to

CMES, 2023, vol.136, no.1 153

participate in global communication when solving global interface equations with KSPCG. And the
parallel PCG only uses 1 MPI process within the same node. Hence, the overhead increment in inter-
process communication and synchronization will greatly increase the solution time of global interface
equations.

Table 6: Results of parallel computation for cable-stayed bridge

Computing hardware HHPA
(SuperLU_D)

HHPA
(KSPCG [35])

HHPA (Parallel
PCG)

Nodes HCG Cores Total interface
equation
solution time/s

Total interface
equation
solution time/s

Total interface
equation
solution time/s

96 384 24576 17795 11036 9003
192 768 49152 30016 16267 14012
288 1152 73728 52136 24563 20535
384 1536 98304 83775 36478 28876

5 Conclusions

(1) To lower the computational efficiency loss when solving systemically large-scale or ultra-large-
scale structure finite element problems with heterogeneous multicore distributed storage com-
puters, the HHPA for finite element analysis is proposed based on research and understanding
of CDDA, TPCA, parallel solver, and multilayer communication strategy architecture. This
method not only reduces the scale of interface equations but also considerably saves computing
time. Moreover, a three-layer parallelization has been applied successfully during the compu-
tational procedure to separate the communication of inter-nodes, heterogeneous-core-groups
and inside-heterogeneous-core-groups. Thereby, this method largely increases communication
efficiency.

(2) The typical numerical example shows that when the scale of the partition is comparatively
small, the parallel efficiency of this approach is better than CDDA but worse than TPCA.
When the scale of the sub-domain is relatively large, this method can achieve a higher
speedup and parallel efficiency than TPCA. The results of this paper can be provided as a
reference for finite element structural analysis software operating on ‘Shenwei’ heterogeneous
multicore processors and can be ported to other heterogeneous processors for large-scale
parallel computing. It can also be provided as a practical reference for large equipment systems
and the dynamics of complex engineering systems under fine modeling in parallel computing.

Funding Statement: This work is supported by the National Natural Science Foundation of China
(Grant No. 11772192).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

154 CMES, 2023, vol.136, no.1

References
1. Kennedy, G. J., Martins, J. R. (2014). A parallel finite-element framework for large-scale gradient-based

design optimization of high-performance structures. Finite Elements in Analysis and Design, 87, 56–73. DOI
10.1016/j.finel.2014.04.011.

2. Xu, S., Wang, W., Zhang, J., Jiang, J. R., Jin, Z. et al. (2021). High performance computing algorithm and
software for heterogeneous computing. Journal of Software, 32(8), 2365–2376.

3. Gao, R., Li, X. (2021). Design and mechanical properties analysis of radially graded porous scaffolds.
Journal of Mechanical Engineering, 57(3), 220–226. DOI 10.3901/JME.2021.03.220.

4. Ni, P. H., Law, S. S. (2016). Hybrid computational strategy for structural damage detection
with short-term monitoring data. Mechanical Systems and Signal Processing, 70, 650–663. DOI
10.1016/j.ymssp.2015.09.031.

5. Kurc, Ö. (2010). Workload distribution framework for the parallel solution of large structural mod-
els on heterogeneous PC clusters. Journal of Computing in Civil Engineering, 24(2), 151–160. DOI
10.1061/(ASCE)CP.1943-5487.0000019.

6. Zuo, S., Lin, Z., García-Doñoro, D., Zhang, Y., Zhao, X. (2021). A parallel direct domain decomposition
solver based on schur complement for electromagnetic finite element analysis. IEEE Antennas and Wireless
Propagation Letters, 20(4), 458–462. DOI 10.1109/LAWP.2021.3053566.

7. Wang, Y., Gu, Y., Liu, J. (2020). A domain-decomposition generalized finite difference method for
stress analysis in three-dimensional composite materials. Applied Mathematics Letters, 104, 106226. DOI
10.1016/j.aml.2020.106226.

8. Phillips, J. C., Hardy, D. J., Maia, J. D., Stone, J. E., Ribeiro et al. (2020). Scalable molecular dynamics
on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. DOI
10.1063/5.0014475.

9. Zhang, W., Zhong, Z. H., Peng, C., Yuan, W. H., Wu, W. (2021). GPU-accelerated smoothed particle finite
element method for large deformation analysis in geomechanics. Computers and Geotechnics, 129, 103856.
DOI 10.1016/j.compgeo.2020.103856.

10. Li, Z., Shan, Q., Ning, J., Li, Y., Guo, K. et al. (2022). AMG-CG method for numerical analysis of high-rise
structures on heterogeneous platforms with GPUs. Computers and Concrete, 29(2), 93–105.

11. He, X., Wang, K., Feng, Y., Lv, L., Liu, T. (2022). An implementation of MPI and hybrid
OpenMP/MPI parallelization strategies for an implicit 3D DDG solver. Computers & Fluids, 241, 105455.
DOI 10.1016/j.compfluid.2022.105455.

12. Paszyńska, A. (2017). Graph-grammar greedy algorithm for reutilization of partial LU factorization over
3D tetrahedral grids. Journal of Computational Science, 18, 143–152. DOI 10.1016/j.jocs.2016.10.003.

13. Łoś, M., Schaefer, R., Paszyński, M. (2018). Parallel space–time hp adaptive discretization scheme
for parabolic problems. Journal of Computational and Applied Mathematics, 344, 819–835. DOI
10.1016/j.cam.2017.12.005.

14. Peng, X., Chen, G., Yu, P., Zhang, Y., Guo, L. et al. (2019). Parallel computing of three-dimensional
discontinuous deformation analysis based on OpenMP. Computers and Geotechnics, 106, 304–313. DOI
10.1016/j.compgeo.2018.11.016.

15. Miao, X., Jin, X., Ding, J. (2014). A hierarchical parallel computing approach for structural static finite
element analysis. Acta Mechanica Sinica, 46(4), 611–618.

16. El Gharbi, Y., Parret-Fréaud, A., Bovet, C., Gosselet, P. (2021). Two-level substructuring and parallel mesh
generation for domain decomposition methods. Finite Elements in Analysis and Design, 192, 103484. DOI
10.1016/j.finel.2020.103484.

17. Koric, S., Lu, Q., Guleryuz, E. (2014). Evaluation of massively parallel linear sparse solvers on unstructured
finite element meshes. Computers & Structures, 141, 19–25. DOI 10.1016/j.compstruc.2014.05.009.

https://doi.org/10.1016/j.finel.2014.04.011
https://doi.org/10.3901/JME.2021.03.220
https://doi.org/10.1016/j.ymssp.2015.09.031
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000019
https://doi.org/10.1109/LAWP.2021.3053566
https://doi.org/10.1016/j.aml.2020.106226
https://doi.org/10.1063/5.0014475
https://doi.org/10.1016/j.compgeo.2020.103856
https://doi.org/10.1016/j.compfluid.2022.105455
https://doi.org/10.1016/j.jocs.2016.10.003
https://doi.org/10.1016/j.cam.2017.12.005
https://doi.org/10.1016/j.compgeo.2018.11.016
https://doi.org/10.1016/j.finel.2020.103484
https://doi.org/10.1016/j.compstruc.2014.05.009

CMES, 2023, vol.136, no.1 155

18. Fialko, S. (2021). Parallel finite element solver for multi-core computers with shared memory. Computers &
Mathematics with Applications, 94, 1–14. DOI 10.1016/j.camwa.2021.04.013.

19. Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O. (2020). Computational homogenization with million-
way parallelism using domain decomposition methods. Computational Mechanics, 65(1), 1–22. DOI
10.1007/s00466-019-01749-5.

20. Gasparini, L., Rodrigues, J. R., Augusto, D. A., Carvalho, L. M., Conopoima, C. et al. (2021). Hybrid
parallel iterative sparse linear solver framework for reservoir geomechanical and flow simulation. Journal
of Computational Science, 51, 101330. DOI 10.1016/j.jocs.2021.101330.

21. Ghysels, P., Synk, R. (2022). High performance sparse multifrontal solvers on modern GPUs. Parallel
Computing, 110, 102897. DOI 10.1016/j.parco.2022.102897.

22. Daga, M., Aji, A. M., Feng, W. C. (2011). On the efficacy of a fused CPU+GPU processor (or APU) for
parallel computing. 2011 Symposium on Application Accelerators in High-Performance Computing, pp. 141–
149. Knoxville, TN, USA.

23. Keckler, S. W., Dally, W. J., Khailany, B., Garland, M., Glasco, D. (2011). GPUs and the future of parallel
computing. IEEE Micro, 31(5), 7–17. DOI 10.1109/MM.2011.89.

24. Carter, N. P., Agrawal, A., Borkar, S., Cledat, R., David, H. et al. (2013). Runnemede, an architecture for
ubiquitous high-performance computing. 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 198–209. Shenzhen, China.

25. Xue, W., Yang, C., Fu, H., Wang, X., Xu, Y. et al. (2014). Ultra-scalable CPU-MIC acceleration of
mesoscale atmospheric modeling on Tianhe-2. IEEE Transactions on Computers, 64(8), 2382–2393. DOI
10.1109/TC.2014.2366754.

26. Miao, X., Jin, X., Ding, J. (2016). Improving the parallel efficiency of large-scale structural dynamic analysis
using a hierarchical approach. The International Journal of High Performance Computing Applications,
30(2), 156–168. DOI 10.1177/1094342015581402.

27. Shirvani, M. H. (2020). A hybrid meta-heuristic algorithm for scientific workflow scheduling in heteroge-
neous distributed computing systems. Engineering Applications of Artificial Intelligence, 90, 103501. DOI
10.1016/j.engappai.2020.103501.

28. Dostál, Z., Horák, D. (2003). Scalability and FETI based algorithm for large discretized variational inequal-
ities. Mathematics and Computers in Simulation, 61(3–6), 347–357. DOI 10.1016/S0378-4754(02)00088-5.

29. Bathe, K. J., Noh, G. (2012). Insight into an implicit time integration scheme for structural dynamics.
Computers & Structures, 98, 1–6. DOI 10.1016/j.compstruc.2012.01.009.

30. Chen, D., Yang, J., Kitipornchai, S. (2016). Free and forced vibrations of shear deformable
functionally graded porous beams. International Journal of Mechanical Sciences, 108, 14–22. DOI
10.1016/j.ijmecsci.2016.01.025.

31. Hughes, T. J. R. (1987). The finite element method linear static and dynamic finite element analysis.
Computer Methods in Applied Mechanics and Engineering, 65(2), 191. DOI 10.1016/0045-7825(87)90013-2.

32. Hosseini Shirvani, M., Noorian Talouki, R. (2022). Bi-objective scheduling algorithm for scientific work-
flows on cloud computing platform with makespan and monetary cost minimization approach. Complex &
Intelligent Systems, 8(2), 1085–1114. DOI 10.1007/s40747-021-00528-1.

33. Li, X. S., Demmel, J. W. (2003). SuperLU_DIST, A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. ACM Transactions on Mathematical Software, 29(2), 110–140. DOI
10.1145/779359.779361.

34. Rao, A. R. M. (2005). MPI-based parallel finite element approaches for implicit nonlinear dynamic
analysis employing sparse PCG solvers. Advances in Engineering Software, 36(3), 181–198. DOI
10.1016/j.advengsoft.2004.10.004.

35. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D. et al. (2022). PETSc users manual.
Technical Report ANL-95/11–Revision 3.17. Argonne National Laboratory.

https://doi.org/10.1016/j.camwa.2021.04.013
https://doi.org/10.1007/s00466-019-01749-5
https://doi.org/10.1016/j.jocs.2021.101330
https://doi.org/10.1016/j.parco.2022.102897
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/TC.2014.2366754
https://doi.org/10.1177/1094342015581402
https://doi.org/10.1016/j.engappai.2020.103501
https://doi.org/10.1016/S0378-4754(02)00088-5
https://doi.org/10.1016/j.compstruc.2012.01.009
https://doi.org/10.1016/j.ijmecsci.2016.01.025
https://doi.org/10.1016/0045-7825(87)90013-2
https://doi.org/10.1007/s40747-021-00528-1
https://doi.org/10.1145/779359.779361
https://doi.org/10.1016/j.advengsoft.2004.10.004

	A New Hybrid Hierarchical Parallel Algorithm to Enhance the Performance of Large-Scale Structural Analysis Based on Heterogeneous Multicore Clusters
	1 Introduction
	2 Related Works
	3 Proposed HHPA Based on Shenwei Heterogeneous Multicore Processor
	4 Numerical Experiments and Discussion
	5 Conclusions

