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ABSTRACT

Research in the field of medical image is an important part of the medical robot to operate human organs. A medical
robot is the intersection of multi-disciplinary research fields, in which medical image is an important direction and
has achieved fruitful results. In this paper, a method of soft tissue surface feature tracking based on a depth matching
network is proposed. This method is described based on the triangular matching algorithm. First, we construct a
self-made sample set for training the depth matching network from the first N frames of speckle matching data
obtained by the triangle matching algorithm. The depth matching network is pre-trained on the ORL face data
set and then trained on the self-made training set. After the training, the speckle matching is carried out in the
subsequent frames to obtain the speckle matching matrix between the subsequent frames and the first frame.
From this matrix, the inter-frame feature matching results can be obtained. In this way, the inter-frame speckle
tracking is completed. On this basis, the results of this method are compared with the matching results based on
the convolutional neural network. The experimental results show that the proposed method has higher matching
accuracy. In particular, the accuracy of the MNIST handwritten data set has reached more than 90%.
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1 Introduction

In recent years, surgical robots have begun to be frequently used in minimally invasive surgery to
reduce the pain of patients, reduce the work intensity of the surgeon, improve the accuracy of surgical
operations, and reduce the difficulty of surgical operations [1–4]. This operation is mainly used for
disease monitoring and treatment of various parts of the human body through an endoscope, which
enters the human body through a small channel (a natural channel or a channel confirmed by a doctor).
Compared with traditional surgery, the position perception of intraoperative equipment and soft tissue
surface requires high accuracy, and because the intraoperative field of view is relatively narrow, it
causes a lot of difficulties [5]. Therefore, many computer-assisted techniques have been proposed to
assist the operation process [6,7], and many advanced robot-assisted surgical techniques have extremely
high requirements for the tracking of the soft tissue surface characteristics of the surgical organs,
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such as abnormal brain detection method for magnetic resonance image and detecting tuberculosis
from chest CT images [8,9]. Tracking research on the surface of soft tissue is conducive to the use
of surgical robots’ high-precision and high-flexibility characteristics. It can perform precise surgical
operations in different organs and tissues of the human body [10–12]. It is conducive to the recovery
and reconstruction of surgical organs and tissues, greatly reduces the danger caused by the shaking of
the body during the operation of the surgeon, greatly enhances the doctor’s confidence and reduces
the surgeon’s fatigue, and enhances the safety and effectiveness of the operation. In addition, the
tracking of soft tissue surface features of endoscopic image sequences has very important applications
in postoperative surgical effect analysis, surgical training and teaching, and virtual reality soft tissue
3D modeling [11,13].

The tracking problem in the medical field is a hot issue [14], and most of the technical routes
adopted are based on the feature as the object to launch the tracking. However, problems such as low
matching accuracy and slow speed of feature points in endoscopic images remain.

Recent research has revealed that image-based methods can enhance accuracy and safety in
laser microsurgery. Schoob et al. proposed a non-rigid tracking using surgical stereo imaging [15]. A
recently developed motion estimation framework based on piecewise affine deformation modeling is
extended by a mesh refinement step and considers texture information. This compensates for tracking
inaccuracies potentially caused by inconsistent feature matches or drift. To facilitate the online
application of the method, the computational load is reduced by concurrent processing and affine-
invariant fusion of the tracking and refinement results. The residual latency-dependent tracking error
is further minimized by Kalman filter-based upsampling, considering a motion model in disparity
space.

The surface feature of the soft tissue image is used as the tracking object to realize the tracking
of the surface of the soft tissue [16]. The key step of the soft tissue surface feature tracking process
is feature matching. The feature matching method is also applied to feature matching in different
views of the same frame. At a certain moment, the coordinates of a three-dimensional space point
are mapped to two different perspective images in the left and right views, but they are actually the
same space point. Similarly, feature matching is performed on the points of the left and right views to
obtain the parallax under different viewing angles. In addition, the internal and external parameters
of the camera that shoots the left and right views and the focal length are added to obtain the three-
dimensional coordinates of the space points.

Robotic automation in surgery requires the precise tracking of surgical tools and mapping of
deformable tissue. Previous works on surgical perception frameworks require significant effort in
developing features for surgical tools and tissue tracking. In this work, Lu et al. [17] overcame the
challenge by exploiting deep learning methods for surgical perception. They integrated deep neural
networks, capable of efficient feature extraction, into the tissue tracking and surgical tool tracking
processes. By leveraging transfer learning, the deep-learning-based approach requires minimal training
data and reduced feature engineering efforts to fully perceive a surgical scene.

Verdie et al. [18] proposed a learning-based time invariant feature detector (TILDE), which can
reliably detect key points in the case of severe changes in external conditions such as illumination.
An effective method is proposed to generate the training set of training regression. This method
learns three regressors, and the segmented regressor shows the best effect. The author evaluates the
regressor on the new outdoor benchmark data set, which shows that the performance of the regressor
proposed by the author on the benchmark data set is obviously better than the most excellent algorithm
at that time. Savinov et al. proposed Quartnetworks [19]. They first proposed to learn the feature
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detector from scratch, train a neural network to rank the key points, and then find the key points
from the top/bottom bits of the ranking. The workflow of the whole method is to extract random
block pairs from two images. Each image block obtains a response through the neural network, then
calculates the loss through the sorting consistency function of quadruple and optimizes it by gradient
descent method. The algorithm based on data learning can not only learn the feature detector like
Quarknetworks, but also learn the feature descriptor. With the improvement of machine learning
[20–24], Simoserra et al. proposed Deepdesc [25] for key point descriptor learning. This method uses
a convolutional neural network to learn the discriminant representation of image blocks (patches),
trains a Siamese network with paired inputs, and processes a large number of paired image blocks
by combining the random extraction of training sets and the mining strategy for patch pairs that are
difficult to classify. The L2 distance is used in training and testing, and the learned 128-d descriptor is
used. Its Euclidean distance reflects the similarity of patch pairs. The feature learning method maps
the pixel values of image blocks to description vectors through nonlinear coding. The goal is to learn
description vectors. The selection of measurement rules of these description vectors is generally related
to the real label vector. The processing process of references [26,27] included multiple parameterization
modules such as gradient calculation, spatial pooling, feature normalization and dimension reduction.
Trzcinski et al. [28] used a “weak learning” accelerator, including a series of capabilities of gradient
direction and spatial position parameterization. In order to find the optimal parameters, different
types of optimization algorithms, Powell minimization, boosting and convex optimization are used
respectively.

Feature based 3D reconstruction is the last step of soft tissue surface tracking, mainly to
build a visual object model with more three-dimensional spatial characteristics. The key point of
3D reconstruction technology is feature matching. In the stereo matching of binocular vision, the
corresponding points in space are obtained from the two-dimensional feature matching results and
camera parameters, combined with the triangular knowledge of epipolar geometry, multiple feature
matching, and then the three-dimensional point cloud set of multiple points is obtained. Finally, the
three-dimensional shape of the soft tissue surface is restored through triangulation. The essence of
soft tissue surface reconstruction is to accurately estimate the object’s three-dimensional shape. It is
a process of converting a two-dimensional image into a three-dimensional image based on feature
point matching data. In [29], the authors proposed an intraoperative surface reconstruction method
based on stereo endoscope images. At the same time, the author also proposed a new hybrid CPU-
GPU algorithm, which unifies the advantages of CPU and GPU versions. An innovative synchronous
positioning and mapping algorithm is proposed in [30], which used a series of images of the stereo
mirror to reconstruct the surface deformably. The author introduced a distortion field based on
embedded deformation nodes, which can restore the three-dimensional shape from continuous paired
stereo images.

In this paper, we used the feature matching algorithm based on deep learning, mainly based on the
soft tissue tracking of the deep matching network. First, we used the triangle matching algorithm to
obtain a self-made data set, then used the ORL face data set to pre-train the deep matching network,
and then used the self-made training set to train the deep matching network. After carrying out the
two-class feature tracking of the deep matching network, we carried out the multi-class spot tracking
based on the convolutional neural network. In the multi-class convolutional neural network part, the
same neural network architecture is used, and different pre-training sets, the MNIST handwritten
data set and CIFAR-10 data set are used to experiment with the effect of the pre-training set on
retraining and get the results. Finally, experiments are carried out on the algorithm of this paper and
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the influence of the network structure and training data set on the experimental results is analyzed
and compared. The innovations are that we used three unrelated data sets to pre-train and retrain the
matching network, constructed the training data set to prepare the training samples for the neural
training network, improved the depth matching network based on the Siamese network and finally
achieved good matching results.

2 Dataset

The initialization parameters of the neural network are obtained by training on the ORL face data
set [31]. The ORL face data set contains a total of 400 images of 40 different people. Each person has
10 different images. The light, facial expressions and details of the images are different, and the size is
112 ∗ 92 grayscale images. The data set is shown in Fig. 1.

Figure 1: ORL face dataset

The two data sets used in the pre-training in this article are the MNIST data set and the CIFAR-10
data set [32,33]. The data set is shown in Figs. 2 and 3.

Figure 2: MNIST dataset

Firstly, the MNIST data set of handwritten scanned digits is introduced. NIST, on behalf of the
National Institute of standards and technology, is the organization that originally collected these data
“M” stands for modified. In order to use machine learning algorithm easier, we first preprocessed the
data. The MNIST dataset includes scanning of handwritten digits and related labels (describing which
number of 0∼9 is contained in each image). It includes 60000 training images with 28 ∗ 28 pixels and
10000 test images with 28 ∗ 28 pixels. As shown in Fig. 2, these handwritten digits are standardized in
size and located in the center of the image, and the pixel value of the image is normalized to 0∼1.
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Figure 3: CIFAR-10 dataset

The CIFAR-10 dataset contains 10 categories, aircraft, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks. A total of 60000 RGB color images, including 50000 training images and 10000 test
images.

Medical dataset we used in this paper is a set of actual three-dimensional images of the soft tissue
of the heart provided by Hamlyn Center at Imperial College London. They are available on the website:
https://imperialcollegelondon.app.box.com/s/kits2r3uha3fn7zkoyuiikjm1gjnyle3.

3 Method
3.1 Triangular Matching Algorithm

The constructed matching data set is shown in Fig. 4. The first frame is our known frame, as shown
in the figure, the 25th and 30th frames are the data sets matched by our triangle matching algorithm.
Because the spot detection algorithm is affected by light, etc., the triangle matching can not match the
first frame one by one, and there is spot loss in the subsequent frame Fi (i ≥ 1), but it does not prevent
us from intercepting the spots to make the data set. Even if a 32 ∗ 32 size screenshot of a certain spot
is missing in a certain frame, a screenshot of a certain spot will still appear in its subsequent frames.

Figure 4: (Continued)

https://imperialcollegelondon.app.box.com/s/kits2r3uha3fn7zkoyuiikjm1gjnyle3
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Figure 4: Screenshot and its spots (a) first frame (b) frame 25 (c) frame 30

3.2 Speckle Tracking Based on Depth Matching Network
The depth matching network is mainly composed of two parts, feature extraction network and

metric network. The feature extraction is composed of two convolutional neural networks [22,34] with
shared weights. This thinking comes from the Siamese network and twin neural network, which is very
suitable for the binary classification task of image matching. Each image block (patch) inputs a feature
extraction network to generate a fixed dimension sift like feature. This feature is a depth feature, but
different from sift, the similarity and difference between the two feature description vectors in sift are
calculated by the Euclidean distance, while in depth matching network, the metric network is used.

The metric network consists of three fully connected layers. The last layer uses sigmoid function
(i.e., Eq. (1)) to output scores to obtain the similarity probability of image blocks.

S (x) = 1
1 + e−x

(1)

The feature extraction network includes five convolution layers and two lower sampling layers, and
includes an FC layer used to reduce the dimension of the features extracted by the feature extraction
network. The function of the FC layer is to reduce the feature dimension extracted by the feature
extraction network and control the overfitting of the network, because the number of parameters
involved in full connection is large. If the feature dimension is too high, it will easily lead to a large
number of parameters and over fitting. The output 256 dimension of FC layer represents the advanced
features of the input image block, and each image block represents the spots detected in the frame.
Therefore, FC layer represents the spot depth features “integrated” by the feature extraction network.
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Because our input image is small, the size of the convolution kernel we use is relatively small, which
is also to comprehensively and carefully obtain the feature information in the image block (patch). The
convolution kernel after filling and then convolution greatly increases the nonlinear characteristics
without losing the resolution while keeping the scale of the feature map unchanged; A convolution
kernel corresponds to a feature map after convolution. Different convolution kernels (with different
weights and bias) will get different feature maps after convolution to extract different features.

We use the RELU (rectified linear units) function [35] as the activation function of the convolution
layer. Similarly, the sign function of the full connection layer is also RELU. The introduction of the
activation function is to increase the nonlinearity of the convolution layer. Without the activation
function, each convolution layer is equivalent to matrix multiplication, and the output of each layer
only goes through a linear transformation. No matter how many layers the neural network has, the
linear transformation is of little significance as a whole. Obviously, we want to learn the nonlinear
characteristics of image blocks. By adding an activation function, nonlinear changes are introduced
into neurons, so the neural network can be used to simulate any nonlinear function arbitrarily.

The details of the depth matching network, such as parameters, convolution kernel size, convolu-
tion step size and so on, are listed in Tables 1 and 2.

Table 1: Detailed information of feature extraction network

Name Type Output dim Kernel size Stride Param

Conv1 C 32 ∗ 32 ∗ 64 5 ∗ 5 1 4864
Pool1 MP (max-pooling) 16 ∗ 16 ∗ 64 3 ∗ 3 2 ——
Conv2 C 16 ∗ 16 ∗ 96 3 ∗ 3 1 55392
Conv3 C 16 ∗ 16 ∗ 96 3 ∗ 3 1 82944
Conv4 C 16 ∗ 16 ∗ 64 3 ∗ 3 1 55360
Pool4 MP 8 ∗ 8 ∗ 64 3 ∗ 3 2 ——
FC FC B (B = 256) —— —— 1048832

Table 2: Measurement network detailed information

Name Type Output dim Param

FC1 FC 512 262656
FC2 FC 512 262656
FC3 FC 1 513

After the detailed information description of the network layer is completed, we make necessary
explanations for the training method. We select positive and negative samples with batch size from the
training sample set to build a group of training samples. The number of positive and negative samples
in each batch size is equal.
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Depth matching network is based on minimizing the cross entropy loss function to train network
parameters. The cross-entropy function [36] is:

E = −1
n

∑n

i=1
[yi log (ŷi) + (1 − yi) log (1 − ŷi)] (2)

where yi is the 0/1 label of the input image pair, 1 represents a match, and 0 represents a non-match.
ŷi is the actual output value of the matching network, n represents the number of picture pairs in each
batchsize, and batchsize = 32. We update the network weight according to the cross entropy, and then
continue to input the next set of training samples, and repeat the above training process, and complete
the epoch group training. In order to ensure that the direction of optimization is correct, the number
of positive samples in the input samples of each batch is equal to the number of negative samples, and
the training process is shown in Fig. 5, where M = 32, B = 256, N2 = 9.

M

M

Patch 1 Patch 2

N1 N2

...B dimension

N1

...B dimension

N2

Feature Set

...

...

2B

Feature Pairs

Metric networkMM

Matching
matrix

N1

N2

N1*N2

Feature extraction network

Figure 5: Schematic diagram of depth matching network training process

We calculate the matching matrix between Fi (i > 1) and the spots in F1. The image blocks
corresponding to the feature points in F1 and Fi (i > 1) are combined into the depth matching network
in pairs, and the similarity of the spots will be calculated, and the matching matrix will be filled
in according to the correspondence between rows and columns. Each row of the matching matrix
corresponds to a spot in F1, and each column corresponds to a detected spot in Fi (i > 1). According
to the matching matrix, we select the column with the highest score in each row (corresponding to a
feature point in F1) and exceed a set threshold (corresponding to the feature point in Fi (i > 1)) as the
matching feature point to complete the spot in the frame Match between (tracking). If the matching
degree is less than the set threshold, it means that no matching spots are detected in this frame.

4 Experiments and Results

Our experiment is based on TensorFlow 2.1, python 3.7, NVIDIA Geforce GTX 1060ti and other
platforms. The program running environment is shown in Table 3.
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Table 3: Operating environment

Processor Intel(R)Core(TM)i5-3230 M CPU@2.6 GHz
Memory 8.0 GB (7.98 GB available)
Operating system 64 microsoft windows 10 ultimate
Development environment Pycharm + Anaconda
Programing language Python

When constructing the sample set, we need to first expand the edges of the bottom of the input
image. Our input picture is 288 ∗ 320, and the spot coordinates near the bottom edge of the detected
spots are close to the y value (288) in the picture coordinate system, where the origin of the picture
coordinate system is in the upper left corner. The y-value index of the spot coordinate has the hidden
danger of crossing the boundary. Therefore, before capturing the picture, fill in the bottom of the
picture. In this article, we choose the boundary pixel extension [37], which is conducive to the feature
extraction network to fully extract the pixel information around the spots. The edge filling result is
shown in Fig. 6.

Figure 6: Bottom edge filling (a) Original drawing (b) Boundary pixel expansion

According to the feature point matching results of the first 100 frames, the image block with the
size of M ∗ M = 32 ∗ 32 is intercepted with the position coordinates of the matched feature points as
the center, and the positive samples and negative samples are constructed by combining them. The
spots in the positive samples are the corresponding vertices of the two triangles matched with each
other, marked as 1. The spots in the negative sample are the corresponding vertices of two mismatched
triangles, marked as 0. Finally, all the positive and negative samples are used to construct the training
sample set. For our proposed depth matching network, we use the network pre-training to obtain the
initialization parameters in the network. The depth matching network is pretrained on ORL face data
set. The pre-training results are shown in Fig. 7 and the re-training results are shown in Fig. 8. It can be
seen from Figs. 7 and 8 that although the pre-training stage has performed well, under the retraining
of the self-made training set, the curve is smoother and converges faster from the accuracy curve and
loss curve. Therefore, the weight parameters obtained by pre-training are effective, which speeds up
the training progress and convergence speed.
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Figure 7: Accuracy and loss curve in pre-training stage

Figure 8: Accuracy and loss curve in retraining stage

For the traditional neural network, 32 ∗ 32 ∗ 3 endoscopic soft tissue speckle map is used as the
input, and the previous n = 100 frame matching result is used as the training set. Due to the loss of
spots, a total of 750 speckle maps are used as the training set, and 180 speckle images of the subsequent
20 frames are used as the test set to train and test the convolutional neural network.

The two data sets used for pre-training are the MNIST data set and the CIFAR-10 dataset. We
will perform pre-training on the two data sets respectively, and then use our self-made training set
for retraining. On the same network structure, different data sets are used for pre-training, and the
influence of the pre-training data set on the convolutional neural network training can be compared;
After the retraining stage, we can see the impact of pre-training on retraining.
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In the network setting, the learning rate is 0.0001, the optimizer adopts Adam optimizer and small
batch training method, batchsize = 32, and the maximum training epoch = 100. The training results are
shown in Fig. 9.

Figure 9: Loss reduction curve based on MNIST data set

When training the convolutional neural network based on CIFAR-10 data set, the input is changed
from single channel gray image to 3-channel RGB image. The learning rate, optimizer and other
parameter settings remain unchanged, and the training results are shown in Fig. 10.

Figure 10: Accuracy curve based on CIFAR-10 data set
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Save the weight of the pre-training and use the self-made training set for retraining. The results of
retraining are shown in Fig. 11.

Figure 11: Retraining loss and accuracy curve based on CIFAR-10 data set

As mentioned in the previous paper, we use three different data sets to study inter frame speckle
matching on two neural networks. The differences between neural networks and the comparison of
data sets are shown in Table 4.

Table 4: Comparison of training effects of neural network and pre-training data set

Network Depth matching network Convolutional neural network

Data set Face dataset Handwritten dataset CIFAR-10

Pre-training
Loss 0.16 0.25 0.4
Accuracy 0.94 0.96 0.55

Stable (Number of epochs) 90 70 40

Retraining
Loss 0.06 0.12 Divergence
Accuracy 0.99 0.97 Reduce

Stable (Number of epochs) 30 50 ——

In the subsequent frames, in order to ensure the universality of the test, any frame is selected. In the
experiment, any frame selected by the program is F148, after the spot detection, 29 spots are detected.
Take the detected spot coordinates as the center, intercept 32 ∗ 32 image blocks, form image block
pairs with the 9 spots detected in the first frame, input the trained depth matching network, and the
depth matching network outputs the similarity of each image block pair to obtain a 9 ∗ 29 matching
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score matrix. Therefore, the matching result of the first frame and the F148 spot can be obtained from
the matching score matrix, as shown in Fig. 12. And the speckle matching diagram obtained by the
matching score matrix is shown in Fig. 13.

Figure 12: Detection spot map in F148

Figure 13: Speckle matching diagram obtained by matching score matrix

Spot 1 is most stably detected in the first frame, so we still track spot 1 in subsequent frames,
as shown in Fig. 14, which shows the tracking of spots with serial number 1 detected in the first
frame. The horizontal axis is the number of frames, the vertical axis is the pixel coordinate of the spot,
the vertical axis of the left figure is the X coordinate of the pixel coordinate, and the vertical axis of
the right figure is the Y coordinate of the pixel coordinate. The origin of pixel coordinates is located
in the upper left corner of the image, and the X and Y of pixel coordinates are just opposite to the row
and column values of accessing the two-dimensional image matrix.
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Figure 14: Pixel coordinate tracking results of subsequent frames of speckle 1

5 Discussion

From Figs. 9 and 10, the accuracy of the two data sets in the pre-training stage is different. The
accuracy of the MNIST handwritten data set has reached more than 90%, which can be considered
that the purpose of pre-training has been achieved. However, the accuracy rate on the CIFAR-10 data
set is only 50%, and even the accuracy of the test set tends to decline.

As can be seen from Fig. 12, retraining has obvious divergence and overfitting. The reason is that
the pre-training of the pre-training data set is not in place. We can also see from the pre-training curve
that its accuracy curve and the trend of decline appear. Only the pre-training sample set is large, and
it may continue to be pre-trained for hundreds of rounds, which will be the same as that of retraining.
In the complex feature information, the pre-trained sample data set has a considerable impact on the
subsequent retraining.

It can be seen from Figs. 10–12 that the grid multi-classification effect based on CIFAR-10 data set
is obviously inferior to that based on the MNIST handwritten data set. It shows that the pre-training
of the data set still has a significant impact on the subsequent retraining.

It can be seen from Table 4 that in the pre-training stage, the training results of the depth matching
network on the face data set are excellent. If we continue to use the self-made training set, the
convergence is faster, the accuracy curve is steeper, and its initial starting point is also relatively
high, It shows that the weight parameter obtained by pre-training on the gray image face data set
is an effective weight parameter for soft tissue image speckle training set, and shortens the retraining
time; Convolutional neural network also performs well on MNIST handwritten gray-scale images,
but it performs poorly on the RGB CIFAR-10 data set for two reasons: the first reason is that the
characteristics of the MNIST handwritten digits are as simple as those of soft tissue image surface
spots, and the gray-scale information is regional, while the image information of cars, animals and
other images in CIFAR-10 data set is more complex, And the characteristics of surface spots in
soft tissue images; The second reason is that the structure of convolutional neural network itself is
relatively simple, which can only deal with images with simple feature information. For complex feature
information such as images in CIFAR-10 dataset, it is easy to overfit, resulting in non-convergence or
even divergence.
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As shown in Fig. 12, it can be seen that the spots detected in F148 are compared with the first frame.
The spots 5 and 6 detected in the first frame are not detected in F148. Therefore, in the matching score
matrix, the spots 5, 6 in the first frame, the similarity probability of the column corresponding to the
row is below 0.5, indicating that the spots 5 and 6 are not detected, and the spots 5 and 6 fail to track
in F148. The similarity probability of the columns corresponding to the rows of the remaining spots
is above 0.5 and the largest among the columns. The column where the probability is located in the
corresponding spot of the first frame spot in F148.

In the experiment, spot 1 is tracked from frame 121. From the pixel coordinates, the heartbeat
range is still about 30 pixels, which means that the soft tissue feature tracking algorithm based on
depth matching network is successful.

6 Conclusions

This paper constructs the training data set to prepare the training samples for the neural training
network. After that, we improve the depth matching network based on the Siamese network to adapt
to the feature extraction and measurement of soft tissue surface images. Firstly, we pre-train on the
ORL face data set to get better results and then retrain on our own data set to get a smoother
and steeper loss curve and accuracy curve so as to achieve the purpose of retraining. Furthermore,
we compared the spot-matching algorithms of classified convolutional neural networks. In terms of
convolutional neural networks, Lenet was used as the basic structure and slightly modified, pre-trained
on the MNIST handwritten data set and the CIFAR-10 data set respectively, and then retrained with a
self-made training set. The pre-training based on the MNIST data set performed well in the retraining
stage. However, the pre-training accuracy based on the CIFAR-10 data set reaches 50%, and the loss
in the retraining stage shows a divergent form, and the accuracy decreases significantly. It can be seen
that the data set has a significant impact on the results of pre-training and retraining. Therefore, in the
follow-up research, we can further select more data sets to train the deep matching network for better
performance.
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