
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.025774

ARTICLE

Logformer: Cascaded Transformer for System Log Anomaly Detection

Feilu Hang1, Wei Guo1, Hexiong Chen1, Linjiang Xie1, Chenghao Zhou2,* and Yao Liu2

1Information Center, Yunnan Power Grid Company Limited, Kunming, 650034, China
2Network and Data Security Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China,
Chengdu, 610054, China

*Corresponding Author: Chenghao Zhou. Email: 202121090103@std.uestc.edu.cn

Received: 29 July 2022 Accepted: 14 September 2022

ABSTRACT

Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status
and key events at key points. These logs are valuable for analyzing performance issues and understanding the
status of the system. Anomaly detection plays an important role in service management and system maintenance,
and guarantees the reliability and security of online systems. Logs are universal semi-structured data, which
causes difficulties for traditional manual detection and pattern-matching algorithms. While some deep learning
algorithms utilize neural networks to detect anomalies, these approaches have an over-reliance on manually
designed features, resulting in the effectiveness of anomaly detection depending on the quality of the features. At
the same time, the aforementioned methods ignore the underlying contextual information present in adjacent log
entries. We propose a novel model called Logformer with two cascaded transformer-based heads to capture latent
contextual information from adjacent log entries, and leverage pre-trained embeddings based on logs to improve
the representation of the embedding space. The proposed model achieves comparable results on HDFS and BGL
datasets in terms of metric accuracy, recall and F1-score. Moreover, the consistent rise in F1-score proves that the
representation of the embedding space with pre-trained embeddings is closer to the semantic information of the log.

KEYWORDS
Anomaly detection; system logs; semi-structured data; pre-trained embedding; cascaded transformer

1 Introduction

With the development of the Internet and the ever-increasing number of Internet users, online
systems are evolving and growing in functionality and size. Anomalous events can occur at any time,
and high demands have been made for quality of service and security guarantees [1–4]. More services
mean more sources of anomalous events, and even a small anomalous event can cause the entire system
to respond to it. If abnormal events cannot be detected and removed in a timely manner, the stability
and availability of the entire system will be affected. Failure to ensure the stability of the system leads to
customer distrust and financial losses. Logs record software status and system information at critical
points, providing a rich source of data for system monitoring and anomaly detection. In other words,
anomaly detection helps to detect anomalous events and safeguard the stable operation of the system.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.025774
https://www.techscience.com/doi/10.32604/cmes.2023.025774
mailto:202121090103@std.uestc.edu.cn

518 CMES, 2023, vol.136, no.1

An online system typically produces large-scale semi-structured logs. It is impractical to detect
and localize anomalies with traditional rule matching and manual screening methods based on
logs. As an alternative, many machine learning algorithms have been proposed to extract features
from semi-structured logs. PCA [5] is used to extract the principal components of logs to improve
classification models. LR [6] and SVM [7] are proposed to classify logs based on the manual designed
features. Nevertheless, the aforementioned approaches neglect the long-range dependence on the
log. Later, deep learning algorithms were proposed to automatically learn representations for logs
without manually designed features. However, most of them fail to extract the potential contextual
information present in adjacent log entries, making them uncompetitive in terms of performance.
RNN-based models have a natural advantage in capturing long-range dependencies, and LSTMs [8,9]
have been proposed to learn extractive representations for logs. Given that randomly initialized LSTMs
are difficult to optimize and LSTMs lack parallel computational capacity due to their recurrent
structure, self-attention models have been proposed to replace LSTMs with efficient parallel structures.
Transformer-based models [10] have been proposed to capture long-range dependencies in an efficient
parallel fashion. However, these approaches neglect the potential contextual information present in
the adjacent log entries.

To address the above issues, we propose a novel model called Logformer, which consists of two
cascaded transformer architectures with an encoder head and a decoder head. The encoder head works
well in encoding adjacent log entries into a vector representation, and the decoder head learns latent
context information from adjacent log entries. In order to preserve the useful features of logs, we
propose a log preprocessing method to replace the regular log parser. In the meantime, we adopt the
Glove algorithm to train embeddings for logs, thus making the embedding space more closely related
to the log semantics. Experimental results on the HDFS dataset and BGL dataset demonstrate that
Logformer outperforms other approaches.

2 Related Work

As an important part of a large-scale system, logs have been of great concern for many years. Many
researchers have attempted to use log data to understand the runtime status of a system. However,
system logs are usually semi-structured data, which is difficult to handle. In the beginning, keywords
are used to find the location of systematic errors. This method can only detect an explicit single
anomalous log entry and cannot detect an anomalous event based on the sequence of operations. In
other words, an anomalous event in the system log cannot be detected by manually designed keywords.
To address the above issues, matching methods [11,12] have been proposed for anomaly detection.
These methods rely heavily on manually defined rules in advance and are unable to detect anomalous
events from new sources.

With the development of deep learning, deep learning approaches are being applied in the field of
anomaly detection. Most of them consist of three steps [13]: first, logs are converted into templates by
a log parser; then, the templates are fed into a neural network to learn vector representation for logs;
finally, traditional machine learning algorithms such as SVM are applied to classify a log entry into
normal or abnormal categories with the learned vector representation. Due to the scarce fraction of
anomalous log entries, it is often difficult to extract features from anomalous data. Many researchers
use unsupervised approaches [14,15] for anomaly detection.

CMES, 2023, vol.136, no.1 519

In terms of semi-structured log entry preprocessing, many methods use parsers. Common ones
include Drain [16], AEL [17], IPLoM [18], and Spell [19]. There are also approaches that attempt to
obtain semantic vectors directly from embeddings without using a parser. Instead of using parsers for
log entries, embeddings are an alternative way to obtain vector representations. LogNL [8] is proposed
to utilize the TF-IDF algorithm to obtain template feature representations, and then construct
parameter value vectors for logs of different templates. There are several literature proposals to train
embeddings for logs by Word2Vec and SIF algorithms.

The attention mechanism can better capture the long-term dependencies in the data and improve
the model’s ability to extract the most relevant input features. In recent years, attention has been
successfully applied to image processing, natural language processing, recommendation systems, and
other fields. Xu et al. [20] proposed a model based on attention and AutoEncoder. With attention,
the decoder can adaptively select the desired features in the input sequence, which improves the
performance of the Encoder-Decoder structure.

Recently, deep learning models [21–26] have achieved remarkable results in the field of anomaly
detection. These approaches adopt RNN-based, LSTM-based, or transformer-based models as
baselines to extract representations from log entries and predict normal or abnormal labels for log
entries based on feature representations. Most of these approaches ignore the underlying contextual
information present in the adjacent log entries. Different from regular deep learning models, Log-
former effectively captures the long-range dependencies among adjacent log entries through a single
decoder head and makes full use of the textual information of the log to train embeddings for the log.

3 Methodology

In this section, we describe in detail the log preprocessing method, the pre-trained embedding
algorithm, and the model architecture.

3.1 Overview Pipeline
The model architecture of Logformer is a multi-layer of self-attention and feed-forward network,

as shown in Fig. 1. The Logformer consists of an encoder head, which encodes log entries into vectors,
and a decoder head, which extracts latent contextual information present in adjacent log entries. Before
feeding log entries into Logformer, the preprocessing method is applied to output structured log data.
Given an adjacent log entry X = (x1, x2, . . . , xn), the embedding layer maps X to word embeddings
E = (E1, E2, . . . , En), where Ei denotes the word embedding for a log entry xi. To exploit the textual
information of the logs, pre-trained embeddings trained with the Glove algorithm are used on the
logs to initialize the embedding layer. To maintain the order of log entries, position embeddings are
added to both the encoder and decoder heads. The encoder head outputs representation is given as H
= (H1, H2, . . . , Hn) for log entries, where Hi is the representation for log entry xi, and H is regarded as
a new sequence. The decoder head takes the H as input and learns the interactive information among
different log entries, then outputs a new representation H ′ for each log entry with abundant context
information. Finally, H ′ is fed into a linear classifier layer to predict whether a log entry is normal
or not.

520 CMES, 2023, vol.136, no.1

Figure 1: Model architecture: Logformer for log anomaly detection

3.2 Log Preprocessing
Original logs are semi-structured data, and log parsers are widely used in most deep learning

methods [22,23]. Lupton et al. [27] carried out a statistic of log parser methods, including publishing
year, the number of citations and performance, as shown in Table 1, where AvgPA is an indicator of the
average PA of all 16 datasets in Loghub which is detailed described in He et al. [28]. It can be observed
from Table 1 that the top three log parsers with the highest number of citations also fail to achieve
an Avg PA of 0.9 in the large-scale open-source dataset, which means that these parsers still bring up
an unacceptable error. At the same time, the log parsers discard log-level information, resulting in the
final source feature log loss. As a result, Logformer takes a different approach to log preprocessing
than log parsers. The log preprocessing of Logformer generally consists of two steps. First, each log
entry is split by commas, spaces, and other common separators. The log is then converted to lowercase
and some characters that do not contain valid information for anomaly detection are removed, such
as numbers representing variables and characters not in the template such as ‘for’, ‘ID’ and ‘of’. Fig. 2
shows the comparison between the original logs and the preprocessed logs.

Table 1: Effectiveness of log parser

Parser Year Citations BGL PA Avg PA

Drain 2017 122 0.963 0.865
Spell 2016 104 0.787 0.751
SHISO 2013 44 0.711 0.669
SwissLog 2020 36 0.970 0.962
LenMa 2016 19 0.690 0.721

(Continued)

CMES, 2023, vol.136, no.1 521

Table 1 (continued)

Parser Year Citations BGL PA Avg PA

LTMatch 2021 18 0.933 0.889
Paddy 2020 1 0.963 0.895

"081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder 0 for block
blk_-6952295868487656571 terminating"

"081109 204005 35 INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock:
blockMap updated: 10.251.73.220:50010 is added to blk_7128370237687728475 size
67108864",

"info dfs data node packet responder packet responder for block
terminating"

"info dfs fs namesystem block name systemadd stored block block
map updated is added to size"

Clean

Figure 2: Original logs and preprocessed logs

3.3 Pre-Trained Embedding
This section contains the WordPiece and Glove algorithms, where WordPiece is a subword

segmentation algorithm for natural language processing and Glove is a word embedding algorithm
for pre-trained embeddings of a corpus.

3.3.1 Tokenizer

Although logs are preprocessed properly in the log preprocessing phase, there are still existing
artificially generated words in preprocessed logs like ‘DataNode$PacketResponder’. The directly
extracted semantic vectors in the form of such words are not well understood, so we still need to
perform further word segmentation on the extracted contents. We chose the WordPiece tokenizer to
tokenize the preprocessed logs and output the tokenized corpus. WordPiece is trained from a small
vocabulary and selects the words that are most likely to occur until all words have been learned.

3.3.2 Glove

To match the embedding spaces with logs, Glove [29] is adopted to train the pre-trained embed-
ding, instead of randomly initializing the embedding layer. As Word2Vec [30] is trained from words in
a local sliding window and Glove is trained based on the global statistic co-occurrence matrix, Glove is
superior to Word2Vec with global information of the corpus. Let us denote the co-occurrence matrix
as X ∈ R|V |2 , where Xij means the times of word j occurs in the context of the word i, and V means
the vocabulary size. Denoting the embedding for word i and j as wi and w̃j, respectively, Xij can be
approximated by calculating as Eq. (1).

wT
i w̃j + bi + b̃j = log Xij (1)

The training objective function can be formulated as Eq. (2).

J = �V
i,j=1f

(
Xij

) (
wT

i w̃j + bi + b̃j − log Xij

)2
(2)

where f(Xij) is a weighting function and can be parameterized as Eq. (3).

522 CMES, 2023, vol.136, no.1

f
(
Xij

) =

⎧⎪⎨
⎪⎩

(
Xij

xmax

)α

Xij < xmax

1 otherwise
(3)

where α and Xmax are set to be 0.75 and 1.00, respectively. α works well in improving the accuracy
of low-frequency words by scaling up the weight of low-frequency words. Meanwhile, Xmax limits the
maximal times of occurrence.

3.4 Logformer
Most existing deep learning approaches take embeddings of preprocessed logs as input and predict

a log entry independently. A single log term may appear to be normal, but when it occurs consecutively
in adjacent log entries, it may indicate the occurrence of an anomaly. Therefore, exploiting the long-
range dependency information among adjacent log entries can be beneficial for anomaly detection. In
this work, Logformer is proposed to address the aforementioned issues. The Logformer consists of a
cascaded transformer architecture, an encoder head and a decoder head, where both the encoder and
decoder heads have the same architecture. The encoder head contains 6 stacked layers, each consisting
of two sub-layers, a multi-head self-attention layer, and a feed-forward network. While the decoder
head contains only 1 layer, it also has two sub-layers similar to the encoder head. In the following, we
describe the self-attention layer and the feed-forward network in detail.

3.4.1 Multi-Head Self-Attention

Logformer uses the multi-head self-attention to capture long-range dependencies in the adjacent
log entries. The heart of the encoder and decoder heads is self-attention, which maps a query and key-
value pair to an output where query, key, value, and output are all vectors. Conventional self-attention
only contains one head, and multi-head self-attention contains several heads as shown in Fig. 3.

Figure 3: Attention mechanism

Denoting the query, key, and value as Q, K, and V ∈ Rdmodel , separately, self-attention can be
calculated as follows:

Z = softmax
(

Q × KT

√
dmodel

)
V (4)

CMES, 2023, vol.136, no.1 523

where dmodel is the dimension of value.

Instead of performing a single attention function, Logformer captures richer contexts with
multiple individual attention functions. Multi-head self-attention can be regarded as the repetition
of h times of self-attention, where h is the number of attention heads. And multi-head self-attention
can be calculated as Eq. (5).

Zi = softmax
(

QW Q
i × KW K

i√
dh

)
VW v

i (5)

where W Q
i , W K

i and W V
i ∈ Rdmodel×dh , dh = dmodel/h.

3.4.2 Feed-Forward Network

The feed-forward network is used to obtain the information in the channel dimension. It applies
an expansion operation to x ∈ Rdmodel×l, and then recovers the intermediate output to the original
dimension, which is calculated as Eq. (6).

FFN(x) = GELU(xW1 + b1)W2 + b2 (6)

3.4.3 Positional Encoding

Logformer uses self-attention to extract features from adjacent log entries, but self-attention fails
to learn information about the order of a sequence. Therefore, positional encoding is added to the
encoder and decoder heads to maintain both the order of log entries and the tokens in each log entry.
Let us denote PEi ∈ Rdmodel as the positional encoding for token ti in a log entry, PEi

t is the i-th element
in PEt, where dmodel is the dimension of positional encoding and the maximal value of t is set to be 512.
PEi

t can be calculated as follows:

PEi
t =

⎧⎨
⎩

sin(wit) if t = 2k

cos(wit) if t = 2k + 1
(7)

where wi = 1

10000
2i

dmodel

, i = 0, 1, 2, 3, . . . , dmodel
2

− 1.

3.4.4 Batch Normalization

It is well-known that normalizing the feature maps makes training faster and more stable.
Logformer incorporates Batch Normalization (BN) in attention in place of the original Layer
Normalization (LN) in transformer. Layer Normalization is commonly used in RNN, where the
sequence length is often not fixed. Since LN does not depend on batch size and sequence depth, it
performs better in RNN. Compared to LN, BN shows better robustness and generalization ability.
Also, BN has the advantage that it is generally faster in inference than other batch-independent
normalizers such as LN. BN treats the batch data as a whole. The batch dimension is used in the
calculations of both mean and variance [31]. An important feature of Logformer is to combine
contextual information from multiple adjacent log entries. We want the normalization of Logformer
to be sensitive to batch size, so we choose BN instead of LN.

524 CMES, 2023, vol.136, no.1

4 Experiment
4.1 Dataset

In this paper, we select open-source datasets HDFS and BGL in LogHub [28] to validate the
effectiveness of Logformer, as Table 2 shown. These two log datasets are widely used in the fields
of anomaly detection. The HDFS dataset is generated by the benchmark workload in the private
cloud environment, and labels are made by manually designed rules to identify the abnormal events.
The BGL dataset contains logs collected from the BlueGene/L supercomputer system by Lawrence
Livermore National Labs (LLNL). BGL is divided into altered and no-alter log entries. The first
column in the BGL log contains ‘-’ or not, where ‘-’ means no-alter log entry, and the other is altered.

Table 2: Statistic of dataset

Dataset Log source Number of logs Type

HDFS Hadoop distributed file system 11175629 Distributed system
BGL Blue Gene/L Super computer 4747963 Super computer

4.2 Evaluation Metrics
We select precision, recall, and F1-score as the evaluation metrics. These three metrics are based

on the confusion matrix. The confusion matrix has four categories: True positives (TP) are examples
correctly labeled as positives. False positives (FP) refer to negative examples incorrectly labeled as
positive. True negatives (TN) correspond to negatives correctly labeled as negative. Finally, false
negatives (FN) refer to positive examples incorrectly labeled as negative.

Precision is calculated as the percentage of correctly predicted positive samples accounting for
all predicted positive samples. Recall is calculated as the percentage of correctly predicted positive
samples accounting for all real positive samples. And F1-score is an indicator to compute the average
of precision and recall.

precision = TP
TP + FP

(8)

recall = TP
TP + FN

(9)

F1 = 2 × precision × recall
precision + recall

(10)

where TP, FP, and FN mean the true positives, false positives, and false negatives, respectively.

4.3 Implementation Details
We construct Logformer by two cascaded transformers. The number of transformer layers of

encode head and decode head is 6 and 1, respectively. The hidden dimension is 128 and the number of
attention heads in the logformer is 6. Layer normalization is replaced with batch normalization in the
transformer layer. We use AdamW to optimize all parameters. The learning rate is set to 5e-4 and the
batch size is set to 32.

CMES, 2023, vol.136, no.1 525

4.4 Experiment Result
Experiments on HDFS and BGL datasets are shown in Table 3. We compared Logformer with

several existing methods in two public datasets, including the data-driven method PCA [32], traditional
machine learning method LR [33] and SVM [33], and the deep learning method LogRobust [34]. Due
to its limitation, PCA achieves poor results in both HDFS and BGL datasets. It can be observed that
both conventional machine learning and deep learning methods obtain consistent high performance
in the HDFS dataset. The reason behind this is that log entries in HDFS tend to be more structured
than BGL, and abnormal log entries are quite different from normal log entries. In the complicated
BGL dataset, it can be seen in Table 3, that LogRobust and Logformer outperform LR and SVM by a
large margin. Significantly, Logformer is superior to LogRobust with an increment of 8% in F1-score,
which demonstrates that Logformer is more suitable for complicated semi-structured logs.

Table 3: Experiment results on HDFS and BGL datasets

Dataset PCA LR SVM LogRobust Logformer

Precision 0.06 0.99 0.99 0.98 0.99
HDFS Recall 1.00 0.92 0.94 1.00 1.00

F1 0.11 0.96 0.96 0.99 0.99

Precision 0.09 0.13 0.97 0.62 0.87
BGL Recall 0.98 0.93 0.30 0.96 0.79

F1 0.17 0.23 0.46 0.75 0.83

4.5 Ablation Study
To invalidate the hypothesis that pre-trained embedding in logs makes the embedding space

match the textual information of logs better, we conduct comparative experiments by respectively
using pre-trained embedding and randomly initialized embedding in HDFS and BGL datasets. In
addition, we validate the importance of extracting context information existing in adjacent log entries
by adding/removing the encoder and decoder head. Finally, we discuss the influence of the number of
log entries on anomaly detection through experiments.

As shown in Table 4, the pre-trained embedding is superior in randomly initializing embedding
in all metrics in both HDFS and BGL datasets. Pre-training can extract the prior knowledge of the
task, improve the performance of Logformer by training the embeddings, which makes good use of
the textual information of logs.

Table 4: Experiment result on the effectiveness of pretraining embedding

Dataset Random Pretrain

Precision 0.96 0.99
HDFS Recall 0.97 1.00

F1 0.96 0.99
Precision 0.81 0.87

BGL Recall 0.74 0.79
F1 0.77 0.83

526 CMES, 2023, vol.136, no.1

When validating the effectiveness of the encoder and decoder header, we set three comparative
studies. w/o means predicting directly after an average sum of the pre-trained embedding; w encoder
means predicting from the output of the dencoder head; w encoder-decoder means predicting from
the output of the decoder head. It can be observed from Table 5 that the encoder head obtains a
better result than pre-trained embedding in two datasets, which demonstrates that the self-attention
layer in the encoder head can capture the log-range dependency information existing in a log entry.
After adding both the encoder and decoder head, the results are better than only adding the encoder
head, which means the decoder head improves the performance of Logformer by extracting potential
information from adjacent log entries.

Table 5: Experiment result on the effectiveness of decoder head

Dataset w/o w encoder w encoder-decoder

Precision 0.79 0.94 0.99
HDFS Recall 0.82 0.91 1.00

F1 0.80 0.92 0.99

Precision 0.71 0.80 0.87
BGL Recall 0.62 0.71 0.79

F1 0.66 0.75 0.83

As shown in Table 6, we try to use different batch sizes for experiments. In the Logformer, batch
size represents the number of logs used for context combination. With the increase in batch size, the
detection performance of the Logformer is also slightly improved, which is in line with the intuition.
But a larger batch size means larger resource consumption and longer time, and the batch size can be
adjusted as needed during actual use.

Table 6: Experiment result on the effectiveness of batch size

Dataset 64 128 256 512

Precision 0.90 0.94 0.98 0.99
HDFS Recall 0.93 0.96 0.99 1.00

F1 0.91 0.95 0.98 0.99

Precision 0.76 0.82 0.85 0.87
BGL Recall 0.67 0.72 0.74 0.79

F1 0.71 0.77 0.80 0.83

The experimental results show that the Logformer using the complete cascaded structure achieves
the best results in all datasets, which proves that our proposed cascaded structure is efficient. The
encoder first combines multiple semantic vectors to complete the encoding, and then the context
information association between adjacent log entries is captured by the decoder. The semantic vector
containing rich context information can make a significant contribution to system log anomaly
detection.

CMES, 2023, vol.136, no.1 527

5 Conclusion

This paper proposes an anomaly detection method with the cascaded structure that can make
full use of potential context information among adjacent logs. We also propose a log preprocessing
method to convert semi-structured logs into structured logs by removing common punctuation and
other redundant characters in logs. To make the embedding space match with the textual semantic
of logs, the WordPiece algorithm is adopted to tokenize the preprocessed logs into subwords, and the
Glove algorithm is used to train embedding based on the log corpus. A cascaded structure model
Logformer is finally designed to learn vector representation for each log entry and extract long-range
dependency among adjacent log entries.

Logformer achieves superior performance compared to conventional machine learning algo-
rithms and some deep learning models. From the perspective of two ablation studies, Logformer
outperforms other approaches by efficiently extracting potential information existing in adjacent log
entries. However, there are still more challenges in the real scenario. We do not provide the expert
system to realize the feedback mechanism, and the feedback mechanism often plays a crucial role in
an online system. The above problems are the direction of our future efforts.

Acknowledgement: The authors wish to express their appreciation to the reviewers for their helpful
suggestions which greatly improved the presentation of this paper.

Funding Statement: This work was supported by the National Natural Science Foundation of China
(Nos. 62072074, 62076054, 62027827, 61902054, 62002047), the Frontier Science and Technology
Innovation Projects of National Key R&D Program (No. 2019QY1405), the Sichuan Science and
Technology Innovation Platform and Talent Plan (No. 2020TDT00020), the Sichuan Science and
Technology Support Plan (No. 2020YFSY0010).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Bauer, E., Adams, R. (2012). Reliability and availability of cloud computing. New Jersey, USA: John Wiley

& Sons.
2. Huang, X., Xiong, H., Chen, J., Yang, M. (2021). Efficient revocable storage attribute-based encryption with

arithmetic span programs in cloud-assisted Internet of Things. IEEE Transactions on Cloud Computing, 1–
12.

3. Kazemzadeh, R. S., Jacobsen, H. A. (2009). Reliable and highly available distributed publish/subscribe
service. 2009 28th IEEE International Symposium on Reliable Distributed Systems, pp. 41–50. New York,
USA.

4. Xiong, H., Zhou, Z., Wang, L., Zhao, Z., Huang, X. et al. (2021). An anonymous authentication protocol
with delegation and revocation for content delivery networks. IEEE Systems Journal, 16(3), 4118–4129.

5. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. I. (2009). Detecting large-scale system problems by
mining console logs. Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pp. 117–132. Montana, USA.

6. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D. B., Andersen, H. (2010). Fingerprinting the datacenter:
Automated classification of performance crises. Proceedings of the 5th European Conference on Computer
Systems, pp. 111–124. Paris, France.

528 CMES, 2023, vol.136, no.1

7. Chen, M., Zheng, A. X., Lloyd, J., Jordan, M. I., Brewer, E. (2004). Failure diagnosis using decision trees.
Proceedings of International Conference on Autonomic Computing, pp. 36–43. New York, USA.

8. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D. et al. (2019). Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs. Proceedings of the 2019 International Joint
Conference on Artificial Intelligence, pp. 4739–4745. Macao, China.

9. Zhu, B., Li, J., Gu, R., Wang, L. (2020). An approach to cloud platform log anomaly detection based on
natural language processing and LSTM. Proceedings of the 2020 3rd International Conference on Algorithms,
Computing and Artificial Intelligence, pp. 1–7. Sanya, China.

10. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. (2017). Attention is all you need.
Proceedings of the 30th Advances in Neural Information Processing Systems, CA, USA, Curran Associates,
Inc.

11. Cinque, M., Cotroneo, D., Pecchia, A. (2013). Event logs for the analysis of software failures: A rule-based
approach. IEEE Transactions on Software Engineering, 39(6), 806–821. DOI 10.1109/TSE.2012.67.

12. Yen, T. F., Oprea, A., Onarlioglu, K., Leetham, T., Robertson, W. et al. (2013). Beehive: Large-scale log
analysis for detecting suspicious activity in enterprise networks. Proceedings of the 29th Annual Computer
Security Applications Conference, pp. 199–208. LA, USA.

13. He, S., Zhu, J., He, P., Lyu, M. R. (2016). Experience report: System log analysis for anomaly detection.
Proceeding of the IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), pp.
207–218. ON, Canada.

14. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M. (2009). Online system problem detection by mining
patterns of console logs. Proceeding of the 2009 Ninth IEEE International Conference on Data Mining, pp.
588–597. Florida, USA.

15. Lou, J. G., Fu, Q., Yang, S., Xu, Y., Li, J. (2010). Mining invariants from console logs for system problem
detection. Proceeding of the 2010 USENIX Annual Technical Conference (USENIX ATC 10), MA, USA.

16. He, P., Zhu, J., Zheng, Z., Lyu, M. R. (2017). Drain: An online log parsing approach with fixed depth tree.
Proceedings of the 2017 IEEE International Conference on Web Services (ICWS), pp. 33–40. HI, USA.

17. Jiang, Z. M., Hassan, A. E., Flora, P., Hamann, G. (2008). Abstracting execution logs to execution events
for enterprise applications (short paper). Proceedings of the 2008 the Eighth International Conference on
Quality Software, Oxford, UK.

18. Makanju, A. A., Zincir-Heywood, A. N., Milios, E. E. (2009). Clustering event logs using iterative
partitioning. Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1255–1264. Paris, France.

19. Du, M., Li, F. (2016). Spell: Streaming parsing of system event logs. Proceedings of the 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 859–864. Barcelona, Spain.

20. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. et al. (2015). Show, attend and tell: Neural image caption
generation with visual attention. International Conference on Machine Learning, pp. 2048–2057. Lille,
France.

21. Zhang, K., Xu, J., Min, M. R., Jiang, G., Pelechrinis, K. et al. (2016). Automated it system failure prediction:
A deep learning approach. Proceeding of the 2016 IEEE International Conference on Big Data (Big Data),
pp. 1291–1300. Washington DC, USA.

22. Du, M., Li, F., Zheng, G., Srikumar, V. (2017). Deeplog: Anomaly detection and diagnosis from system logs
through deep learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1285–1298. TX, USA.

23. Han, S., Wu, Q., Zhang, H., Qin, B., Hu, J. et al. (2021). Log-based anomaly detection with robust feature
extraction and online learning. IEEE Transactions on Information Forensics and Security, 16, 2300–2311.
DOI 10.1109/TIFS.10206.

https://doi.org/10.1109/TSE.2012.67
https://doi.org/10.1109/TIFS.10206

CMES, 2023, vol.136, no.1 529

24. Yuan, Y., Adhatarao, S. S., Lin, M., Yuan, Y., Liu, Z. et al. (2020). ADA: Adaptive deep log anomaly
detector. Proceeding of the 2020 IEEE INFOCOM IEEE Conference on Computer Communications, pp.
2449–2458. ON, Canada.

25. Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X. et al. (2019). Log2vec: A heterogeneous graph embedding
based approach for detecting cyber threats within enterprise. Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1777–1794. London, UK.

26. Wang, Z., Chen, Z., Ni, J., Liu, H., Chen, H. et al. (2021). Multi-scale one-class recurrent neural networks for
discrete event sequence anomaly detection. Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 3726–3734. Singapore.

27. Lupton, S., Washizaki, H., Yoshioka, N., Fukazawa, Y. (2021). Online log parsing: Preliminary literature
review. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp.
304–305. Wuhan, China.

28. He, S., Zhu, J., He, P., Lyu, M. R. (2020). Loghub: A large collection of system log datasets towards
automated log analytics. arXiv preprint arXiv:2008.06448.

29. Pennington, J., Socher, R., Manning, C. D. (2014). Glove: Global vectors for word representation.
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543. Doha, Qatar.

30. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. Proceedings of the 26th Advances in Neural Information Processing
Systems (NIPS 2013), Nevada, USA, Curran Associates, Inc.

31. Yao, Z., Cao, Y., Lin, Y., Liu, Z., Zhang, Z. et al. (2021). Leveraging batch normalization for vision
transformers. Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 413–422. BC,
Canada.

32. Guo, H., Yuan, S., Wu, X. (2021). Logbert: Log anomaly detection via bert. Proceedings of the 2021
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. Shenzhen, China.

33. Le, V. H., Zhang, H. (2021). Log-based anomaly detection without log parsing. Proceedings of the 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 492–504. Melbourne,
Australia.

34. Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H. et al. (2019). Robust log-based anomaly detection on unstable
log data. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 807–817. Tallinn, Estonia.

	Logformer: Cascaded Transformer for System Log Anomaly Detection
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experiment
	5 Conclusion

