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ABSTRACT

Latent information is difficult to get from the text in speech synthesis. Studies show that features from speech can
get more information to help text encoding. In the field of speech encoding, a lot of work has been conducted
on two aspects. The first aspect is to encode speech frame by frame. The second aspect is to encode the whole
speech to a vector. But the scale in these aspects is fixed. So, encoding speech with an adjustable scale for more
latent information is worthy of investigation. But current alignment approaches only support frame-by-frame
encoding and speech-to-vector encoding. It remains a challenge to propose a new alignment approach to support
adjustable scale speech encoding. This paper presents the dynamic speech encoder with a new alignment approach
in conjunction with frame-by-frame encoding and speech-to-vector encoding. The speech feature from our model
achieves three functions. First, the speech feature can reconstruct the origin speech while the length of the speech
feature is equal to the text length. Second, our model can get text embedding from speech, and the encoded speech
feature is similar to the text embedding result. Finally, it can transfer the style of synthesis speech and make it more
similar to the given reference speech.
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1 Introduction

Speech synthesis is the necessary technology in the field of speech information processing. Speech
synthesis, also known as text-to-speech technology, can convert any text information into standard
fluent speech. It involves acoustics, linguistics, digital signal processing, computer science, and other
disciplines. The main task is to project the text vector into audible sound features.

The end-to-end speech synthesis approach straightly converts input text to acoustic parameters.
The end-to-end speech synthesis system Tacotron2 [1,2] has developed rapidly since WaveNet [3,4]
was proposed in 2016. Tacotron2 can synthesize speech more similar to real voice than the traditional
HMM model, thus considerably improving synthetic speech quality.
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Synthesis speech from text is a challenging problem because the meaning delivered by an utterance
is underspecified by the text. For example, the same input text will get a different output speech because
intonation, stress, rhythm, and style are different. That is, one sentence can be spoken in various ways.

In order to produce human-like speech, it is necessary to implicitly or explicitly send many features
that can’t be obtained from text to the speech synthesis model. These features are collectively named
prosody. Prosody includes the intonation, stress, rhythm, and style of the speech. The traditional
approach to obtaining prosodic features is manually labeling the text by a linguistics researcher.
Most researchers focus on utilizing these texts and labels to design a model to predict prosody
labels. But manually annotating text is heavy. And not all information can be represented by a label,
such as intonation. Therefore, automatically extracting prosodic features from speech through speech
encoding is worth studying.

The prosodic features encoded by speech can play other roles. First, the token features from speech
can label the unlabeled speech to extend the data set. Second, in a different language, the text is not
uniform, but the speech is similar, so speech features can be used to uniform text. Then data sets from
other languages can be adopted to join training with uniform text embedding.

The goal of speech encoding in this article is to provide detailed prosodic features as much as
possible. There are two main ways in previous research to get prosodic features from speech. The
two ways are frame-by-frame encoding [5,6] and speech-to-vector encoding [7,8]. Frame-by-frame
encoding encodes each speech frame to a vector, and it can get more detailed features from speech.
And speech-to-vector encoding encodes whole speech to a vector, and it can get span features like
sentence intonation.

These methods can provide a part of prosodic features, but they can not get more detailed prosodic
features, such as the prosody of words and phrases. These methods can not get more detailed features
because the existing alignment methods can not support the speech encoder to get prosodic features.
Therefore, this paper mainly discusses how to solve the alignment problem and get detailed prosodic
features, such as the prosody of words and phrases.

Our main contributions are as follows:

(1) A new and more generalized alignment method is proposed. The previously proposed frame-
to-frame and speech-to-vector methods become exceptional cases of our proposed alignment
method. This method solves the alignment problem proposed before and makes it possible to
obtain detailed information by introducing adjustable scales.

(2) Dynamic Framing Convolutional Network (DFCN) is proposed to implement the new align-
ment approach and make the alignment process can be trained by the neural network.

(3) A Dynamic Speech Encoder (DSE) based on DFCN is proposed, which can encode speech
into a predetermined length. Then DSE and speech synthesis model is adopted to build a
speech autoencoder, DSE encodes the speech, and the speech synthesis model reconstructs
the original speech by encoding speech feature. The speech autoencoder can better adapt the
encoded speech feature to various speech synthesis tasks.

The rest of the paper is as follows: Section 2 briefly introduces the related work. Section 3 describes
our approach in detail. Then Section 4 describes the experiment setting and the training strategy.
Finally, Section 5 is the conclusion of this paper.
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2 Related Work

Most speech synthesis systems face a problem that latent information is difficult to get from
the text in speech synthesis. The traditional HMM (Hidden Markov Model) needs lots of work on
processing text to solve this problem. The first work normalizes text and converts text to phoneme,
reducing the difference between text and speech. The second work is to get other features in the
sentence, such as word position in the phrase, the sentence is declarative or interrogative. The third
work predicts the suprasegmental prosodic features, such as stress and pause.

With powerful modeling ability in deep learning, the end-to-end speech synthesis system does
not need any text processing step to synthesize clear speech while the data is enough. Recently,
researchers have proposed the method of applying cloud computing to the end-to-end model, which
reduces the gap between end-to-end model and practical application [9]. But in most languages, data is
always lacking, so text processing is necessary. The text processing in the end-to-end speech synthesis
system is the same as in HMM. The text normalization and other in a sentence is easy to obtain, but
suprasegmental prosodic features are hard to predict. To predict suprasegmental prosodic features, the
training data set about suprasegmental prosodic features and phoneme needs to be built by linguistics
researchers at first. Then the model trained on these data sets is designed which can improve the
accuracy of suprasegmental prosodic features prediction.

In order to consider the relationship between suprasegmental features contained in speech and
the meaning it expresses, researchers tend to add pre-trained models like BERT [10] to get semantic
information in the text [11,12]. And the relationship within the sentence is further constructed through
the graph, such as the dependency tree [13]. However, complex text features require sufficient speech
features to support, which need to be obtained manually. So researchers have considered getting the
suprasegmental prosodic features and phonemes from speech. This method can build the data set
automatically and reduce the work of linguistics researchers [14]. Speech encoding can also be useful
in many tasks, such as processing speech modal in multimodal tasks [15].

There are two ways to encode speech: frame-by-frame encoding and speech-to-vector encoding.

The frame-by-frame encoding approach encodes each speech frame to a vector. Various methods
are used to extract the features of speech frames, such as Convolutional Layer, LSTM, Transformer
[16], or build a graph in speech frames to get more detailed features [17]. Then the encoded speech
frames can be used in many tasks, such as speech recognition [18] and direct speech translation [19].

In frame-by-frame method, researchers find many ways to detect the relationship between the
features of speech frame and text features, such as using attention mechanisms to extract the
relationship in Tacotron2 and transformer. CTCLoss [20,21] extends the length of the text, makes
the text correspond to the voice frame one by one, and finally restores the extended text to the original
text by merging the same items. GTCLoss [22] can directly establish the relationship between speech
and suprasegmental features, and community detection [23,24] can directly establish the relationship
between speech and text.

To utilize the speech feature from the frame-by-frame method, researchers try to combine speech
synthesis and speech recognition models [25] to extend the data set and correct the inconsistent
between text and speech. In the combined model, the speech recognition result is adopted to train
the speech synthesis model, and the speech synthesis result is adopted to train the speech recognition
model, or intermediate variables in the speech recognition model are adopted to guide the speech
synthesis model. Due to the alignment approach in the frame-by-frame encoding, such as CTCLoss
and GTCLoss, the speech features in the frame-by-frame encoding approaches must be quantified to
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merge the equal features to correspond to the text feature. So the frame vectors are independent, so it
cannot get the span features, such as prosody.

The speech-to-vector approaches encode whole speech to a vector. This vector includes the
features in the whole speech, such as speaker and acoustics features. Given the encoded speech vector,
some methods like autoencoder or contrast learning are adopted to obtain these features [26,27]. GST
(Global Style Token) [28,29] is one of the representatives. In the GST model, encoded speech vectors
are added to each encoded text result to help the speech synthesis model recognize and synthesize
prosody. Because this method does not consider the alignment, each text token corresponds to the
whole speech. Speech to vector approaches can get sentence prosody, but they cannot get details, such
as phoneme prosody, word prosody, and phrase prosody.

3 Model Architecture

We extend the Tacotron2 architecture by adding a Dynamic Speech Encoder (DSE) module that
takes a speech signal as input and computes a length-LT feature. LT is the length of input text, and it can
be the number of characters/phonemes, words, phrases even sentences. Our goal is to use the output
length-LT feature in Tacotron2 as prosody, attention context, or token representation to synthesize
speech.

Our proposed Dynamic Speech Encoder (DSE) module, illustrated in Fig. 1, consists of a Dura-
tion Predictor, Dynamic Frame Convolutional Network (DFCN), and Segment Encoder. Duration
Predictor predicts the window length and window position from text and speech. Then DFCN
segments the speech based on predicted window length and window position. Finally, Segment
Encoder encodes each segmented speech to a vector.

Figure 1: Model architecture of DSE

3.1 Duration Predictor
The Duration Predictor is shown in Fig. 1. The aim of Duration is to predict the window length

of each window. The window length is the length of each window, and the unit of window length is
frame. For example, the window number is set to the equal to the letter number of the text in Fig. 1.
Assume the speech spectrum is S = {s1, s2, s3, . . . , sn}, n is frame number, so the [2, 1, 4, 3] means the
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first token corresponds to first 2 frames s1, s2 in speech, and the second token corresponds to the next
1 frame s3 in speech, and so on. The window position is the position of the center of each window in
the speech, and the unit of window position is also frame. So the [1, 2.5, 5, 8.5] means the center of the
first window is located on 1 frame in the speech, and the center of the second is located on 2.5 frame
in the speech, and so on.

As can be seen from the definition of window length and window position, the window position
can be calculated from the window length. There are window lengths L = {l1, l2, l3, . . . , ln}. In this
paper, windows are adjacent. So, the window position P = {p1, p2, p3, . . . , pn} is computed as follows:

pi =
i−1∑
j=1

lj + li

2
(1)

The algorithm of duration predictor is shown in Algorithm 1. First, the token representation
and Mel spectrograms coefficient is sent to the Duration Predictor. The token representation can be
character embedding, phoneme embedding, word vector, sentence representation, etc. The length of
token representation is the number of windows. If a token is needed to correspond to three windows,
a simple method is the token representation repeated three times.

Second, the attention matrix between token representation and Mel spectrograms coefficient is
calculated by the attention mechanism. In our experiments, the local sensitive attention in Tacotron2
is adopted to get the attention matrix.

Third, the Gumbel-softmax [30] is adopted to transform the attention matrix to a binary matrix
named Select Matrix. Gumbel-softmax is as follows:

Gumbel-softmax (Es) = softmax
(

(Es + G′)

τ

)
(2)

where G′ is Gumbel noises [31], and τ ∈ (0, 1] is a temperature parameter. As τ approaching zero, the
sample from the Gumbel-Softmax distribution becomes cold and resembles the one-hot sample.

In the Select Matrix, the row is the frame of Mel spectrograms, and the column is token
representation. If the value of the third row and the second column is ‘1’ in the Select Matrix, it means
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the third frame of Mel spectrograms selects the second token. And Gumbel-Softmax means each Mel
spectrograms frame only selects one token in the Select Matrix. We count the selected number of the
token as the window length output of the Duration Predictor. For example, if the first row has three
‘1’ in the Select Matrix, the first token corresponds to the three frames speech segment. This method
means the basic unit of predicted result is the frame.

3.2 Dynamic Framing Convolution Network
DFCN transforms the windowing operation in the time domain into a convolution operation in

the frequency domain. The length and position of the window can be trained by deep learning so that
the windowed speech signal can correspond to the text one by one. The architecture of DFCN is shown
in Fig. 1.

First, the basic unit of predicted window length and window position is transformed to sample
point as follows:

li =
{

(li − 1) ∗ Fs + Fl if li > 0
0 if li = 0

(3)

pi =
{

(pi − 1) ∗ Fs + Fl if pi > 0
0 if pi = 0

(4)

where Fs is frame shift, Fl is frame length.

Second, the FFT is used to get the audio spectrum, and the Window Function is used to estimate
the window spectrum. Third, the audio spectrum and window spectrum are convoluted to get the
spectrum of the windowed speech segment. Finally, the convolution result is sent to the Mel-filter to
get the Mel spectrograms to simplify the computation. So, the DFCN is the convolution of the audio
spectrum and window spectrum. The key of DFCN is how to estimate window spectrum and extract
audio spectrum for computing.

3.2.1 Window Spectrum Estimate

The kernel of DFCN is the window function. The window function in the frequency domain is
used to estimate the window spectrum. Through the window function, we can get the approximation
of the window spectrum. The window function of ith window in the frequency domain is as follows:

Gi (ω, f ) =

(
sin

(
2π

fs

2
ω

)
− sin

(
2π

fs − li

2
ω

))
ejω

(
− fs

2 +pi
)

2πω
(5)

where fs is the sampling rate of ω, li is the length of the ith window, pi is the window position of the ith

window.

In these functions, fs decides how to project the frequency parameter to the time parameter.
Assuming the audio length (number of points) is T , ltime and lfreq is window length in time domain and
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frequency domain, tstime and tsfreq is window shift in time domain and freq domain, so the relationship
is as follows:

ltime = lfreqT
fs

tstime =

(
− fs

2
tsfreq

)
T

fs

(6)

3.2.2 Audio Spectrum Extract

The computation is too large when directly convolution the whole speech spectrum. For example,
if the speech has 2,000,000 sample points, the spectrum length after FFT is 2,000,000. Also, the data
length is 2,000,000. If the text length is 50, this sentence will generate a matrix size [50, 2,000,000]. The
data is too large to use GPU to calculate it.

Based on the HMM alignment approach, the audio segment approach is adopted to reduce the
computation in DFCN. First, the speech signal is segmented according to the predicted duration, and
two more frames are left at both ends of each segment, i.e., the window position is not changing,
and window length adds to 2. Second, FFT is used to compute the spectrum of each audio segment.
Finally, the window spectrum is used to convolute the audio spectrum of each segment one by one. In
Fig. 1, assume the speech spectrum is S = {s1, s2, s3, . . . , sn}, where n is the frame number. We pad the
speech signal and get S = {sp, s1, s2, s3, . . . , sn, sp} first. Then the duration predictor outputs the window
length [2, 1, 4, 3] and window position [1, 2.5, 5, 8.5], so the added window length is [4, 3, 6, 5], and
four speech segments can be obtained. The first segment is {sp, s1, s2, s3}, and the second segment is
{s2, s3, s4}, and so on. These frames correspond to four slices in speech signal, and the slices length can
be computed by formulas (3), (4). The spectrum of the whole segment is sent to the convolutional layer
as the audio spectrum. Finally, the audio spectrum and window spectrum are convoluted one by one.

This training strategy allows the window parameter to change within two frames in one iteration.
That is to say, the result of the time length predictor can only get the change of about two frames in
each gradient iteration. When the learning rate is 0.001, the change of one frame is sufficient.

This approach also can solve another problem in DFCN. The window in the time domain can
let the data outside the window to zero, but the window function in the frequency domain is just an
approximation of the window in the time domain. The DFCN cannot let the data outside the window
to zero. It enlarges the data inside the window and reduces it outside the window. So the data outside
the window becomes the noise of each frame. Therefore, pre-segment speech can discard a lot of data
outside the window and reduce the difference between the window in the time domain and the window
function in the frequency domain.

Finally, the algorithm of DFCN is shown in Algorithm 2.
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3.3 Segment Encoder
DFCN can get several segments for each token. If each token corresponds to a single window,

the length of convolution resulting from DFCN equals text length. In this case, three linear layers are
adopted to encode the result of DFCN.

If each token corresponds to multi-windows. The structure of the encoder is shown in Fig. 1. It
consists of 6 2D convolution layers and one GRU layer. Convolution filter length is [128, 128, 256,
256, 512, 512]. The GRU only outputs the final state as the encoded output for each segment.

There is an error between the speech spectrum obtained by DFCN and STFT. Straight-Through
Estimator in VQ-VAE [32] is adopted to reduce this error. In Fig. 1, the text is ‘what’ and correspond 4
windows, the input named ‘Mel spectrograms of speech segment’ is the output of DFCN, each token
corresponds to one spectrum vector, and each spectrum vector includes the feature in several frames.
The input named frame slice uses the window length to slice the reference speech spectrum, each token
directly corresponds to several frame in reference spectrum. Reference speech spectrum is obtained by
STFT result of speech.

The algorithm of segment encoder is shown in Algorithm 3. First, the STFT output is segmented
by predicted duration to get the frame slice. Then the frame slice is sent into another segment encoder.
For example, the predicted duration of the first token is 2 frames in total. So the segments of the
first token in DFCN output correspond to the 2 frames in STFT output. Finally, we use the encoding
result of STFT to calculate the next step, but the gradient is directly propagated to the result of DFCN.
Finally, the encoding results of STFT and DFCN are made as close as possible by Mean Square Error
Loss (MSELoss).

3.4 Contrast Learning
Based on the DSE model, contrastive learning [33] is adopted to further strengthen the connection

between speech and text. Specifically, a discriminator D is adopted to distinguish positive and negative
sample pairs. The discriminator consists of three linear layers with activation function ReLU. The
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positive sample pairs are the encoded speech features that correspond to the same text. The negative
sample pairs are the encoded speech features that correspond to the different text.

However, there is no guarantee that sufficient positive samples can be obtained in batch, so a
database is necessary to save the previous encoding features. Also, the corresponding features will not
be sent to the discriminator when the positive sample cannot be obtained.

The loss function of the discriminator D is as follows:

LD = log
eD(xi ,yi)∑
i �=j eD(xi ,yj )

(7)

where the numerator represents positive samples and the denominator represents all negative samples.
The loss of the discriminator is adopted as an auxiliary loss that is added to the subsequent tasks. The
auxiliary contrast loss needs to be weighted because the same word or phrase may have different detail
features in different sentences. Finally, the correspondence between text and speech can be further
ensured by contrast learning.

4 Experiment

In this section, we measure the ability of DSE by three experiments. These experiments are Speech
Compress, Text Embedding, and Style Transfer. The hyper-parameter is as follows. First, the optimizer
is Adam with a 1e-3 learning rate and 1e-6 weight decay, Grad clip thresh is 0.5, the batch size is 8.
In audio parameters, the sampling rate is 22,050, the frame length is 1024. The Mel channel is 512,
min Mel frequency is 0 and max Mel frequency is 8000. For the networks in our model, the output
dimension is 512, such as embedding, encoder, and attention.

4.1 Datasets
The proposed model is trained and tested on the public datasets LJSpeech and LibriTTS.

LJSpeech [34] is a public domain speech dataset consisting of 13,100 short audio clips of a single
speaker reading passages from 7 non-fiction books. Clips vary in length from 1 to 10 s and have a
total length of approximately 24 h. A transcription is provided for each clip. In this paper, we use the
LJSpeech in Speech Compress and text embedding experiments.

LibriTTS [35] is a corpus of approximately 1000 h of 16 kHz read English speech, prepared by
Vassil Panayotov with the assistance of Daniel Povey. The data is derived from reading audiobooks
from the LibriVox project and has been carefully segmented and aligned. This is a multi-speaker dataset
and usually is used in speaker adaption speech synthesis systems. In this paper, we use this dataset to
enhance the result of the Style Transfer experiment.

4.2 Speech Compress
Our model in this experiment is a auto-encoder [36]. The aim of this experiment is to demonstrate

that the speech feature can reconstruct the origin speech while the speech feature-length is equal to the
text length.

The architecture of Speech Compress experiment is shown in Fig. 2. First, the Length Regular
block in the Fastspeech [37] is adopted to extend the encoder outputs to the same length of Mel
spectrograms by predicted duration. Second, the Length Regular result is input into the Tacotron2
encoder to get encoder outputs. Finally, the encoder outputs are sent into the decoder to replace the
attention context.
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Figure 2: Speech compress architecture

In this experiment, a problem affects the model result named exposure bias. The exposure bias
is the difference between the training and synthesis processes. The training process uses the real Mel
spectrograms to predict the next frame, and the synthesis process uses the predicted Mel spectrograms
to predict the next frame. This problem will lead to even the training loss being small, but the synthesis
speech is bad. So both the training and synthesis processes are used to train the model to avoid
exposure bias.

Fig. 3 shows the results of several synthetic speeches. In Fig. 3, the first line is each token
corresponding to 5 windows, and the second line is each token corresponding to 3 windows. The
windows with zero window length in the first line are more than the second line. It means if the window
number per token is big enough, the length of a part of windows will equal frame length, and the length
of the other part of the window will become zero. This alignment approach is similar to the alignment
approach in the frame-by-frame encoding.

Figure 3: Results of training process (a), results of synthesis process (b), real spectrum (c) and window
length (d)

Finally, the average loss of Mel spectrograms obtained by the training process in evaluating the
data set is about 0.48, and the synthesis loss in evaluating data set is about 0.5. This loss is close to the
final loss in Tacotron2 of 0.45. Although the synthesis speech cannot be played on paper, the synthesis
process’s loss is also close to the final loss in Tacotron2. Also, in Fig. 3, the synthetic speech cepstrum
is not much different from the real cepstrum. So a conclusion can draw that the reconstruction speech
is close to the real voice. The proposed Dynamic Speech Encoder achieves our aim in the Speech
Compress experiment.
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4.3 Text Embedding Experiment
This experiment tries to quantify the Dynamic Speech Encoder output, the speech feature which

corresponds to the same token will be quantified to a common vector. Then the quantified features
are used to reconstruct the original speech.

As shown in Fig. 4, the quantified features are used to replace the text embedding vector
in Tacotron2 to synthesize speech. This experiment is jointly trained with the Speech Compress
experiment to prevent the model from falling into the local optimum.

Figure 4: Text embedding architecture

The Duration Predictor also needs a text embedding vector, so we need to use the quantified
features to replace the text embedding vector in the Duration Predictor. First, we train the model with
uniform segmentation. Second, we use the quantified features to replace the text embedding vector in
Duration Predictor after 1000 iterations.

Next, we compute the mean square error between text embedding vector and quantified speech
feature. If the quantified vector is used for speech synthesis, the model will require the quantified
vector to include more speech features. If the quantified vector is not used for speech synthesis, the
mean square error between the quantified vector and text embedding vector is 0.005. The mean square
error between the quantified vector and text embedding vector increases to 0.03. Both 0.005 and 0.03
are small enough to support the result that the quantified vector is closed to the text embedding vector.

Then we need to confirm that the quantified Dynamic Speech Encoder output can synthesize
speech. The synthesis speech cepstrum is shown in Fig. 5.

Figure 5: Synthesis output from quantified Dynamic Speech Encoder output

The average loss converges to 0.45, close to the Tacotron2 final loss. The synthetic speech cepstrum
is also slightly worse than the speech synthesized by Tacotron2, but it can also get clear speech.
So the synthesis speech from quantified Dynamic Speech Encoder output is also close to the real
voice. Finally, Dynamic Speech Encoder achieves our goal. It can extract text embedding vectors from
speech, and quantified Dynamic Speech Encoder output can replace the text embedding vector to
synthesize speech.
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4.4 Style Transfer Experiment
This experiment is an improvement of the Style Transfer experiment in GST. As shown in Fig. 6,

the Dynamic Speech Encoder outputs are sent to multi-head attention to get Local Style Token. Then
the Local Style Token is added to Tacotron2 encoder outputs as a prosody feature. Global Style Token
can be regarded as a particular Local Style Token when the speech segments correspond to a single
vector. This experiment aims to demonstrate that the prosody of synthesis speech is similar to reference
speech when the LSF obtained from the referenced speech is added to encoder outputs.

Figure 6: Style transfer architecture

In Fig. 7, the Local Style Token of multi-speaker speech is visualized by t-SNE. Different colors
represent different speakers.

The Local Style Token becomes several line segments. Fig. 7a shows that some line segments will
get together, such as brown and blue points. The other colors are distributed separately, such as red,
pink, and brown points. The reason for this result is the t-SNE parameters. Fig. 7b is used t-SNE with
different parameters. In Fig. 7, only pink points are distributed separately. In both Figs. 7a and 7b, we
also can see these colors have several points in one place. We guess it is the silence part and the point
from silence to speech.

Fig. 8 (left) shows three spectrograms (baseline model and two prosody references) for the same
text. The block in spectrograms is synthesize part correspond one by one. Note that the spectrogram
from the model with prosody reference is more similar to the reference speech than that generated by
the baseline model. The most obvious point is the time of the spectrograms from the baseline model is
shorter than others because the reference speech is long. And the tone and pause characteristics from
the prosody reference model are more similar to the reference signal.

Figure 7: Local style token of multi-speaker

Fig. 8 (right) shows the pitch tracks for the same triplet of text. In the range of 0 to 400 Hz, the
pitch from the baseline model is gentle. Then the middle synthetic speech has a little change in tone
but changes the pause characteristics a lot. Finally, the bottom speech changes tone a lot. Fig. 8 can
see different style tokens will change the speech prosody.
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Figure 8: Mel spectrograms (Left) and pitch (Right) for the input text “what do you want to do?”
synthesized text from a model without reference (Top). Reference text from an unseen speaker
(Middle). Reference text from an unseen speaker (Bottom)

Fig. 9 shows the first 400 frames of alignments for the synthesized speech from the input text “And
it is worth mention in passing that as an example of fine typography”. These speeches are synthesized
by the GST model and our DSE model with three different speakers’ different emotional sounds (a),
(b), and (c) as reference speech. It can be seen from (a) that the speech synthesized by our DSE has no
great distorted parts (parts inside the rectangle), and the coherence is better than that synthesized by
the GST. It can be seen from (b) that the distorted parts of speech synthesized by our DSE are shorter
than that synthesized by the GST. And the noise in the silence span of synthetic speech from our DSE
is less than that in the GST. It can be seen from (c) that the speech synthesis of GST synthesis cannot
continue in the middle, while the synthesis of the DSE is continuous, which shows that the exposure
bias of DSE is smaller than that of the GST. This means our model can more effectively resist the noise
caused by reference speech.

Figure 9: Alignment for the synthesized speech with input text “and it is worth mention in passing that
as an example of fine typography”. This speech is synthesized by GST model (top) and DSE (bottom)
with three different references (a), (b), (c)

Fig. 10 shows the mel spectrogram of synthesized speech which corresponds to the alignment in
Fig. 9. The connected blocks in Fig. 10 indicate a similar speech spectrum. The distorted parts in
alignment correspond to the silence position in mel spectrograms. Fewer and shorter silence segments
in the sentence can make the generated speech more coherent. The intonation, duration, and pause
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of the synthetic speech are different because the input reference speech features are different, so
the spectrum cannot be the same. Especially the reference speech in (c) brings more noise, resulting
in the spectrum of the synthetic speech being more blurred than the other two groups of speech.
Synthesis speech is similar because they are synthesized with the same input text. The detail compare
of synthesized speech (a) and the corresponding relationship between GST and DSE are shown in
Fig. 11.

Figure 10: Mel spectrograms for the synthesized speech with input text “and it is worth mention in
passing that as an example of fine typography” these speech is synthesized by GST model and DSE
with three different references (a), (b), (c)

In Fig. 11, (a–i) and (1–9) represent nine parts of the mel spectrogram synthesized by DSE and
GST. These parts are corresponding one by one. First, the silence segment separates the originally
coherent speech like (d) in part (4). Second, the spectrogram of parts (6) and (8) are flatter, while the
corresponding spectrogram of parts (f) and (h) changed a little more. This means that the speech tones
synthesized by GST change less in part (6) and (8), while the speech tones synthesized by DSE change
more in parts (f) and (h). This shows that DSE captures the suprasegmental features in more detail.
The duration of the spectrogram in part (1) is longer than that in (a). Third, the synthetic duration of
the first few words is shorter, which is more in line with people’s speaking habits when the synthetic
text is “and it is worth mention in passing that as an example of fine typography”.

Figure 11: The detail compare of synthesized speech (a) and the corresponding relationship between
GST and DSE
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To quantitatively evaluate our DSE model, we train and test it on LJSpeech and LibriTTS datasets.
First, we randomly sample 50 sentences from each dataset and then send the sampled sentences to GST
and DSE for synthesis. Second, we further randomly sample 100 sentences from the LibriTTS dataset,
of which 50 are used for synthesis and the other 50 are used as reference speech for prosodic transfer.
In this way, we evaluate the performance of GST and DSE with different reference speech. Finally, we
use three methods to quantitatively evaluate the synthesized speech, which are MOS (mean opinion
score) [38], ABX test [39], and WER (word error rate). We expand the number of synthesized sentences
in each experiment to 200, then send them to the pre-trained speech recognition model ESPNet [40]
to get the WER. The results are shown in Table 1.

Table 1: The evaluate results

LJSpeech LibriTTS LibriTTS + Prosody
transfer

Model MOS ABX WER MOS ABX WER MOS ABX WER
GST 4.15 44.59% 11.72% 2.83 35.96% 18.71% 2.87 44.51% 18.37%
DSE 4.20 55.41% 11.64% 3.29 64.04% 16.61% 3.44 55.49% 14.38%

MOS score is the average of human scores on all speech. In the three experiments, all the scores of
DSE are higher than those of GST, indicating the synthesized speech by DSE is closer to the real
speech. The results of ABX represent the percentage of the number of people who support GST
and who support DSE in all synthetic speech. More people supporting DSE than GST means that
DSE performs better than GST. WER represents the percentage of word error rate in recognizing the
synthesized speech. The smaller WER of DSE represents that the speech synthesized by DSE is clearer
and easier to be recognized.

5 Discussion

The advantages of DSE are as follows:

1) DSE can get more detailed features by adjusting the scale. If you need word prosody infor-
mation, you can set each window in DSE to correspond to a word. Similarly, if you need the
prosody information of a phrase, you can set each window in the DSE to correspond to a
phrase.

2) Frame-to-frame and speech-to-vector methods become exceptional cases of our proposed
alignment method. If each window in DSE corresponds to a speech frame, DSE can be
transformed into a frame-to-frame encoder. If only one window in the DSE corresponds to
the entire sentence, the DSE can be transformed into a speech-to-vector encoder.

3) DSE reduces the interference caused by speech information added to the text. Therefore, DSE
can synthesize more fluent speech than the GST method.

The disadvantages of DSE are as follows:

1) DSE needs a longer training time than traditional speech synthesis methods.

2) DSE cannot solve the problem of over migration. For example, if the female speech is used as
the reference speech and the male speech is used as the synthesis baseline, the final synthesized
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voice will be more inclined to the female voice. This means that the prosodic transfer is to
transfer all the speech information, not only the prosodic features.

6 Conclusion

This paper proposes a model with an adjustable scale based on a new alignment approach
named Dynamic Speech Encoder. Our model is based on the new proposed alignment approach
in conjunction with the frame-by-frame encoding and speech-to-vector encoding models. Three
experiments prove that our model achieves and optimizes the functions of the frame-by-frame and
speech-to-vector encoding models.

The first experiment is the Speech Compress. This experiment is a predecessor experiment of the
text embedding. If the speech compress experiment is unsuccessful, the text embedding experiment
will also fail. The speech can be encoded more similarly to the text feature in the speech compress
experiment. The compression ratio is higher than other existing speech coding models.

The second experiment is the Text Embedding experiment. In this experiment, we successfully
extract text vectors from speech and use the extracted text vector to synthesize. Theoretically speaking,
this experiment can project the text vector in a different language to a common space and let the speech
from a different language be jointly trained. This experiment also can reduce the inconsistent between
speech and text.

The third experiment is the Style Transfer experiment. In this experiment, the speech feature can
change the synthetic speech prosody to reference speech prosody. This result illustrates the change of
prosody in speech can be observed in speech feature and help speech synthesis system to synthesize
prosody better.

In this paper, we only implement the function of extracting text vectors from speech. In the future,
we can use the data set from a different language to train the model and use our Dynamic Speech
Encoder to solve the actual problems. We also can continue to apply this system to the Transformer
to speed up model training.
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