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ABSTRACT

This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and
contrastive learning of multimodal data. A key challenge in solving geometry problems using deep learning is to
automatically adapt to the task of understanding single-modal and multimodal problems. Existing methods either
focus on single-modal or multimodal problems, and they cannot fit each other. A general geometry problem solver
should obviously be able to process various modal problems at the same time. In this paper, a shared feature-learning
model of multimodal data is adopted to learn the unified feature representation of text and image, which can solve
the heterogeneity issue between multimodal geometry problems. A contrastive learning model of multimodal data
enhances the semantic relevance between multimodal features and maps them into a unified semantic space, which
can effectively adapt to both single-modal and multimodal downstream tasks. Based on the feature extraction and
fusion of multimodal data, a proposed geometry problem solver uses relation extraction, theorem reasoning, and
problem solving to present solutions in a readable way. Experimental results show the effectiveness of the method.
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1 Introduction

Automatically solving geometry problems is a long-standing challenge in artificial intelligence
that continues to attract research interest [1–3], which has focused such as on angle and length
calculation. Geometry problem solving has been modeled as a process of relation extraction and
reasoning [4–6], using a syntax-semantic model to extract geometric relations from problem text, and
sending them to an expert system for reasoning and solution. It can also be modeled in terms of
submodular optimization [7,8]. The wide application of deep learning methods in natural language
processing, computer vision, and vision-language interaction makes it possible to solve geometry
problems based on deep learning [9–12]. Whether focusing on problem parsing and relation reasoning
or on interpretable presentation, past work has provided important insights.
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However, solving geometry problems requires the mapping of human-readable text and visual
images into machine-understandable logical forms, followed by reasoning and solution, and not
simply by pattern recognition and matching or end-to-end classification [12]. Geometry problems
are often presented in multimodal forms such as text, images, and image-text pairs, which brings
challenges to their unified representation, which contains multimodal data such as text, symbols,
formulas, and images. The different statistical characteristics of modal data lead to a lack of semantic
correlation between them. Different modal representations of an entity contain both shared and
unique information. If this information is not semantically related, it will affect the understanding
of multimodal data, hindering understanding and automatic solution. There is a semantic gap in the
multimodal understanding process of geometry problems. Information can describe the same object
or event from different angles, and it suffers from a lack of correlation. Although the information on
multimodal processing and fusion is rich and detailed [13–15], it is difficult to apply to the solution of
geometry problems.

This paper presents an end-to-end, fully automated deep learning method to solve geometry
problems via feature learning and contrastive learning of multimodal data. Solving geometry problems
by deep learning has the steps of feature extraction, fusion, and reasoning. A shared feature-learning
model of multimodal data learns the unified feature representation of text and images, which can
solve the heterogeneity problem of multimodal geometry problems. A contrastive learning model
of multimodal data enhances the semantic relevance between multimodal features and maps them
into a unified semantic space, which can effectively adapt to both single-modal and multimodal
downstream tasks. Based on the feature extraction and fusion of multimodal data, a geometry problem
solver is proposed, adopting a shared encoder-decoder structure to generate solution sequences.
A shared encoder realizes the deep understanding of text and/or images by a multi-headed self-
attention mechanism. For multimodal problems, a multilayer Transformer realizes the interaction
between cross-modal features. For single-modal problems, the Transformer can adaptively attend
to single-modal data. Multimodal contrastive learning addresses the lack of semantic correlation
between multimodal data, which can attract relevant text and/or image features, repel irrelevant
features in the representation space, and realize the semantic alignment of multimodal data. A shared
decoder decodes single-modal contrastive vectors or a series sequence of multimodal contrastive
vectors according to the input of the encoder. The encoder and decoder can be cascaded to obtain
deeper implicit information. The representation of the decoder is transferred to task-specific heads
for geometry relations extraction, theorem reasoning, and problem solution. The proposed algorithm
can produce readable solutions. Target programs can assist in problem solution and model diagnosis.
Similar to machine translation, beam search produces a better target program. Multiple auxiliary
tasks, including puzzle recovery and image element identification, improve the performance of the
image embedder. Experiments on two public geometry problem datasets demonstrate the effectiveness
of the proposed algorithm.

The main contributions of this paper are as follows:

• An end-to-end deep learning method to solve geometry problems is proposed, whose input is a
geometry problem with text and/or images, and which produces a readable solution procedure.
This single framework adaptively solves single-modal and multimodal geometry problems
without modifying the model structure;

• We propose a shared feature-learning model of multimodal data for pretraining geometry
problem text and/or images. Because the architecture of multimodal feature learning utilizes



CMES, 2023, vol.136, no.2 1709

a similar network of self-attention masks, extracted multimodal features can be formatted in a
unified feature representation, so as to address heterogeneity in multimodal geometry problems;

• A contrastive learning model of multimodal data is proposed to enhance the semantic relevance
between multimodal features and map them into a unified semantic space, which can effectively
adapt to both single-modal and multimodal downstream tasks.

The remainder of this paper is organized as follows. Section 2 discusses related research. Section 3
presents our proposed method. Experimental results are given in Section 4, and conclusions are drawn
in Section 5.

2 Related Work

Research on feature and contrastive learning can be categorized as single-modal, multimodal, or
cross-modal. Single-modal methods are only used to train single-modal tasks, such as for text or image
data. Multimodal methods relate to training multimodal tasks, such as for image-text pair data, and
cross-modal methods concentrate on the compatibility between single-modal and multimodal tasks.

Single-Modal Learning. Single-modal learning methods focus on the extraction and analysis of
text or image features. Most natural language text learning methods are based on the multilayer Trans-
former architecture. For instance, BERT [16] uses bidirectional representations from Transformers
with 24 layers, UniLM [17] uses three types of language modeling tasks to train a shared multilayer
Transformer network, RoBERTa [18] optimizes BERT for key hyperparameters and training data size,
XLNet [19] uses generalized autoregressive pretraining for a multilayer Transformer, and BART [20] is
a language-generating model with a denoising autoencoder. Visual image learning methods are mainly
based on the multilayer CNN architecture, such as VGG [21], with 19 weight layers of convolutional
networks with very small convolution filters; and ResNet [22], with a 152-layer residual learning
framework with less complexity and better performance than VGG. For single-modal problems in
different disciplines, both text and image data have the problems of high noise and redundancy.
Traditional single-modal methods can perform well only in text or image training; they lack the ability
to process multimodal tasks with both text and images, and extracted local and global features cannot
be effectively adapted to downstream tasks.

Multimodal Learning. Multimodal learning methods are used, especially in the training of image-
text data pairs. There are both one-channel and multi-channel methods. The former uses a single
Transformer architecture to train a series sequence of multimodal data. UNITER [23] uses a multilayer
Transformer to learn a cross-modal contextualized embedding between visual regions and textual
tokens, VisualBERT [24] aligns tokens of the input text and regions in the input image implicitly by
Transformer, and VL-BERT [25] extends the Transformer to take both visual and linguistic embedded
features as input. Multi-channel methods use multiple Transformer architectures to train different
single-modal data. For instance, ViLBERT [26] extends the BERT architecture to parallel models
for text and image processing, and uses co-attentional Transformer layers to interact with separate
streams. MAGIC [27] leverages three parallel decoders to generate responses in different media. MAS
[28] is proposed for awakening the robot without wake words by audiovisual consistency detection and
semantic talking intention inference. LARCH [29] performs a conversational image search through
a multimodal hierarchical graph-based neural network, multi-form knowledge embedding memory
network, and gated neural network. These methods provide some useful ideas for solving geometry
problems. On the observation that multimodal information fusion in one-channel methods is proposed
earlier than multi-channel methods, which can achieve better performance. Limited to the use of
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image-text data pairs for training, these multimodal learning methods can only train small-scale data,
and cannot be effectively adapted to single-modal downstream tasks.

Cross-Modal Learning. Cross-modal learning methods use text, image, and image-text pairs
simultaneously as training data to learn the unified semantic representation of text and images.
AttnGAN [30] uses a cross-modal attention learning model, which allows attention-driven, multi-
stage refinement for fine-grained text, and can synthesize fine-grained details in different subregions
by focusing on relevant words in the natural language description. Contrastive learning is effective
for self-supervised representation learning, which attracts relevant text and/or image features to
each other in the representation space, and repels irrelevant features, so as to realize the semantic
alignment of cross-modal data [31]. UNIMO [32] can effectively adapt to both single-modal and
multimodal understanding and generation tasks by using multilayer self-attention Transformers to
learn unified semantic representations of cross-modal information, so they can be effectively adapted
to downstream tasks.

Geometry Problem Solving. Geometry problem solving efforts are increasing. An automated
system, GEOS, solves geometry problems by combining text understanding and image interpretation,
where element relations in the text are obtained by machine learning, and the primitive and its relations
in the image are obtained by maximizing the consistency of image and text data. An interpretable
geometry problem solver (Inter-GPS) parses the problem text and image into formal language by rule-
based text parsing and neural object detection, and incorporates theorem knowledge as conditional
rules and performs symbolic reasoning [9]. A neural geometric solver (NGS) addresses geometry
problems by comprehensively parsing multimodal information and generating interpretable programs
[10]. The above work only focuses on multimodal problem solving, and feature representation needs
to improve.

This paper proposes an end-to-end deep learning method for solving geometry problems via the
feature learning and contrastive learning of Multimodal data, where both the single-modal geometry
problems, such as text or images and Multimodal geometry problems, such as image-text pairs are
considered. The proposed method shows good performance in solving geometry problems with both
single-modal and Multimodal tasks.

3 Proposed Method

We present the proposed method to solve geometry problems via feature learning and contrastive
learning of multimodal data. As shown in Fig. 1, the overall framework of this paper is to integrate
the encoder and decoder network structure of a multilayer converter. The converter improves the
feature representation and problem-solving ability of multimodal data, which can help build an end-
to-end deep learning method for solving geometry problems. Figs. 2 and 3 show the two modules
for feature representation. This paper considers the text and/or image of a geometry problem as
input. The multilayer Transformer in the encoder converts the text and/or image to implicit context
features, and features at different levels are semantically aligned and mapped into a unified semantic
space through feature and contrastive learning of multimodal data, so as to form a unified feature
representation. The multilayer Transformer decodes the unified multimodal features according to task-
specific learning embedding to form the shared features of multi-tasks, which are transferred to the
head of specific learning tasks, which are learned to solve problems. The multimodal and single-modal
learning networks respectively solve image-text and natural language text geometry problems; it should
be noted that the networks share the same structure.
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Figure 1: Overall architecture of the proposed method
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Figure 2: Shared feature-learning model of multimodal data
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Figure 3: Contrastive learning model of multimodal data which are text and/or image

3.1 Multimodal Feature Learning
Due to the heterogeneity between multimodal geometry problems, the feature distribution of data

in each mode is different, which brings difficulties to feature extraction. To model the feature extraction
of multimodal problems and deal with various modal data, we establish a shared feature-learning
model, which can extract features in single-modal text or image data as well as multimodal image-text
data. The model masks text and image features, and realizes the interaction between multimodal data
through multilayer Transformers, so as to produce better feature expression of multimodal data and
support downstream multimodal tasks.

Fig. 2 shows the shared feature-learning model of multimodal data. For problem text, [CLS]
represents the classification mark at the beginning of a sequence, and [SEP] represents the
separator mark at the end. For a geometry image, [IMG] represents the classification mark
of the start sequence. For the text and image input of multimodal geometry problems, we
obtain the respective text tag feature and image region feature embedding sequences, W =
{Et

[CLS], Et
w1

, · · · , Et
wn

, Et
[SEP]} and V = {Ei

[IMG], Ei
v1

, · · · , Ei
vm

}, using the feature embedding module
of multimodal data. Then, if the feature learning task is a multimodal problem such as image-
text, the two feature embedding sequences are connected into a feature embedding sequence
of pairs VW = {Ei

[IMG], Ei
v1

, · · · , Ei
vm

, Et
[CLS], Et

w1
, · · · , Et

wn
, Et

[SEP]}, which is input to the multilayer
self-attention converter to learn the multimodal feature representation of the text mark and
image region, outputting the text feature representation ht = {ht,(L)

0 , ht,(L)

1 , · · · , ht,(L)

n , ht,(L)

n+1 }, image
feature representation hi = {hi,(L)

0 , hi,(L)

1 , · · · , hi,(L)

m }, or image-text feature representation h =
{hi,(L)

0 , hi,(L)

1 , · · · , hi,(L)

m , ht,(L)

0 , ht,(L)

1 , · · · , ht,(L)

n , ht,(L)

n+1 }. In particular, considering that learning tasks with
different modes may need to extract different types of features, we add a learning task embedding
vector wtask to the coding model of the converter to allow it to extract the information of a specific task
at the time of output.
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Based on the region embedding layer of the image and mark embedding layer of the text, the
multilayer self-attention converter realizes the interaction of a single data stream. Each layer is
composed of a self-attention mask mechanism and feedforward neural network. The structure of the
Transformer encoder is the BERT model [16], which is highlighted in pink in Fig. 2, so the weight can
be initialized with the pretrained BERT weight to improve the availability of the original pretraining
model. This part uses the text and image encoders of the multilayer self-attention converter to encode
the features of the problem text and image, respectively, so as to produce a better context feature
representation.

3.1.1 Geometry Problem Text Feature Learning

Similar to the pretraining model BERT and its improved model [16–19] of natural language
processing, the text input in the multimodal geometry problem is set as a set of word sequences
w = {w1, · · · , wn}, which is transformed to a set of text tag embedding sequences W =
{Et

[CLS], Et
w1

, · · · , Et
wn

, Et
[SEP]} through position, tag, and learning task embedding, where E and t are the

text embedded tag and learning task embedded tag, respectively. The multilayer convertor, including
a self-attention mask mechanism, is used to train the marked features of the problem text, learn the
context marked representation of text features, and output the context marked representation. The
learning task embedding vector wtask

t is added to the text tag embedding sequence as part of the BERT
input, and can be separated from the implicit features of the output text ht = BERT(w, wtask

t ) in
the downstream task. This vector marks a variety of downstream training tasks and shares implicit
features, such as geometry relation extraction, reasoning, and solution.

To better learn the context marked representation of text features, we use two types of language
modeling tasks—bidirectional prediction and sequence-to-sequence generation—to train an encoding
model of the problem text. The model uses a self-attention mask mechanism to control the context
of prediction conditions. To improve the language learning process, we use the proposed syntactic-
semantic model [4,6,33] to detect semantically complete phrases in the problem text. In the training
process of bidirectional prediction [34] and sequence-to-sequence generation [32], we sample a
sequence of complete words or phrases instead of word markers. In the whole training process,
we evenly alternate training between bidirectional prediction and sequence-to-sequence generation
targets, to obtain the context marked representation of text features.

3.1.2 Geometry Problem Image Feature Learning

Faster-RCNN [35] is used to detect the region of interest of the image to extract visual features.
Because the self-attention mechanism in the multilayer converter is disordered, we use a five-
dimensional vector, (x1/W , y1/H, x2/W , y2/H, (y2 − y1)(x2 − x1)/WH), to encode the position
features of each region, where (x1, y1) and (x2, y2) are the coordinates of the lower-left and upper-
right corner, respectively, and W and H are the respective width and height of the input image.
The region feature embedding sequence V = {Ei

[IMG], Ei
v1

, · · · , Ei
vm

} is formed by using the first three
layers of ResNet101 [22] to extract visual features, and a multilayer converter to fuse visual, location,
and learning task features, where E is the image embedding mark of the region feature, and i is
the embedding mark of the learning task. The multilayer converter including self-attention mask
mechanism is used to train the region features, and to learn and output more realistic context region
representation hi = {hi,(L)

0 , hi,(L)

1 , · · · , hi,(L)

m }. The learning task embedding vector wtask
i is added to the

region embedding sequence, and it can be separated from the implicit features of the output image
hi = E(v, wtask

i ) in the downstream task. This vector marks a variety of downstream training tasks and
shares implicit features such as target detection, visual implication, and relational reasoning.
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Similar to the self-attention mask modeling of text features, the self-attention mask modeling of
image features samples the image region. It uses 15% probability to mask the visual features, which
are replaced with 0. The image regions are usually highly overlapped. To avoid information leakage,
we mask all high proportion of overlapping regions in the image slices. We randomly select a region
as the masking anchor, and mask the region where the anchor receipt is greater than 0.3. The purpose
is to reconstruct the masked region vm from the other given region v\m by using the function LV(θ) =
Ev∈Dfθ (vm|v\m), where θ is a trainable parameter, and each image region v is sampled from training set D.
Unlike text tags represented by discrete tags, visual features are high-dimensional and continuous, and
the likelihood function cannot be used for supervised learning. Therefore, we use feature regression
and region classification to train an encoding model of the geometry problem image, so as to learn a
better context region representation of the image.

The process of forwarding propagation of data and the process of predicting the solution
sequences are described in detail next. The model can accept single-modal and multimodal data as
input. Data is converted to features by text and/or image embedders. As shown in algorithm 1, the
input is the text and/or image and the output is a set of text features ht and/or image feature hi.

Algorithm 1: Multimodal feature extraction
Input: Word sequence w = {w1, · · · , wn} and/or problem image V , learning task embedding
vector wtask

t

Output: Extracted text features ht and/or image features hi

1: if SingleModalInput() then
2: rewrite the semantics of single-modal text or single-modal image
3: else
4: rewrite original image and text pair data
5: end if
6: if TextExist() then
7: add ‘[CLS]’ to the beginning of sequences w = {[CLS] , w1, · · · , wn}
8: add ‘[SEP]’ to the end of sequences w = {[CLS] , w1, · · · , wn, [SEP]}
9: put w and wtask

t into BERT to get ht = BERT
(
w, wtask

t

)

10: get text tag embedding sequences W =
{

Et
[CLS], Et

w1
, · · · , Et

wn
, Et

[SEP]

}
from ht

11: get ht = {
ht,(L)

0 , ht,(L)

1 , · · · , ht,(L)

n , ht,(L)

n+1

}
by putting W into the multilayer self-attention converter

12: end if
13: if ImageExist() then
14: image standardization pre-processing on V
15: feed V into pre-trained first three layers of ResNet101
16: get image embedding hD from output of ResNet101

17: put hD and wtask
t into multilayer converter to get image feature V =

{
Ei

[IMG], Ei
v1

, · · · , Ei
vm

}
.

18: get hi = {
hi,(L)

0 , hi,(L)

1 , · · · , hi,(L)

m

}
by putting V into the multilayer self-attention converter

19: end if
20: return ht and/or hi
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3.2 Multimodal Contrastive Learning
We propose a multimodal contrastive learning model to address the lack of semantic correlation

between multimodal geometry data. This model aligns different levels of text and/or image representa-
tions and maps them into a unified semantic space. The idea is to attract the relevant text and/or image
features to each other and repel irrelevant features in the representation space [31], so as to realize the
semantic alignment of multimodal geometry data.

The contrastive learning model of multimodal data is shown in Fig. 3. We transform the feature
representation of a text and/or image into the same embedded space through a full connection layer,
and calculate the cosine similarity to measure the distance d(V , W) between features. Two text and/or
image features, such as hi,(L)

m and ht,(L)

n , are selected randomly, and two pairs of interrelated features
are generated for each selected feature using two independent enhancement functions. A basic neural
network encoder f (·) extracts representation vectors (ri,(L)

m , ri,(L)

m+1) and (rt,(L)

n , rt,(L)

n+1 ) from the enhanced data.
A neural network projection head g(·) is used to map the representation vector to the contrastive loss
space to obtain contrastive vectors (zi,(L)

m , zi,(L)

m+1) and (zt,(L)

n , zt,(L)

n+1 ). A contrastive loss function is trained for
contrastive prediction, so that relevant features attract each other and irrelevant features repel each
other.

3.2.1 Single-Modal Contrastive Learning

There is a lack of semantic correlation between the geometry data in a single-modal text or image.
To enhance the multiple granularity semantic alignment between single-modal geometry data, we
rewrite the semantics of a single-modal text or image using text rewriting technology. We parse the
text or image into a scene graph [36] containing objects, attributes, and relations, which are randomly
replaced in the geometric vocabulary. For instance, a geometry problem can be parsed into a scene
graph of objects (circle, center, radius), attributes (center coordinate is (0, 0), radius is 2 cm) and
relations (same radius). Text rewriting can be randomly replaced with other objects, attributes, or
relations to generate a large number of negative samples. Because the rewritten text is similar to but
different from the original text, it can be used as negative samples. Text rewriting can generate a large
number of negative samples instead of randomly extracting negative samples, as in previous methods,
so we can help the model learn a more detailed semantic alignment from different levels of a text or
image, and a more accurate semantic alignment of features is learned by training the contrastive loss
function,

LSMCL = − log
exp(d(Z, W +)/τ )∑

W ′∈{W+ ,W ′} exp(d(Z, W ′)/τ )
, (1)

where W + and W − represent positive and negative examples, respectively, of text or image Z, and
τ represents temperature parameters. so as to realize the unified semantic feature expression of
multimodal data.

3.2.2 Cross-Modal Contrastive Learning

For semantic alignment between cross-modal data in geometry problem texts and images, it is not
only necessary to connect the scene displayed in the image with the text description in the problem, but
also to align the entities in the image and their positional relationships with the description in the text.
Many multimodal pretraining methods align visual and text representations by simple image and text
matching using a corpus of restricted image and text pairs [23], randomly selecting negative samples
of images or texts from the same training batch, and use a classifier to judge whether images and texts
match. Because randomly selected negative samples are usually very different from the original images
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or texts, they can only learn a very rough alignment between text and visual representations. We use
text rewriting to create a large number of positive and negative examples from the original image and
text pair data instead of randomly extracting negative samples. We translate the description text of
an image into another language, and use reverse translation technology [37] to translate it back to
the original language, so as to obtain multiple similar description texts of images as positive samples.
We retrieve the similarity of image descriptions through TF-IDF technology; the retrieval results are
similar to but different from the original description text, so they can be used as negative samples to
enhance the semantic alignment of image and text. We use these positive and negative examples to
train the contrastive loss function,

LCMCL = − log
exp(d(V , W +)/τ )∑

W ′∈{W+ ,W ′} exp(d(V , W ′)/τ )
, (2)

where W + and W − represent positive and negative examples, respectively, of image V , and τ is
a temperature parameter, to learn a more accurate semantic alignment between image and text
representation, and realize the unified semantic feature expression of multimodal data.

The process of multimodal contrastive learning is described in detail next. As shown in algorithm
2, the input is the text and/or image encoded features and the output is a set of contrastive vectors
(zi,(L)

m , zi,(L)

m+1) and (zt,(L)

n , zt,(L)

n+1 ).

Algorithm 2: Multimodal contrastive learning
Input: Encoded text and/or image features FP

Output: Contrastive vectors (zi,(L)

m , zi,(L)

m+1) and/or (zt,(L)

n , zt,(L)

n+1 )
1: randomly select encoded text and/or image features as ht,(L)

n and/or hi,(L)

m from FP

2: use two independent enhancement functions to generate two pairs of interrelated features
3: use neural network encoder f (·) to extract representation vector (ri,(L)

m , ri,(L)

m+1) and/or (rt,(L)

n , rt,(L)

n+1 )
4: if SingleModalInput() then
5: set contrastive loss function as LSMCL

6: else
7: set contrastive loss function as LCMCL

8: end if
9: use projection head g (·) to map representation vector to the contrastive loss space
10: train the overall model by the contrastive loss function
11: obtain the contrastive vectors (zi,(L)

m , zi,(L)

m+1) and/or (zt,(L)

n , zt,(L)

n+1 )
12: return contrastive vectors (zi,(L)

m , zi,(L)

m+1) and/or (zt,(L)

n , zt,(L)

n+1 )

3.3 Geometry Problem Solver
3.3.1 Shared Encoder

We have multimodal information about images and text features or single-modal information to
be encoded. Self-attention (SA) units are used to encode both embedded representations of text and
images [38]. In the encoder, we concatenate the two kinds of feature vectors (ht and hi) for multimodal
features, and feed single-modal features or concatenated multimodal features into six stacked SA units
and obtain FP, which are self-attended features.

Self-Attention Units. SA units are used to reconstruct every feature vector by attending all feature
vectors. Multi-head is used to enhance generalization. We stack six SA units to reconstruct text-
embedded feature ht and image-embedded feature hi. Each internal SA unit takes the output of the
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previous unit as input. SA units randomly mask hj from ht or hi, and let the encoder explore deeper
information from both feature vectors. It is worth noting that the masked feature vectors are not
attended. We take the hidden state FP = [f0; . . . ; fn] of the last unit of SA as self-attended features.
Most important is sharing parameters when encoding multimodal or single-modal information. Every
output feature vector fully considers the entire feature information.

Adaptive Mechanisms. SA units take both text and image embedding as input, whose multimodal
or single-modal embedding vector dimensions generally differ. SA can adaptively process vectors with
different dimensions, providing the premise to construct a cross-modal information encoder and map
them into a unified semantic space.

After features are extracted from the text and/or images, they are encoded for multimodal
contrastive learning to map them into a unified semantic space. As described in Algorithm 3, the
input is extracted text features ht and/or image features hi and the output is encoding result FP.

Algorithm 3: Encoding of text and/or image features
Input: Extracted text features ht and/or image features hi

Output: Encoded text features and/or image features FP

1: random masking of 15% of features as H ′
p and/or h′

D

2: if MultimodalFeatureExist() then
3: concatenate H ′

p and h′
D as H ′

4: else
5: treat H ′

p or h′
D as H ′

6: end if
7: feed H ′ into 6 stacked SA units
8: get encoding FP = [f0; . . . ; fn] from output of last SA units
9: return FP

3.3.2 Shared Decoder

The decoder part has one more cross-attention than SA, which is used to migrate cross-modal
features into the shared features of multi-tasks. We stack six of the same structures in the decoder to
represent deep information. It takes tokens of embedded learning tasks as input and pays attention
to the cross-modal features from the encoder output. The list of learning tasks is manually marked to
include all covered tasks. This paper focuses on problem solving in task-specific list. Cross-modal
information from shared encoder output is used for cross attention, and it guides the decoder to
generate task-specific solution information. Because text and image information is mapped to a unified
semantic space, decoders are shared for different modal tasks.

3.3.3 Answer Generator

After obtaining the task-specific features of decoder output, we use a GRU network to generate
a target operation tree with attention [39] over Fp. Operation trees are generated by preorder
or postorder traversal for different datasets. Operation trees ensure the validity of the generated
sequences, generating the current output node to identify the number of child nodes. For example,
if the current node is “add,” it has two child nodes, while a current node with a number has no child
nodes. At the beginning of target program sequence, the tokens <CLS> and <END> are added to
the beginning and end respectively of the sequence. We feed a start token <CLS> concatenated with
decoded information into the GRU. For a target program sequence to predict {yt} (1 ≤ t ≤ T), each
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prediction step is a classification issue. We can apply the validity of a generated tree to narrow the
decision range. For example, in the subsequent tree, if two numbers have been generated, then the next
generation must be the operation symbols, and we use this mechanism to improve the performance of
the answer generator.

At the training state, after feeding the token <CLS>, we feed GRU hidden state s0 concatenated
with decoded information from the shared decoder to a linear layer with a softmax function to produce
the probability of predicted next target program token distribution Dt. We feed golden target program
token yt concatenated with decoded information at time step t to produce the next prediction. At
the final step, we feed the last program token concatenated with decoded information, and train the
network to predict the <END> token, which means the predicted process is over. In the training
process, the loss of answer sequences is the negative log-likelihood of the generated sequence

La (θ) = 1
T

∑T

t=1
log Pt (yt | x, y1, . . . , yt−1; θ) , (3)

where θ indicates parameters of the overall model structure without an image embedder, which is
trained in auxiliary tasks. x is the input of both the problem text and image. y1, . . . , yt−1 in training is
the target sequence before time step t. For the test mode, it produces sequences in the model. Task-
specific output heads can be customized for different tasks. Our answer generator has a geometry
program generator.

We found that the model overfit quickly and performance was not increased in the early epoch.
Flooding [40] was used to let the model take random walks at the empirical flooding level, which is
the training loss of best performance of the model. We change the loss function to

L′
a (θ) = |La (θ) − b| + b, (4)

where b is the training loss of the best performance of the model. The model will take gradient decrease
as normal when training loss is greater than b, and gradient increase if it is less than b.

Algorithm 4 is built for decoding cross-modal information and generating solution sequences.
After contrastive learning, the procedure takes the contrastive features zt and/or zi as the input and
outputs the set of solution sequence R. The contrastive features are first sent to the decoder, and then
the solution sequence is generated by the answer generator.

4 Experiments
4.1 Experimental Setup and Implementation
4.1.1 Experimental Setup

We evaluate the multimodal contrastive learning capability of the proposed approach on the
datasets of GeoQA [4] which contain 5010 Chinese geometry problems from online education
websites. GeoQA contains angle, length, and other types of problems, as described in Table 1. Each
problem contains an image and problem text with corresponding problem-solving explanations and
an annotated program. The program can be used to model training and generate target sequences.
To test the cross-modal contrastive learning ability of the model, it was simultaneously trained on the
GeoQA and Math23K datasets [5]. Math23K was collected by Wang et al., and contains 23,162 tagged
math word problems (MWPs), which are linear algebra questions with one unknown variable.

We used PyTorch to implement our model. The learning rate was set to 1e−3, with a batch size of
32 and 100 epochs with the Adam optimizer. The beam size was set to 10.
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Algorithm 4: Generating targeted solution sequence
Input: Contrastive features zt and/or zi

Output: Solution sequence R
1: input embedding of geometry problem solving into decoder
2: decoder cross-attention on zt and/or zi

3: get decoder output F ′

4: feed F ′ into answer generator
5: while predicted markers �= <END> do
6: if IsFirstStep() then
7: feed <CLS> concatenated with F ′ into generator
8: else
9: take predicted target program token yt−1 concatenated with F ′ feed into generator
10: end if
11: feed hidden state of generator s concatenated with F ′ into a linear layer with a softmax
12: get predicted target program yt from linear layer and add it to R
13: end while
14: return R

Table 1: Statistics of GeoQA and Math23K datasets

Dataset GeoQA Math23K

Number
Total Angle Length Other Total
5010 2745 1873 392 23162

4.1.2 Implementation Details

We measured the multimodal contrastive learning capability of the model. For a fair comparison,
we changed the answer generator to LSTM; because LSTM has more parameters than GRU and is
more complex, we wanted to test for a corresponding performance improvement. To measure beam
size influence in target program sequence generation, we contrasted our model with different beam
sizes, so as to measure the performance improvement vs. the amount of computation. During the
multimodal fusion experiment, the model converged quickly to the optimal solution, and overfit
quickly. To moderate overfitting, the flooding method [3] was used, which let the model take random
walks at a certain training loss level.

The cross-modal contrastive learning ability of the model was measured. The model was trained
simultaneously on both datasets, and we trained it on a single dataset to see the corresponding
performance changes. To measure the importance of the image and answer programs, we used a subset
of the datasets for training, discarding images in GeoQA and discarding the solution sequence in
GeoQA and Math23K.

For the GeoQA dataset, we calculated the answer accuracy of angle calculation, length calculation,
and others such as area and volume calculation. Total problem solving performance was measured
without distinction of problem types. For Math23K, we only evaluated the total problem solving
performance. The answer accuracy was calculated by executing the predicted sequences to obtain the
result compared to the correct answer. The consistency of the solution sequence was measured. The



1720 CMES, 2023, vol.136, no.2

consistency of the marker sequence and model prediction sequence indicated the inference ability of
the model, and the gap between consistency and accuracy indicated some inference ability.

For GeoQA, we first resized the image to 224 × 224, which is easy to feed into ResNet101. We
fine-tuned ResNet101 to better extract image features, and pretrained it by puzzle recovery and image
element identification with a learning rate of 1e−5. In the experiment with cross-modal data, the model
was trained by two datasets at the same time. In each epoch, we selected a batch from the dataset in
sequential rotation to train the model. At the end of each epoch, the models were evaluated on the
validation sets of the two datasets, and the accuracy evaluation metrics were summed to select the
model that performed best on both datasets, which was the final training result.

4.2 Experimental Results
4.2.1 Multimodal Contrastive Learning Results

Table 2 compares the result of solving geometry problems with the different methods on the
GeoQA datasets. NGS-Auxiliary, Seq2Prog, BERT2Prog, MCL, LSTM Flooding, and MCL Flood-
ing, respectively, refer to the performance of the NGS-Auxiliary method, Sequence-to-Program model
using a GRU encoder with an attention mechanism [15], BERT [16] encoder with an attention
mechanism, our proposed method, LSTM used to replace the answer generator with flooding, and
our approach with flooding. Bolded scores are highest, and “‡” marks the results reported by
Chen et al. [10]. Our model overall outperforms NGS-Auxiliary, but has 0.5 percentage point lower
accuracy in solving triangle-type questions. At our flooding level setting, model performance has
not improved, as MCL Flooding outperforms LSTM Flooding. The performance of Seq2Prog and
BERT2Prog is not satisfactory because diagram information is lacking.

Table 2: Comparison results of solving geometry problems on GeoQA dataset

Method Total (%) Angle (%) Length (%) Other (%)

NGS-auxiliary‡ [4] 60.7 72.0 47.0 44.4
Seq2Prog‡ [15] 52.3 62.4 42.1 27.8
BERT2Prog‡ [16] 54.7 65.8 42.1 35.2
MCL (Ours) 61.8 71.5 49.5 50.0
LSTM flooding (Ours) 57.5 68.7 44.2 38.9
MCL flooding (Ours) 59.4 70.3 46.3 40.7

Fig. 4 shows the training and validation loss of different models. At the top-left corner, our
validation loss begins to increase at the twelfth epoch. Although training loss always decreases, we
achieve the best validation accuracy at the 42nd epoch, at 61.7%. We consider that the model is
overfitting or the loss function must be improved. So, we try to change the answer generator to LSTM.

The graph titled “Replaced by LSTM” (lower-left) shows the LSTM-based answer generator
validation loss increase at the twelfth epoch, with the best performance, 63.7% validation accuracy,
at the 35th epoch. The two models show almost the same training trends, but the LSTM-based model
performs best earlier. LSTM-based model learning curves are smoother than GRU-based, because
LSTM is less likely to overfit, with more parameters than GRU. Flooding is used to overcome our
model’s tendency to overfit quickly. The training loss of the best-performing model on the validation
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set is used as the flooding level. For our model, the flooding level is set at 0.0248. For the LSTM-
based answer generator, the flooding level is 0.1005. As shown in Table 2, our flooding level settings
do not affect the accuracy improvement of the model. However, as seen in the graph titled “Our model
with Flooding” (upper-right) in Fig. 4, flooding does alleviate a certain degree of overfitting, slowing
down the upward trend of the validation set loss compared to the trend in the upper-left graph. The
graph titled “Replaced by LSTM with Flooding” (lower-right) shows that for the LSTM-based answer
generator, flooding is used to alleviate overfitting. The validation loss begins to increase at the sixteenth
epoch. The best validation accuracy is achieved at 50 epochs with 0.624 accuracy.

Figure 4: Training and validation loss of different models

The influence of different beam sizes was tested on our model. We set the beam size as 1, 10, and
20. As shown in Table 3, there is a huge accuracy gap between beam sizes 1 and 10. However, when
the beam size increases from 10 to 20, the performance increase is not obvious.

Table 3: Performance comparison under different beam size settings of our model

Beam size 1 10 20
Answer accuracy 43.9% 61.8% 62.5%

4.2.2 Cross-Modal Contrastive Learning Comparison Results

Table 4 shows the answer accuracy of different settings on the two datasets which are GeoQA and
Math23K, and “‡” marks the results reported by Wang et al. [41]. To compare model performance
changes after cross-modal feature fusion, we used the proposed approach to train GeoQA and
Math23K separately. “Only GeoQA,” “Only Math23K,” “Ensemble,” “DNS,” and “JMCL” refer to
the performance of the implementation of only training GeoQA on our model, only training Math23K
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on our model, Wang’s method with the same training set division of our approach, deep neural solver
of MWP, and jointly training on the two datasets on our model. The result of JMCL is bolded.

Table 4: Comparison results of cross-modal fusion

Datasets

Method GeoQA Math23K

Total
(%)

Angle
(%)

Length (%) Other (%) Total (%)

Only GeoQA (Multimodal) 60.7 72.0 47.0 44.4 -
Only Math23K (Single-modal) - - - - 67.6
Ensemble ‡ [41] - - - - 68.4
DNS‡ [42] 60.7
JMCL (Cross-modal) 55.8 66.7 41.7 42.6 71.7

We found performance degradation after fusion training for GeoQA, but there is some per-
formance improvement for Math23K. Before adopting cross-modal contrastive learning, our model
behaves at 67.6 accuracy on Math23K. After cross-modal contrastive learning, accuracy rises to 71.7,
yielding a 4.1 percentage point increase, which is better than Wang’s method Ensemble.

Table 5 shows the performance of using different data subsets to solve the problem. “No Image”
and “No Program” refer to not using the image information in GeoQA and not using the program
sequence of the two datasets.

Table 5: Answer accuracy comparison on different subsets of GeoQA and Math23K datasets

Datasets

Method GeoQA Math23K

Total (%) Angle (%) Length (%) Other (%) Total (%)

No Image 57.4 69.3 42.4 42.6 77.1
No Program 26.7 26.1 26.5 27.8 14.7

No image information from GeoQA is used to solve the problem, so the model only processes
single-modal information from both datasets. The first line, “No Image,” shows that the accuracy is
higher than JMCL, as Table 4 confirms, because unimodal information is more effective in contribut-
ing to each other’s level of problem comprehension, so there is still much room for improvement in
our cross-modal processing. The performance of “No Image” on the GeoQA dataset in Table 5 is less
than that of “Only GeoQA” in Table 4 because of the variability between datasets. “No Image” has the
best performance, 77.1, on Math23K. “No Program” in Table 5 means the answer is chosen directly
from the four options without undertaking any solving steps. The second line, “No Program,” shows
that there is a significant drop in performance and the model fails to reason about problems and prove
the importance of program sequence.



CMES, 2023, vol.136, no.2 1723

The consistency and Levenshtein distance of the solution sequence were measured. As Table 6
shows, our cross-modal contrastive learning model has 37.7 consistency on the GeoQA dataset, which
is 18.1 different from accuracy, and for Math23K, there is a gap of 9.7. We suggest that the gap
occurs because the model is able to generate different solution steps from the labeled sequence to
solve the problem. Because a problem does not have a unique solution, the ability to generate different
sequences shows some reasoning ability. For a more comprehensive analysis, the Levenshtein distance,
a string metric, was measured; this measures the difference between two sequences. The Levenshtein
distance of the predicted and labeled sequences was better than the consistency because it only shows
the similarity of the sequences. Levenshtein also shows the performance of the model. As Table 6
shows, the Levenshtein distance of the model when trained with Math23K only was 85.0, but it was
86.6 when fusion training of the two datasets was performed. For GeoQA dataset performance, there
was no such change.

Table 6: Consistency and Levenshtein distance of solution sequence obtained by our model

Dataset

Method GeoQA Math23K

Consistency (%) Levenshtein (%) Consistency (%) Levenshtein (%)

Only GeoQA
(Multimodal)

51.1 82.5 - -

Only Math23K
(Single-modal)

- - 57.7 85.0

JMCL
(Cross-modal)

37.7 75.3 62.0 86.6

No Image 38.5 74.5 66.5 88.5

To explain the performance degradation of GeoQA, we speculate that Math23K has much more
data, which increases its impact on the model, and the organization rules of the two datasets labeled
with sequences are different. Fig. 5 illustrates that GeoQA and Math23K have different forms of
solution sequence construction. In GeoQA, operation symbols include “Minus” and “Half”, and
the operands include “N0” and “V1”. For Math23K, operation symbols include “-” and “/”, and
operand include “temp_b” and “temp_c”. In the two datasets, different symbols are used for the same
operation, making the vocabularies of the model poorly generalized. GeoQA uses preorder trees for
operations, while Math23K uses postorder trees. For these reasons, the two datasets do not effectively
contribute together to the model’s understanding of the problem.

Figure 5: Examples of solution sequences for GeoQA and Math23K

4.3 Typical Case Analyzing
Two typical cases have been displayed below. Typically, if the predicted program sequence has no

match to any of the options, then the model gets no result and we do not let the model make random
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choices. In Figs. 6 and 7, the operation is predefined such as Minus and Add. Those operations will be
executed by pre-defined functions to get a result and the result of each operation is stored in a variable
to facilitate the final result. It is worth noting that an operation is generated firstly and secondly,
the numbers involved in the operation are generated in annotated program sequences. In programs,
N means number in the problem. The serial number is the order in which the numbers appear. V
means variables that are operation results labeled by order of execution. C is a constant that has been
predefined. The final feature representations of problem are fed into a classifier which transforms
features into probability distribution. The position of the maximum value in distribution corresponds
to the predicted program. Each time step of classifier will produce a program such as “Minus” until
overall program sequences are generated.

As shown in the figure, C and D are two points on the line AB, if 
AC = 3cm, C is the midpoint of AD and AB = 10cm, then DB=( ).

A.4cm   B.5cm   C.6cm   D.7cm

Answer: A.0

Explanations: 

Point C is the midpoint of AD, AC=3cm, 

CD=3cm. 

AB=10cm, AC+CD+DB=AB, 

BD=10-3-3=4cm. 

Therefore choose: A

Annotated Program: 

Minus N0 V0N1 N0Minus

Model Predicted:

Minus N0 V0 Add V1N1 Half N1

�

�

�

�

Figure 6: Case of our model gets no result

In Fig. 6, the model gets the wrong answer sequence and the result is 6.5. At the beginning of the
sequence, the model predicts N0 − N1 which is 3 − 10 = −7, and −7 is stored in the variable V0. Then
the model predicts “Half” and the operation number are V0 and V1 which obtained (−3.5 = −7/2).
Finally, the answer has been got by Answer = V1 + N1(6.5 = −3.5 + 10). We find that in length type
questions neither the final result nor the intermediate result will be negative. In future works, we try
to avoid negative forecasts and improve the performance of the model by avoiding operations that can
generate negative numbers. The model may have failed to effectively perform Multimodal information
fusion.

In Fig. 7, the model predicts the right target programs. C2 and C3 are constants that are defined
in advance. In our setting, C2 is 90 and C3 is 180. We can get V0 = C2 − N0 = 90 − 70 = 20,
then V1 = V0 ∗ 2 = 40. Finally, we get Answer = C3 − V1 = 140. Interestingly, the model can
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use predefined constants to solve the problem, verifying the validity of the model and demonstrating
powerful inference capability.

Figure 7: Case of our model gets right answer

5 Conclusion

In this work, we focused on solving geometry problems via the feature and contrastive learning
of multimodal data. A shared feature-learning model of multimodal data was adopted to learn a
unified feature representation of a text and image in order to address the heterogeneity between
multimodal geometry problems. A contrastive learning model of multimodal data was proposed to
enhance the semantic relevance between multimodal features and map them into a unified semantic
space. This model can effectively adapt to both single-modal and multimodal downstream tasks. A
shared encoder-decoder structure realized the semantic alignment of multimodal geometry data and
generated readable solving sequences of problems. The shared encoder processed text and/or image
features masked by self-attention units, and multilayer Transformer was used to realize the interaction
between cross-modal features. After encoding, multimodal contrastive learning was proposed to
realize the semantic alignment of multimodal geometry data. The shared decoder processed contrastive
features and used learning task lists to transform information to generate task-specific features.
The method can be used for a variety of applications without changing too much structure. The
experimental results showed that the proposed method is promising in the solution of geometry
problems.
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In future work, we will eliminate the variability in the solution sequences of different datasets to
improve the performance of the model, and explore a higher-performance solution framework through
methods such as reinforcement learning.
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