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ABSTRACT

This paper aims to introduce the novel concept of neutrosophic crisp soft set (NCSS), including various types of
neutrosophic crisp soft sets (NCSSs) and their fundamental operations. We define NCS-mapping and its inverse
NCS-mapping between two NCS-classes. We develop a robust mathematical modeling with the help of NCS-
mapping to analyze the emerging trends in social networking systems (SNSs) for our various generations. We
investigate the advantages, disadvantages, and natural aspects of SNSs for five generations. With the changing of the
generations, it is analyzed that emerging trends and the benefits of SNSs are increasing day by day. The suggested
modeling with NCS-mapping is applicable in solving various decision-making problems.
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1 Introduction

Fuzzy set theory [1] and soft set theory [2] are independent abstraction of classical set theory
to address uncertainties by using membership functions and parameterizations, respectively. These
theories have been widely used for solving real-world problems. The researchers extended the fuzzy set
theory to develop various new models such as intuitionistic fuzzy sets [3], interval-valued intuitionistic
fuzzy sets [4–7], Pythagorean fuzzy sets [8,9], q-rung orthopair fuzzy sets [10], bipolar fuzzy sets [11,12],
and m-polar fuzzy sets [13].
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These models have been developed by using the membership function and non-membership
function to cover the limitations of membership and non-membership grades. In the case of a
bipolar fuzzy set, the membership grades are categorized into positive and negative grades to
discuss the counter property of objects. Smarandache [14,15] introduced the idea of the neutrosophic
set (NSs), which assign three independent grades (truth-membership, indeterminacy, and falsity).
Wang et al. [16] introduced single-valued neutrosophic sets as a consequence of NSs. A neutrosophic
set is more general than various existing fuzzy sets. Some neutrosophic concepts have been explored by
Salama et al. [17,18]. They presented a novel idea of the neutrosophic crisp set (NCS) and neutrosophic
crisp relations with the construction of neutrosophic crisp topological spaces. Salama et al. [19] estab-
lished the novel concepts about NCS theory and developed some applications of this theory in diverse
areas. Karaaslan [20] investigated some properties of the neutrosophic soft set (NSS) and presented
interesting applications in decision-making problems. Maji [21] presented some significant results on
NSSs. Kharal et al. [22] presented several results on the mappings of soft classes. Wardowski [23]
presented innovative results on soft mappings and their fixed points.

Information measures (similarity measures, distance measures, inclusion measures, and entropy)
proposed by Peng et al. [24]. They developed algorithms and their applications towards medical
diagnosis, pattern recognition, and clustering analysis. Akram et al. [25] suggested extension of
competition graphs like k-competition graphs and p-competition complex fuzzy graphs under complex
fuzzy environment and their application in ecosystem. Akram et al. [26] suggested an implementation
of SVN soft hypergraphs on human nervous system. Zhan et al. [27] proposed new decision-making
method based on bipolar neutrosophic information. Feng et al. [28] proposed MADM application
by using new score function for ranking of alternatives with generalized orthopair fuzzy membership
grades. Akram [29] initiated the concept of BFS graphs and Akram et al. [30] suggested a hybrid
decision-making framework by using aggregation operators under a complex spherical fuzzy prioriti-
zation approach. Alghamdi et al. [31] proposed some MCDM methods in a bipolar fuzzy environment.
Yang et al. [32] investigated certain aspects of single valued neutrosophic relations. Yue [33] proposed
the idea of interval intuitionistic fuzzy set based bilateral matching decision-making for knowledge
innovation management considering matching willingness.

Naeeem et al. [34] proposed the idea of Pythagorean m-polar fuzzy sets with new directions and
applications. Thao et al. [35] proposed similarity measures based on new entropy by using single-
valued neutrosophic sets with application to select supplier material. Ulucay et al. [36] introduced novel
similarity measures of bipolar neutrosophic sets and their application to MCDM. Hashim et al. [37]
developed new kinds of similarity measures and their applications for neutrosophic bipolar fuzzy
information. They suggested a practical application to hope foundation for planning to build a
children hospital under uncertain neutrosophic bipolar fuzzy environment. Garg et al. [38] proposed
the idea of hybrid weighted aggregation operators under neutrosophic set information. They suggested
an interesting application to MCDM for ranking of feasible objects. Karaaslan et al. [39] developed
certain operations on single-valued neutrosophic matrices. They proposed a new method for finding
an optimal alternative and ranking of feasible alternatives. Hashmi et al. [40] introduced the idea of
m-polar neutrosophic sets and m-polar neutrosophic topology. They proposed novel algorithms for
MCDM in clustering analysis and medical diagnosis. Zhang et al. [41] suggested the idea of interval
neutrosophic sets and their applications in MCDM. Ye [42] developed a novel MCDM approach for
uncertain single-value neutrosophic information and related correlation coefficient. Ye [43] suggested
simplified neutrosophic aggregation operators for MCDM and ranking of feasible alternatives in the
universe of discourse. Feng et al. [44] proposed certain properties of soft sets, fuzzy sets and rough sets.
They suggested soft computing approaches in terms of the possible fusion of fuzzy sets, soft sets, and
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rough sets. They proposed some significant results related to the extension of Pawlak approximation
space, equivalence relation, and granular computing. Pamucar [45] proposed a robust approach for
interval grey normalized weighted geometric Dombi Bonferroni mean aggregation operators by using
or uncertain MCDM problems. Chen et al. [46] proposed an efficiency-based interval type-2 fuzzy
MCGDM technique for makeshift hospital selection. Riaz et al. [47] proposed an innovative bipolar
fuzzy sine trigonometric aggregation operators and SIR method for medical tourism supply chain.
Hanif et al. [48] suggested the notion of linear Diophantine fuzzy graphs with new decision-making
approach. Saeed et al. [49] developed an application of neutrosophic hypersoft mapping to diagnose
hepatitis and propose appropriate treatment. Riaz et al. [50] proposed images and inverse images of m-
polar neutrosophic soft mappings and their application to mental disorders and multiple personality
disorder. Riaz et al. [51] proposed images and inverse images of bipolar fuzzy soft mappings and
their application to bipolar disorders. Latreche et al. [52] introduced the concept of single valued
neutrosophic mappings defined by single valued neutrosophic relations with applications.

Neutrosophy is a branch of philosophy that investigates the scope, nature, and origin of neutrali-
ties, as well as their interactions with various conceptual spectra. Neutrosophy forms the base of neu-
trosophic science involving the area such as neutrosophic logic, neutrosophic sets, and neutrosophic
probability, etc. These have been successfully applied for modeling uncertainties in decision-making
problems. Neutrosophic crisp set (NCS) and neutrosophic crisp soft set (NCSS) are strong modeling
tools to address vagueness and uncertainties in decision-making problems.

The first objective of this paper is to introduce the novel concept of neutrosophic crisp soft
set (NCSS) including various types of neutrosophic crisp soft sets (NCSSs) and their fundamental
operations. The second objective is to define the idea of NCS-mapping to investigate images and
inverse images of NCS-classes. The third objective is to develop a robust mathematical modeling with
the help of NCS-mapping. The fourth objective is to analyze the emerging trends in social networking
systems (SNSs) for our various generations. The fifth objective is to derive valid conclusions regarding
the advantages, disadvantages, and natural aspects of SNSs for five generations.

The layout of this paper is designed as follows: In Section 2, we first present the notion of NCSS
and then we talk about some of its types. We introduce some operations on NCSSs for the dissimilar
types of NCSSs. In Section 3, we establish NCS-mapping and inverse NCS-mapping by merging the
ideas of soft mapping and NC mapping, then extend the definition with the help of examples. In
Section 4, we discuss and construct a model on emerging trends in social networking system (SNS) via
NCS-mapping for different generations. In Section 5, we briefly discuss our concepts about this paper
and the construction of the articles with the comparison of neutrosophic, fuzzy and soft notions and
their hybrid structures. Lastly, judgments are drawn in Section 6.

Some abbreviations used in this paper are as follows:

IFS Intuitionistic fuzzy set

GIFS Generalized intuitionistic fuzzy set

GNS Generalized neutrosophic set

NC Neutrosophic crisp

NSS Neutrosophic soft set

NCS Neutrosophic crisp soft

NCSS Neutrosophic crisp soft set

SNS Social networking system
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SNWs Social networking websites

FNS Fuzzy neutrosophic soft

2 Neutrosophic Crisp Soft Sets

In this section, we introduce the notion of neutrosophic crisp soft set (NCSS), different types
NCSSs, operations on NCSSs with the help of some illustrations. First, we recall the definition of
soft set.

Definition 2.1. [2] Let X be the universal set, P(X) be the power set of X , and R be the set of
decision variables with A ⊆ R, then the pair (F , A) is called a soft set over X , where F is a set-valued
mapping given by F : A → P(X). A soft set can be written as

(F , A) = {(δ, F(δ)): δ ∈ A}.
Definition 2.2. [18,19] Let X be a non-empty fixed sample space. A neutrosophic crisp set (NC-set)

N is written as

N = 〈N1,N2,N3〉
where N1, N2 and N3 are subsets of X .

There are three types of NC-set defined as:

1. NC-set with Type-1 if N1 ∩ N2 = φ, N2 ∩ N3 = φ and N1 ∩ N3 = φ.

2. NC-set with Type-2 if N1 ∩ N2 = φ, N2 ∩ N3 = φ, N1 ∩ N3 = φ and N1 ∪ N2 ∪ N3 = X .

3. NC-set with Type-3 if N1 ∩ N2 ∩ N3 = φ and N1 ∪ N2 ∪ N3 = X .

Definition 2.3. Let X be an arbitrary non-empty fixed sample space and let P be the set of decision
variables. Then, for the soft set or absolute soft set XP (it may be simply an arbitrary soft set or may
be an absolute soft set) the neutrosophic crisp soft set (NCSS) can be written as

N = 〈(N1, G1), (N2, G2), (N3, G3)〉
where (N1, G1), (N2, G2) and (N3, G3) be the soft subsets of XP and G1, G2, G3 ⊆ P.

There are three types of NCSS defined as follows:

1. NCSS with Type-1, if (N1, G1)∩̃(N2, G2) = φ̃, (N2, G2)∩̃(N3, G3) = φ̃ and (N1, G1)∩̃(N3, G3) = φ̃.

2. NCSS with Type-2, if (N1, G1)∩̃(N2, G2) = φ̃, (N2, G2)∩̃(N3, G3) = φ̃, (N1, G1)∩̃(N3, G3) = φ̃

and (N1, G1)∪̃(N2, G2)∪̃(N3, G3) = XP.

3. NCSS with Type-3, if (N1, G1)∩̃(N2, G2)∩̃(N3, G3) = φ̃ and (N1, G1)∪̃(N2, G2)∪̃(N3, G3) = XP.

Example 2.1. Let X be the set of non-negative integers and P = {ξ1, ξ2, ξ3, ξ4} be the set of decision
variables, where

ξ1 = Even numbers,

ξ2 = Odd numbers,

ξ3 = Numbers divisible by 2,

ξ4 = Negative numbers.
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Consider G1 = {ξ1, ξ3}, G2 = {ξ2}, G3 = {ξ4} ⊆ P, then the corresponding soft subsets are

(N1, G1) = {(ξ1, {2w: w ∈ X}), (ξ3, {2w: w ∈ X})}

(N2, G2) = {(ξ2, {2w + 1: w ∈ X})}

(N3, G3) = {(ξ4, φ)}
where X = {0, 1, 2, 3, . . .} the set of whole numbers. So, the type 1 NCSS can be written as

N = 〈(N1, G1), (N2, G2), (N3, G3)〉.
If XP = {(ξ1, {2w: w ∈ W}), (ξ2, {2w + 1: w ∈ X}), (ξ3, {2w: w ∈ X}), (ξ4, φ)} then N is also of

Type-2 and Type-3. The neutrosophic crisp soft set N can be represented in Table 1 as follows.

Table 1: Neutrosophic crisp soft set N

N ξ1 ξ2 ξ3 ξ4

(N1, G1) N1(ξ1) φ N1(ξ3) φ

(N2, G2) φ N2(ξ2) φ φ

(N3, G3) φ φ φ N3(ξ4) = φ

where N1(ξ1) = N1(ξ3) = {2w: w ∈ X} and N2(ξ2) = {2w + 1: w ∈ X}.
Definition 2.4. Let XP and Xφ be the absolute and empty soft sets respectively, on the universe of

discourse X and the set of decision variables P. Then, empty NCSS is defined in many ways as

Type-1: �N = 〈Xφ, Xφ, XP〉, Type-2: �N = 〈Xφ, XP, XP〉,
Type-3: �N = 〈Xφ, XP, Xφ〉, Type-4: �N = 〈Xφ, Xφ, Xφ〉.
Definition 2.5. Let XP and Xφ be the absolute and empty soft sets respectively, on the universe of

discourse X and the set of decision variables P. Then, absolute NCSS denoted by XN is defined by
different ways as follows:

Type-1: XN = 〈XP, Xφ, Xφ〉, Type-2: XN = 〈XP, XP, Xφ〉,
Type-3: XN = 〈XP, Xφ, XP〉, Type-4: XN = 〈XP, XP, XP〉.
Definition 2.6. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 be the NCSS on X and P. Then, the

complement of N denoted by Nc is defined by different ways as follows:

Type-1: Nc = 〈(N1, G1)
c, (N2, G2)

c, (N3, G3)
c〉

Type-2: Nc = 〈(N3, G3), (N2, G2), (N1, G1)〉
Type-3: Nc = 〈(N3, G3), (N2, G2)

c, (N1, G1)〉
where (N1, G1)

c, (N2, G2)
c and (N3, G3)

c are the complements of the soft subsets of the given NCSS.

Definition 2.7. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 be
two NCSSs on X and P. Then, definition of subsets are given as:

Type-1: N ⊆ M ⇔ (N1, G1)⊆̃(M1, H1), (N2, G2)⊆̃(M2, H2) and (N3, G3)⊇̃(M3, H3)

Type-2: N ⊆ M ⇔ (N1, G1)⊆̃(M1, H1), (N2, G2)⊇̃(M2, H2) and (N3, G3)⊇̃(M3, H3)
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Proposition 2.1. If N is any NCSS, then the following statements hold:

1. �N ⊆ N, �N ⊆ �N,

2. N ⊆ XN, XN ⊆ XN.

Proof. The proof is obvious. Therefore, it is omitted.

Definition 2.8. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 be
two NCSSs over X and P. Then, union of these sets can be defined in two ways as

Type-1: N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∪̃(M2, H2), (N3, G3)∩̃(M3, H3)〉
Type-2: N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∩̃(M2, H2), (N3, G3)∩̃(M3, H3)〉.
where (N1, G1), (N2, G2), (N3, G3), (M1, H1), (M2, H2) and (M3, H3) are soft subsets of XP.

Definition 2.9. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 be
two NCSSs over X and P. Then, intersection of these sets can be defined in two ways as

Type-1: N ∩ M = 〈(N1, G1)∩̃(M1, H1), (N2, G2)∩̃(M2, H2), (N3, G3)∪̃(M3, H3)〉
Type-2: N ∩ M = 〈(N1, G1)∩̃(M1, H1), (N2, G2)∪̃(M2, H2), (N3, G3)∪̃(M3, H3)〉.
where (N1, G1), (N2, G2), (N3, G3), (M1, H1), (M2, H2) and (M3, H3) are soft subsets of XP.

Proposition 2.2. If M and N are two NCSSs over X and P, then the following statements hold:

1. (N ∩ M)c = Nc ∪ Mc

2. (N ∪ M)c = Nc ∩ Mc

Proof. The proof is obvious. Therefore, it is omitted.

Remark 2.1. We can prove different basic laws for union and intersection of NCSSs and can
generalize them for arbitrary family of NCSS.

Example 2.2. Let X = Z and P = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} be the set of decision variables where,

ξ1 = Even numbers,

ξ2 = Odd numbers,

ξ3 = Numbers divisible by 2,

ξ4 = non terminating decimals,

ξ5 = non negative integers,

ξ6 = non positive integers,

ξ7 = additive identity.

Let (X , P) be the soft set over X and P given as:

(X , P) = {(ξ1, {±2w: w ∈ Z}), (ξ2, {±(2w + 1): w ∈ Z}), (ξ3, {±2w: w ∈ Z}), (ξ4, φ), (ξ5, {w: w ∈
Z+/{0}}), (ξ6, {w: w ∈ Z−/{0}}), (ξ7, {0})}. Now consider two NCSSs of Type-1 N = 〈(N1, G1), (N2, G2), (N3, G3)〉
and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 where,

(N1, G1) = {(ξ1, {±2w: w ∈ Z}), (ξ3, {±2w: w ∈ Z})},
(N2, G2) = {(ξ2, {±(2w + 1): w ∈ Z})},
(N3, G3) = {(ξ4, φ)}, where G1 = {ξ1, ξ3}, G2 = {ξ2}, G3 = {ξ4},
(M1, H1) = {(ξ5, {w: w ∈ Z+/{0}})},
(M2, H2) = {(ξ6, {w: w ∈ Z−/{0}})},



CMES, 2023, vol.136, no.2 1765

(M3, H3) = {(ξ7, {0})}, where H1 = {ξ5}, H2 = {ξ6}, H3 = {ξ7}. The neutrosophic crisp soft set N
and M are expressed in Tables 2 and 3, respectively.

Table 2: Neutrosophic crisp soft set N

N ξ1 ξ2 ξ3 ξ4

(N1, G1) N1(ξ1) φ N1(ξ3) φ

(N2, G2) φ N2(ξ2) φ φ

(N3, G3) φ φ φ N3(ξ4) = φ

Table 3: Neutrosophic crisp soft set M

M ξ5 ξ6 ξ7

(M1, H1) M1(ξ5) φ φ

(M2, H2) φ M2(ξ6) φ

(M3, H3) φ φ M3(ξ7)

Union of NCSSs:

Type-1: L = N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∪̃(M2, H2), (N3, G3)∩̃(M3, H3)〉
L = 〈(L1, J1), (L2, J2), (L3, J3)〉 where,

(L1, J1) = {(ξ1, N1(ξ1)), (ξ3, N1(ξ3)), (ξ5, M1(ξ5))},
(L2, J2) = {(ξ2, N2(ξ2)), (ξ6, M2(ξ6))},
(L3, J3) = φ̃

Type-2: N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∩̃(M2, H2), (N3, G3)∩̃(M3, H3)〉.
O = 〈(O1, K1), (O2, K2), (O3, K3)〉 where,

(O1, K1) = {(ξ1, N1(ξ1)), (ξ3, N1(ξ3)), (ξ5, M1(ξ5))},
(O2, K2) = φ̃,

(O3, K3) = φ̃. This shows that L and O are NCSSs of Type-1.

By using Definition 2.8, the neutrosophic crisp soft set L and O can be demonstrated in Tables 4
and 5, respectively.

Table 4: Neutrosophic crisp soft set L = N ∪ M (Type-1)

L ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

(L1, J1) L1(ξ1) φ L1(ξ3) φ L1(ξ5) φ φ

(L2, J2) φ L2(ξ2) φ φ φ L2(ξ6) φ

(L3, J3) φ φ φ φ φ φ φ
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Table 5: Neutrosophic crisp soft set O = N ∪ M (Type-2)

O ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

(O1, K1) O1(ξ1) φ O1(ξ3) φ O1(ξ5) φ φ

(O2, K2) φ φ φ φ φ φ φ

(O3, K3) φ φ φ φ φ φ φ

Intersection of NCSSs:

By using Definition 2.9, the intersection of N and M can be expressed in Tables 6 and 7,
respectively.

Table 6: Neutrosophic crisp soft set U = N ∩ M (Type-1)

L ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

(L1, J1) φ φ φ φ φ φ φ

(L2, J2) φ φ φ φ φ φ φ

(L3, J3) φ φ φ L3(ξ4) = φ φ φ L3(ξ7)

Table 7: Neutrosophic crisp soft set V = N ∩ M (Type-2)

O ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

(O1, K1) φ φ φ φ φ φ φ

(O2, K2) φ L2(ξ2) φ φ φ L2(ξ6) φ

(O3, K3) φ φ φ L3(ξ4) = φ φ φ L3(ξ7)

Example 2.3.

Let X = {a, b, c, d, e, f } be the fixed sample space and P = {ξ1, ξ2, ξ3} be the collection of decision
variables. Then, soft set XP and be written as

XP = {(ξ1, X), (ξ2, X), (ξ3, X)}.
Now, we construct NCSSs of different types and see their complement according to Definition

2.6. (I) Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 be an NCSS of Type-1 where,

(I) (N1, G1) = {(ξ1, {a})},
(N2, G2) = {(ξ2, {c})} and
(N3, G3) = {(ξ3, {e})}. This is neither an NCSS of Type-2 nor Type-3.

(II) Let M = 〈(M1, H1), (M2, H2), (M3, H3)〉 be an NCSS of Type-1, Type-2 and Type-3 where,
(M1, H1) = {(ξ1, X)},
(M2, H2) = {(ξ2, X)},
and (M3, H3) = {(ξ3, X)}.

(III) Let O = 〈(O1, K1), (O2, K2), (O3, K3)〉 be an NCSS of Type-3 where,
(O1, K1) = {(ξ1, X), (ξ2, {c})},
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(O2, K2) = {(ξ1, {a, b}), (ξ2, X), (ξ3, {f })} and
(O3, K3) = {(ξ2, {d}), (ξ3, X)}. This is not a NCSS of Type-1, 2.

(IV) Let L = 〈(L1, J1), (L2, J2), (L3, J3)〉 be a NCSS where,
(L1, J1) = {(ξ1, {a, b}), (ξ2, {c}), (ξ3, {f })},
(L2, J2) = {(ξ1, {a}), (ξ2, {c, d}), (ξ3, {f })} and
(L3, J3) = {(ξ1, {a}), (ξ2, {c}), (ξ3, {f })}. This is neither an NCSS of Type-1 nor Type-2.

Complement:

(I) The complement of N = 〈(N1, G1), (N2, G2), (N3, G3)〉 with different types follow as
Type-1: Nc = 〈(N1, G1)

c, (N2, G2)
c, (N3, G3)

c〉 where
(N1, G1)

c = {(ξ1, {b, c, d, e, f })}, (N2, G2)
c = {(ξ2, {a, b, d, e, f })} and (N3, G3)

c = {(ξ3, {a, b, c, d, f })}
is an NCSS but not of Type-1, Type-2, and Type-3.
Type-2: Nc = 〈(N3, G3), (N2, G2), (N1, G1)〉 is an Type-1 NCSS but not of Type-2 and Type-3.
Type-3: Nc = 〈(N3, G3), (N2, G2)

c, (N1, G1)〉 is an Type-1 NCSS but not of Type-2 and Type-3.

(II) The complement of M = 〈(M1, H1), (M2, H2), (M3, H3)〉 with different types is follow as:
Type-1: Mc = 〈(M1, H1)

c, (M2, H2)
c, (M3, H3)

c〉 where
(M1, H1)

c = {ξ1, φ}, (M2, H2)
c = {ξ2, φ} and (M3, H3)

c = {ξ3, φ}. This is NCSS Type-4 empty set.
Type-2: Mc = 〈(M3, H3), (M2, H2), (M1, H1)〉 is NCSS of Type-1, Type-2, Type-3.
Type-3: Mc = 〈(M3, H3), (M2, H2)

c, (M1, H1)〉 is NCSS of Type-1 but not of Type-2 and Type-3.

(III) The complement of O = 〈(O1, K1), (O2, K2), (O3, K3)〉 with different types is as
Type-1: Oc = 〈(O1, K1)

c, (O2, K2)
c, (O3, K3)

c〉 where
(O1, K1)

c = {(ξ1, φ), (ξ2, {a, b, d, e, f })}, (O2, K2)
c = {(ξ1, {c, d, e, f }), (ξ2, φ), (ξ3, {a, b, c, d, e})} and

(O3, K3)
c = {(ξ2, {a, b, c, e, f }), (ξ3, φ)} is NCSS but not of Type-1, Type-2, Type-3.

Type-2: Oc = 〈(O3, K3), (O2, K2), (O1, K1)〉 is NCSS of Type-3 but not of Type-1 and Type-2.
Type-3: Oc = 〈(O3, K3), (O2, K2)

c, (O1, K1)〉 is NCSS but not of Type-1, Type-2, Type-3.

(IV) The complement of L = 〈(L1, J1), (L2, J2), (L3, J3)〉 with different types is calculated as
Type-1: Lc = 〈(L1, J1)

c, (L2, J2)
c, (L3, J3)

c〉 where
(L1, J1)

c = {(ξ1, {c, d, e, f }), (ξ2, {a, b, d, e, f }), (ξ3, {a, b, c, d, e})},
(L2, J2)

c = {(ξ1, {b, c, d, e, f }), (ξ2, {a, b, e, f }), (ξ3, {a, b, c, d, e})} and
(L3, J3)

c = {(ξ1, {b, c, d, e, f }), (ξ2, {a, b, d, e, f }), (ξ3, {a, b, c, d, e})} is NCSS but not of Type-1,
Type-2, Type-3.
Type-2: Lc = 〈(L3, J3), (L2, J2), (L1, J1)〉 is NCSS but not of Type-1, Type-2, Type-3.
Type-3: Lc = 〈(L3, J3), (L2, J2)

c, (L1, J1)〉 is NCSS but not of Type-1, Type-2, Type-3.

(1) Every NCSS of Type-1, Type-2 and Type-3 are NCSS.

(2) Every NCSS of Type-1 may not be NCSS Type-2 and Type-3.

(3) Every NCSS of Type-2 may not be NCSS Type-1 and Type-3.

(4) Every NCSS of Type-3 may not be NCSS Type-1 and Type-2.

(5) Every soft set is NCSS.

The relationship between different types of NCSSs and soft set are shown in Fig. 1.

Definition 2.10. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 be an NCSS on X and P. Then, NP =
〈Nξ1

, Nξ2
, Nξ3

〉, ξ1 �= ξ2 �= ξ3 is called NCSS point, where Nξ1
, Nξ2

and Nξ3
are soft points or singleton

soft sets on sample space X and on the set of decision variables P. An NCS point NP belongs to NCSS
N if
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Figure 1: Relationship between different types of NCSSs and soft set

Type-1: Nξ1
⊆̃(N1, G1), Nξ2

⊆̃(N2, G2), Nξ3
⊇̃(N3, G3)

Type-2: Nξ1
⊆̃(N1, G1), Nξ2

⊇̃(N2, G2), Nξ3
⊇̃(N3, G3)

Theorem 2.1. Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 be
two NCSSs on X and P and let N subset M. Then, if NP ∈ N, NP ∈ M for any NCSS point NP in XP.

Proof. Let N ⊆ M and NP ∈ N. Then, by Definition 2.8 we have

Type-1: Nξ1
⊆̃(N1, G1)⊆̃(M1, H1), Nξ2

⊆̃(N2, G2)⊆̃(M2, H2), Nξ3
⊇̃(N3, G3)⊇̃(M3, H3).

Type-2: Nξ1
⊆̃(N1, G1)⊆̃(M1, H1), Nξ2

⊇̃(N2, G2)⊇̃(M2, H2), Nξ3
⊇̃(N3, G3)⊇̃(M3, H3).

This shows that NP ∈ M.

Proposition 2.3.

Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 be an NCSS on X and P. Then, N = ⋃{NP : NP ∈ N}.
Proof. Proof is obvious.

3 NCS-Mapping

In this section, we establish NCS-mapping and inverse NCS-mapping by merging the ideas of soft
mapping and NC mapping, then explain the definition with the help of examples.

Definition 3.1. Suppose that NC is the collection of all NCSSs on X and P and MC be the
class of all NCSSs on Y and R. If ð: X → Y and η: P → R are the mappings on the fixed
sample spaces X and Y and on the set of decision variables P and R, then for the two NCSSs
N = 〈(N1, G1), (N2, G2), (N3, G3)〉 ∈ NC and M = 〈(M1, H1), (M2, H2), (M3, H3)〉 ∈ MC, we can define
a mapping ðη: NC → MC such that image of

ðη(N) = M and can be as

ðη(N1, G1) = (M1, H1), ðη(N2, G2) = (M2, H2) and ðη(N3, G3) = (M3, H3) and these images can be
found by using the mapping of soft sets defined as

ðη(N1, G1)(r) =

⎧⎪⎨
⎪⎩
ð

( ⋃
α∈η−1(r)∩G1

N1(α)

)
; if, η−1(r) ∩ G1 �= φ

φ otherwise
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for r ∈ H1 ⊆ R.

ðη(N2, G2)(r) =

⎧⎪⎨
⎪⎩
ð

( ⋃
α∈η−1(r)∩G2

N2(α)

)
; if, η−1(r) ∩ G2 �= φ

φ otherwise

for r ∈ H2 ⊆ R, and

ðη(N3, G3)(r) =

⎧⎪⎨
⎪⎩
ð

( ⋃
α∈η−1(r)∩ G3

N3(α)

)
; if, η−1(r) ∩ G3 �= φ

φ otherwise

for r ∈ H3 ⊆ R.

Definition 3.2. Let ðη: NC → MC be a mapping as given in above definition and M =
〈(M1, H1), (M2, H2), (M3, H3)〉 be an NCSS in MC, where H1, H2, H3 ∈ R. Then, inverse image
ð−1

η
(M) = N = 〈(N1, G1), (N2, G2), (N3, G3)〉 is an NCSS in NC, calculated as

ð
−1
η

(M1, H1)(℘) =
⎧⎨
⎩ð−1

(
M1

(
η(℘)

))
; if, η(℘) ∈ H1

φ otherwise

for ℘ ∈ G1 ⊆ P,

ð
−1
η

(M2, H2)(℘) =
⎧⎨
⎩ð−1

(
M2

(
η(℘)

))
; if, η(℘) ∈ H2

φ otherwise

for ℘ ∈ G2 ⊆ P, and

ð
−1
η

(M3, H3)(℘) =
⎧⎨
⎩ð−1

(
M3

(
η(℘)

))
; if, η(℘) ∈ H3

φ otherwise

for ℘ ∈ G3 ⊆ P.

Example 3.1.

Let X = {ψ1, ψ2, ψ3} and Y = {π1, π2, π3} be the sets of fixed sample space, P = {℘1, ℘2, ℘3},
R = {r1, r2, r3} be the sets of decision variables. Then, we define a mapping ðη: NC → MC, where NC is
the collection of all NCSSs on X and P and MC is the class of all NCSSs on Y and R and ð: X → Y
and η: P → R are defined as

η(℘1) = r1, η(℘2) = r1, η(℘3) = r3, ð(ψ1) = π1, ð(ψ2) = π2, ð(ψ3) = π2.

Let N = 〈(N1, G1), (N2, G2), (N3, G3)〉 ∈ NC, where

(N1, G1) = {(℘1, {ψ1})},
(N2, G2) = {(℘2, {ψ2})},
(N3, G3) = {(℘3, {ψ3})} is an NCSS of Type-1. Then, we can find the image of N by using Definition

3.1 as
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ðη(N1, G1)(r1) = ð

⎛
⎝ ⋃

α∈η−1(r1)∩G1

N1(α)

⎞
⎠

= ð

(
N1(℘1)

)

= ð

(
{ψ1}

)
= {π1}

ðη(N1, G1)(r2) = φ, ðη(N1, G1)(r3) = φ.

ðη(N2, G2)(r1) = ð

⎛
⎝ ⋃

α∈η−1(r1)∩G2

N2(α)

⎞
⎠

= ð

(
N2(℘2)

)

= ð

(
{ψ2}

)
= {π2}

ðη(N2, G2)(r2) = φ, ðη(N2, G2)(r3) = φ. ðη(N3, G3)(r1) = φ, ðη(N3, G3)(r2) = φ.

ðη(N3, G3)(r3) = ð

⎛
⎝ ⋃

α∈η−1(r3)∩G3

N3(α)

⎞
⎠

= ð

(
N3(℘3)

)

= ð

(
{ψ3}

)
= {π2}

Then, ðη(N) = M is an NCSS and can be written as

ðη(N) = M = 〈(M1, H1), (M2, H2), (M3, H3)〉
where (M1, H1) = {(r1, {π1})}, (M2, H2) = {(r1, {π2})} and (M3, H3) = {(r3, {π2})} are soft sets on Y
and R.

Inverse Mapping:

By using Definition 3.2, we find the inverse of above NCSS M as

ð
−1
η

(M1, H1)(℘1) = ð
−1

(
M1(η(℘1))

)
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= ð
−1

(
M1(r1)

)

= ð
−1

(
{π1}

)
= {ψ1}

ð
−1
η

(M1, H1)(℘2) = ð
−1

(
M1(η(℘2))

)

= ð
−1

(
M1(r1)

)

= ð
−1

(
{π1}

)
= {ψ1}

ð
−1
η

(M2, H2)(℘1) = ð
−1

(
M2(η(℘1))

)

= ð
−1

(
M2(r1)

)

= ð
−1

(
{π2}

)
= {ψ2, ψ3}

ð
−1
η

(M2, H2)(℘2) = ð
−1

(
M2(η(℘2))

)

= ð
−1

(
M2(r1)

)

= ð
−1

(
{π2}

)
= {ψ2, ψ3}

ð
−1
η

(M3, H3)(℘3) = ð
−1

(
M3(η(℘3))

)

= ð
−1

(
M3(r3)

)

= ð
−1

(
{π2}

)
= {ψ2, ψ3}



1772 CMES, 2023, vol.136, no.2

and ð−1
η

(M1, H1)(℘2) = ð−1
η

(M1, H1)(℘3) = ð−1
η

(M2, H2)(℘3) = ð−1
η

(M3, H3)(℘1) = ð−1
η

(M3, H3)

(℘2) = φ.

This implies that ð−1
η

(M) = L = 〈(L1, J1), (L2, J2), (L3, J3)〉 is NCSS of Type-1, where

(L1, J1) = {(℘1, {ψ1}), (℘2, {ψ1})},
(L2, J2) = {(℘1, {ψ2, ψ3}), (℘2, {ψ2, ψ3})},
(L3, J3) = {(℘3, {ψ2, ψ3})}.
Remark 3.1. From the above illustration, it is clear that ð−1

η
(M) = ð−1

η
(ðη(N)) �= N. This is because

the given mappings ð: X → Y and η: P → R are not bijective, so we get different result again. If we
consider both of these mappings bijective, then ð−1

η
(M) = ð−1

η
(ðη(N)) = N.

Theorem 3.1. Let ðη: NC → MC be a mappings between two NCS-classes, where ð: X → Y
and η: P → R are well-defined mappings. Then, for NCSSs N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and
M = 〈(M1, H1), (M2, H2), (M3, H3)〉 in the NCSS class NC, we have

1. ðη(�N) = �N,

2. ðη(N∪M) ⊆ ðη(N)∪ðη(M), (holds for union of Type-1 and Type-2). In general, ðη

(∪α (Nα)
) ⊆

∪αðη(Nα),

3. ðη(N ∩ M) ⊇ ðη(N) ∩ ðη(M), (holds for intersection of Type-1 and Type-2). In general, ðη

( ∩α

(Nα)
) ⊇ ∩αðη(Nα).

4. If N ⊆ M then ðη(N) ⊆ ðη(M).

Proof.

1. Proof is obvious.

2. We have to show that ðη(N∪M) ⊆ ðη(N)∪ðη(M). Since N = 〈(N1, G1), (N2, G2), (N3, G3)〉, M =
〈(M1, H1), (M2, H2), (M3, H3)〉 ∈ NC, where (N1, G1), (N2, G2), (N3, G3), (M1, H1), (M2, H2) and
(M3, H3) are soft sets on X and P, then

Type-1: N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∪̃(M2, H2), (N3, G3)∩̃(M3, H3)〉.
ðη(N ∪ M) = 〈ðη[(N1, G1)∪̃(M1, H1)], ðη[(N2, G2)∪̃(M2, H2)], ðη[(N3, G3)∩̃(M3, H3)]〉. From [22]

ðη[(N1, G1)∪̃(M1, H1)] = ðη[(N1, G1)∪̃ðη(M1, H1),

ðη[(N2, G2)∪̃(M2, H2)] = ðη(N2, G2)∪̃ðη(M2, H2), and

ðη[(N3, G3)∩̃(M3, H3)]⊇̃ðη(N3, G3)∩̃ðη(M3, H3).

Then, by the Definition 2.7, ðη(N ∪ M) ⊆ ðη(N) ∪ ðη(M).

Type-2: N ∪ M = 〈(N1, G1)∪̃(M1, H1), (N2, G2)∩̃(M2, H2), (N3, G3)∩̃(M3, H3)〉.
ðη(N ∪ M) = 〈ðη[(N1, G1)∪̃(M1, H1)], ðη[(N2, G2)∩̃(M2, H2)], ðη[(N3, G3)∩̃(M3, H3)]〉. From [22]

ðη[(N1, G1)∪̃(M1, H1)] = ðη[(N1, G1)∪̃ðη(M1, H1),

ðη[(N2, G2)∩̃(M2, H2)]⊇̃ðη(N2, G2)∩̃ðη(M2, H2), and

ðη[(N3, G3)∩̃(M3, H3)]⊇̃ðη(N3, G3)∩̃ðη(M3, H3).

Then, by the Definition 2.7, ðη(N ∪ M) ⊆ ðη(N) ∪ ðη(M).

3. We have to show that ðη(N∩M) ⊇ ðη(N)∩ðη(M). Since N = 〈(N1, G1), (N2, G2), (N3, G3)〉, M =
〈(M1, H1), (M2, H2), (M3, H3)〉 ∈ NC, where (N1, G1), (N2, G2), (N3, G3), (M1, H1), (M2, H2) and
(M3, H3) are soft sets on X and P, then
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Type-1: N ∩ M = 〈(N1, G1)∩̃(M1, H1), (N2, G2)∩̃(M2, H2), (N3, G3)∪̃(M3, H3)〉.
ðη(N ∪M) = 〈ðη[(N1, G1)∩̃(M1, H1)], ðη[(N2, G2)∩̃(M2, H2)], ðη[(N3, G3)∪̃(M3, H3)]〉. From [22],

ðη[(N1, G1)∩̃(M1, H1)]⊇̃ðη[(N1, G1)∩̃ðη(M1, H1),

ðη[(N2, G2)∩̃(M2, H2)]⊇̃ðη(N2, G2)∩̃ðη(M2, H2), and

ðη[(N3, G3)∪̃(M3, H3)] = ðη(N3, G3)∪̃ðη(M3, H3).

Then, by Definition 2.7, ðη(N ∩ M) ⊇ ðη(N) ∩ ðη(M).

Type-2: N ∩ M = 〈(N1, G1)∩̃(M1, H1), (N2, G2)∪̃(M2, H2), (N3, G3)∪̃(M3, H3)〉.
ðη(N ∩ M) = 〈ðη[(N1, G1)∩̃(M1, H1)], ðη[(N2, G2)∪̃(M2, H2)], ðη[(N3, G3)∪̃(M3, H3)]〉. From [22]

ðη[(N1, G1)∩̃(M1, H1)]⊇̃ðη[(N1, G1)∩̃ðη(M1, H1),

ðη[(N2, G2)∪̃(M2, H2)] = ðη(N2, G2)∪̃ðη(M2, H2), and

ðη[(N3, G3)∪̃(M3, H3)] = ðη(N3, G3)∪̃ðη(M3, H3).

Then, by Definition 2.7, ðη(N ∪ M) ⊇ ðη(N) ∪ ðη(M).

4. Type-1: Given is that N ⊆ M = 〈(N1, G1)⊆̃(M1, H1), (N2, G2)⊆̃(M2, H2), (N3, G3)⊇̃(M3, H3)〉.
ðη(N ⊆ M) = 〈ðη[(N1, G1)⊆̃(M1, H1)], ðη[(N2, G2)⊆̃(M2, H2)], ðη[(N3, G3)⊇̃(M3, H3)]〉.
From [22],

ðη[(N1, G1)⊆̃(M1, H1)] = ðη(N1, G1)⊆̃ðη(M1, H1),

ðη[(N2, G2)⊆̃(M2, H2)] = ðη(N2, G2)⊆̃ðη(M2, H2),

ðη[(N3, G3)⊇̃(M3, H3)] = ðη(N3, G3)⊇̃ðη(M3, H3).

This shows that ðη(N) ⊆ ðη(M).

Type-2: Let N ⊆ M = 〈(N1, G1)⊆̃(M1, H1), (N2, G2)⊇̃(M2, H2), (N3, G3)⊇̃(M3, H3)〉.
ðη(N ⊆ M) = 〈ðη[(N1, G1)⊆̃(M1, H1)], ðη[(N2, G2)⊇̃(M2, H2)], ðη[(N3, G3)⊇̃(M3, H3)]〉.
From [22],

ðη[(N1, G1)⊆̃(M1, H1)] = ðη(N1, G1)⊆̃ðη(M1, H1),

ðη[(N2, G2)⊇̃(M2, H2)] = ðη(N2, G2)⊇̃ðη(M2, H2),

ðη[(N3, G3)⊇̃(M3, H3)] = ðη(N3, G3)⊇̃ðη(M3, H3).

This shows that ðη(N) ⊆ ðη(M).

Remark 3.2. In soft set theory, if we take soft sets in the place of NCSSs, the part (2) of Theorem
3.1 holds for equality. But equality does not holds for NCSSs. This can be easily proved by using the
same proof of part (2).

Theorem 3.2. Let ðη: NC → MC be a mapping between two NCS-classes, where ð: X → Y
and η: P → R are well-defined mappings. Then, for NCSSs N = 〈(N1, G1), (N2, G2), (N3, G3)〉 and
M = 〈(M1, H1), (M2, H2), (M3, H3)〉 in the NCSS class MC, we have

1. ð−1
η

(�N) = �N,

2. ð−1
η

(N ∪ M) = ð−1
η

(N) ∪ ð−1
η

(M), (holds for union of Type-1 and Type-2). In general ð−1
η

( ∪α

(Nα)
) = ∪αð

−1
η

(Nα),
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3. ð−1
η

(N ∩ M) = ð−1
η

(N) ∩ ð−1
η

(M), (holds for intersection of Type-1 and Type-2). In general
ð−1

η

( ∩α (Nα)
) = ∩αð

−1
η

(Nα).

4. If N ⊆ M then ð−1
η

(N) ⊆ ð−1
η

(M).

Proof. The proof is obvious by using the same arguments used in the proof of Theorem 3.1.

4 Emerging Trends in SNS via NCS-Mapping with the Generation Gap

An online program utilized by societies to construct social links or social associations with other
individuals who partake comparable personal or professional interests, events, experiences or real-life
influences is called a social networking service (social networking site, or SNS or social media). In
2015, according to a study, 63 percent of the users of Twitter and Facebook in the USA consider that
the major source of entertainment and update is SNS. A survey made in 2015 survey shows that 85
percent of people who are Millennials or of generation Y use SNS for their purchase decision-making.

Early SNS has begun in the form of online websites given as http://www.theglobe.com/ (1995),
Geocities (1994) and Tripod.com (1995). Some web sites such as Classmates.com-took a diverse
methodology by merely having people refer to one another via email addresses. PlanetAll was initiated
in 1996.

In the recent 1990s, user profiles became a central characteristic of SNW. The i-generation uses
SNW to boom with the development of SixDegrees.com in 1997, followed by Open Diary in 1998, mixi
in 1999, Makeoutclub in 2000, Hub Culture and Friendster in 2002. In 2004, Facebook was launched,
became the biggest SNW in the cosmos in early 2009. The term SNS were ushered in and soon became
widespread.

Table 8 provides the list of the biggest SNS with the ranking of active users, as of January 2018,
as issued by Statista.

Table 8: Largest social networking services

SNS ranking 1 2 3 4 5

Service Facebook You Tube WhatsApp Facebook
Messenger

WeChat

Active users (in millions) 2,167 1,500 1,300 1,300 980
SNS ranking 6 7 8 9 10
Service Tencent QQ Instagram Tumbir QZone Sina Weibo
Active users (in millions) 843 800 794 568 376
SNS ranking 11 12 13 14 15
Service Twitter Baidu Tieba Skype LinkedIn Viber
Active users (in millions) 330 300 300 260 260
SNS ranking 16 17 18 19 20
Service Snapchat Reddit LINE Pinterest Telegram
Active users (in millions) 255 250 203 200 200
SNS ranking 21 22 23 24
Service YY VKontakte BBM Kakaotalk
Active users (in millions) 117 97 63 49

http://www.theglobe.com/
https://www.Tripod.com
https://www.Classmates.com
http://www.SixDegrees.com


CMES, 2023, vol.136, no.2 1775

Example 4.1.

We are presenting an application of social networking system (SNS), where we can analysis the
emerging trends and issues of SNS for different generations by using the NCSS mapping. We construct
a model of NCSS data containing some important purposes of SNS, we can increase the points of
features used in SNS according to our requirement. In this example, we choose some specific features
and discuss about some specific trends and issues for different generations. Our choice is random and
gives us an idea about the trends and issues that how these factors changes with the generation gap.

Algorithm:

Input:

Step-1: Input the sample spaces X and Y with the sets of decision variables P and R.

Step-2: Construct the NCS classes NC and MC on X with P and Y with R, respectively.

Step-3: Define appropriate mappings ð: X → Y and η: P → R by using the facts.

Step-4: Construct the NCS data for every generation separately. This implies that we can get
different NCSSs for every individual generation.

Output:

Step-5: Use Definition 3.1 of NCSS mapping and calculate the image NCSS for every generation.

Step-6: Resulting NCSSs show how the SNS is tending or creating issue with the change of time
or with the gap of generation. Basically, this model is used for data collection at a large scale and can
be used for checking the results and observing the changings in the collected information with the
change of time.

The flow chart diagram of NCSS-algorithm is shown in Fig. 2.

Figure 2: Flow chart diagram of NCSS-algorithm
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Construction:

Let we have a sample space X = {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7, ψ8, ψ9, ψ10, ψ11, ψ12, ψ13} as the set of
some purposes for which SNS is used. In the set X, let

ψ1 = Science,

ψ2 = Education,

ψ3 = Curriculum use,

ψ4 = Professional use (business models),

ψ5 = Positive correlates,

ψ6 = Social Interaction,

ψ7 = Employment (trending networks),

ψ8 = Spamming,

ψ9 = Data mining,

ψ10 = Trolling,

ψ11 = Unauthorized access,

ψ12 = Online bullying,

ψ13 = Facilities laziness.

Let sample space Y = {π1, π2, π3, π4, π5, π6, π7, π8, π9, π10, π11} be the collection of some important
benefits, bad impacts or drawbacks and unaffected or undecidable features of SNS according to the
different generations. In set Y , suppose

π1 = Privacy (risk of fraud and identity theft),

π2 = negative effect of employability,

π3 = Risk of child safety,

π4 = Cyberbullying and crime against children,

π5 = Interpersonal communication,

π6 = Psychological effects of SNS (source of entertainment),

π7 = Social overload (social anxiety),

π8 = Worldwide connectivity (faster communication),

π9 = Criminal investigation,

π10 = Co-marketing opportunity,

π11 = Time intensive (reduce family closeness).

The collection P = {℘1, ℘2, ℘3} and R = {r1, r2, r3} are the set of decision variables where,

℘1 = Emerging trends,

℘2 = Neutral,

℘3 = Issues,

r1 = Benefits,

r2 = Unaffected or undecidable,
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r3 = Drawbacks or bad impacts.

In this application, we use the age factor for our discussion about SNS and its trends. We consider
five generations given as:

(1): Traditional or silent generation: (Born in 1945 and before).

(2): Baby boomers: (Born in 1946 to 1964, roughly 50 to 70 years).

(3): Generation X: (Born in 1965 to 1976, 35–50 years).

(4): Millennials or generation Y: (Born in 1977 to 1995, 18–34 years).

(5): Centennials Generation Z or i-generation: (Born in 1996 and later).

Now, we construct five NCSSs which are N, M, L, O and Q for above five generations.

The tabular representation of N = 〈(N1, G1), (N2, G2), (N3, G3)〉 for the traditional or silent
generation, M = 〈(M1, H1), (M2, H2), (M3, H3)〉 for baby boomers, L = 〈(L1, J1), (L2, J2), (L3, J3)〉
for generation X, O = 〈(O1, K1), (O2, K2), (O3, K3)〉 for millennials or generation Y and Q =
〈(Q1, I1), (Q2, I2), (Q3, I3)〉 for cantennials Generation Z or i-generation is given in Table 9.

Table 9: NCSS data with five generations

NCSS data First soft set

N (N1, G1) = {(℘1, {ψ1, ψ2, ψ3})}
M (M1, H1) = {(℘1, {ψ1, ψ2, ψ3, ψ4})}
L (L1, J1) = {(℘1, {ψ1, ψ2, ψ3, ψ4, ψ5})}
O (O1, K1) = {(℘1, {ψ1, ψ2, ψ3, ψ4, ψ5})}
Q (Q1, I1) = {(℘1, {ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7})}
NCSS data Second soft set

N (N2, G2) = {(℘2, {ψ4, ψ5, ψ6, ψ7, ψ8, ψ9, ψ10, ψ11, ψ12, ψ13})}
M (M2, H2) = {(℘2, {ψ5, ψ6, ψ7, ψ8, ψ9, ψ10, ψ11, ψ12, ψ13})}
L (L2, J2) = {(℘2, {ψ6, ψ7, ψ8, ψ10, ψ11, ψ12, ψ13})}
O (O2, K2) = {(℘2, {ψ6, ψ7, ψ8, ψ11, ψ12, ψ13})}
Q (Q2, I2) = {(℘2, φ)},
NCSS data Third soft set

N (N3, G3) = {(℘3, φ)}
M (M3, H3) = {(℘3, φ)}
L (L3, J3) = {(℘3, {ψ9})}
O (O3, K3) = {(℘3, {ψ9, ψ10})}
Q (Q3, I3) = {(℘3, {ψ8, ψ9, ψ10, ψ11, ψ12, ψ13})}

Now, we define appropriate mappings ð: X → Y and η: P → R by using the facts from the given
information as

ð(ψ1) = π8, ð(ψ2) = π8, ð(ψ3) = π8, ð(ψ4) = π10,
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ð(ψ5) = π6, ð(ψ6) = π5, ð(ψ7) = π10, ð(ψ8) = π7,

ð(ψ9) = π7, ð(ψ10) = π1, ð(ψ11) = π1, ð(ψ12) = π4, ð(ψ13) = π11.

and

η(℘1) = r1, η(℘2) = r2, η(℘3) = r3.

Calculations:

We use Definition 3.1 and calculate the images of N, M, L, O and Q respectively as

ðη(N1, G1)(r1) = {π8},
ðη(N2, G2)(r2) = {π1, π4, π5, π6, π7, π10, π11},
ðη(M1, H1)(r1) = {π8, π10},
ðη(M2, H2)(r2) = {π1, π4, π5, π6, π7, π10, π11},
ðη(L1, J1)(r1) = {π6, π8, π10},
ðη(L2, J2)(r2) = {π1, π4, π5, π7, π10, π11},
ðη(L3, J3)(r3) = {π7},
ðη(O1, K1)(r1) = {π6, π8, π10},
ðη(O2, K2)(r2) = {π1, π4, π5, π7, π10, π11},
ðη(O3, K3)(r3) = {π1, π7},
ðη(Q1, I1)(r1) = {π5, π6, π8, π10},
ðη(Q3, I3)(r3) = {π1, π4, π7, π11},
ðη(N1, G1)(r2) = ðη(N1, G1)(r3) = ðη(N2, G2)(r1) = ðη(N2, G2)(r3) = ðη(N3, G3)(r1) = ðη(N3, G3)(r2) =

ðη(N3, G3)(r3)=φ.

ðη(M1, H1)(r2) = ðη(M1, H1)(r3) = ðη(M2, H2)(r1) = ðη(M2, H2)(r3) = ðη(M3, H3)(r1) =
ðη(M3, H3)(r2) = ðη(M3, H3)(r3) = φ.

ðη(L1, J1)(r2) = ðη(L1, J1)(r3) = ðη(L2, J2)(r1) = ðη(L2, J2)(r3) = ðη(L3, J3)(r1) = ðη(L3, J3)

(r2) = φ.

ðη(O1, K1)(r2) = ðη(O1, K1)(r3) = ðη(O2, K2)(r1) = ðη(O2, K2)(r3) = ðη(O3, K3)(r1) =
ðη(O3, K3)(r2) = φ.

ðη(Q1, I1)(r2) = ðη(Q1, I1)(r3) = ðη(Q2, I2)(r1) = ðη(Q2, I2)(r2) = ðη(Q2, I2)(r3) = ðη(Q3, I3)(r1) =
ðη(Q3, I3)(r2) = φ.

The tabular representation of images of ðη(N) for the traditional or silent generation, ðη(M) for
baby boomers, ðη(L) for generation X, ðη(O) for millennials or generation Y and ðη(Q) for cantennials
Generation Z or i-generation is given in Table 10.

Table 10: Images of NCSSs for five generations

NCSS data Image of first soft set

N ðη(N1, G1) = {(r1, {π8})}
M ðη(M1, H1) = {(r1, {π8, π10})}

(Continued)
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Table 10 (continued)

NCSS data Image of first soft set

L ðη(L1, J1) = {(r1, {π6, π8, π10})}
O ðη(O1, K1) = {(r1, {π6, π8, π10})}
Q ðη(Q1, I1) = {(r1, {π5, π6, π8, π10})}
NCSS data Image of second soft set

N ðη(N2, G2) = {(r2, {π1, π4, π5, π6, π7, π10, π11})}
M ðη(M2, H2) = {(r2, {π1, π4, π5, π6, π7, π10, π11}})}
L ðη(L2, J2) = {(r2, {π1, π4, π5, π7, π10, π11})}
O ðη(O2, K2) = {(r2, {π1, π4, π5, π7, π10, π11})}
Q ðη(Q2, I2) = {(r2, φ)}
NCSS data Image of third soft set

N ðη(N3, G3) = {(r3, φ)}
M ðη(M3, H3) = {(r3, φ)}
L ðη(L3, J3) = {(r3, {π7})}
O ðη(O3, K3) = {(r3, {π1, π7})}
Q ðη(Q3, I3) = {(r3, {π1, π4, π7, π11})}

The information of SNS via NCSS data for five generations (Input) and effects of SNS to different
generations (Output) is expressed in Tables 9 and 10, respectively.

In the Table 10, five NCSSs show the benefits, drawbacks and unaffected factors of SNS for the
five generations. With the change of generation, we can see that emerging trends and benefits of SNS
are increasing day by day. Similarly, some drawbacks are also increasing with the very much use of
SNS. In the Table 10, the image of first soft set column shows the increase in benefits of SNS with
the change of time and image of second soft set column shows that indeterminacy decreases with
the generation gap, because people are searching and exploring things and collect information about
the facts and easily decide that these features are beneficial or not for themselves. In the same way,
the image of third soft set column also increasing which means the drawbacks or bad impacts of SNS
are increasing for different generations, because when the use of SNS increases, then its bad impacts
also affects the personal and social life of people and create disturbance in many areas of life.

5 A Comparison Analysis and Discussion

In this section, to corroborate the practicability of proposed NCSS and NCS-mapping we compare
it with other hybrid structures of soft and fuzzy sets. In this inquiry, we present a new concept of NCSS
with different characters and operations and use illustrations to flesh out the concept. Essentially, we
construct three parameterized families of subsets of the creation of discourse with the given set of
decision variables and the triplet becomes an NCSS. The presented idea of parameters or decision
variables in the NC set contributes to the new approach of NCSS and covers the NC set theory as
easily.

Resulting NCSSs show how the SNS is tending or creating issue with the change of time or with
the gap of generation. Basically, this model is used for data collection at a large scale and can be used
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for checking the results and observing the changings in the collected information with the change
of time.

The relations between neutrosophic hybrid sets and other hybrid structures are shown in Fig. 3.

Figure 3: The relations between neutrosophic hybrid sets and other hybrid structures

In previous parts, we establish NCS-mapping of NCS classes and establish some results of
mathematical functions which hold in soft set theory but do not hold in NCSS theory. In the
application regarding SNS, we can utilize our set and its mapping to develop a robust mathematical
modeling, and it can be easily used for data collection at a large scale and for a long time period.
This constructed model through NCSSs can be used for discussion about the emerging trends,
disadvantages and unpretentious factors of the social networking system for the five generations at
the same time. If we examine the hybrid structures of soft and fuzzy sets, then we can well conclude
that there is a chain relationship between NCSS and other hybrid structures like fuzzy set, IFS, GIFS,
GNS. This relationship can be easily determined through the given flow chart diagram Fig. 3.

6 Conclusion

We introduced some new concepts of the neutrosophic crisp soft set (NCSS) and established
different types of NCSSs. We defined some operations on NCSSs and illustrated these concepts with
the help of some examples of NCSSs. We introduced NCS-mapping and developed images and inverse
images of NCS classes. We derived some significant results regarding NCS-mapping. We further
discussed some consequences of mapping which hold in soft set theory but do not hold in NCSS
theory. We used NCS-mapping to develop a robust mathematical modeling to analyze emerging trends
in social networking systems and the generation gap. The benefits, disadvantages and unpretentious
factors of social networking systems for five generations were investigated. This article is an innovative
approach to data science and information fusion at a large scale. Proposed theories and models are
more efficient in addressing vagueness and uncertainties in real-life problems. This theory can be
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extended to various fields like geographical information systems, networking systems, robotics, pattern
recognition, computational intelligence, medical diagnosis, etc.
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