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ABSTRACT

Encrypted traffic classification has become a hot issue in network security research. The class imbalance problem
of traffic samples often causes the deterioration of Machine Learning based classifier performance. Although the
Generative Adversarial Network (GAN) method can generate new samples by learning the feature distribution of
the original samples, it is confronted with the problems of unstable training and mode collapse. To this end, a novel
data augmenting approach called GraphCWGAN-GP is proposed in this paper. The traffic data is first converted
into grayscale images as the input for the proposed model. Then, the minority class data is augmented with our
proposed model, which is built by introducing conditional constraints and a new distance metric in typical GAN.
Finally, the classical deep learning model is adopted as a classifier to classify datasets augmented by the Condition
GAN (CGAN), Wasserstein GAN-Gradient Penalty (WGAN-GP) and GraphCWGAN-GP, respectively. Compared
with the state-of-the-art GAN methods, the GraphCWGAN-GP cannot only control the modes of the data to be
generated, but also overcome the problem of unstable training and generate more realistic and diverse samples. The
experimental results show that the classification precision, recall and F1-Score of the minority class in the balanced
dataset augmented in this paper have improved by more than 2.37%, 3.39% and 4.57%, respectively.
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1 Introduction

Network traffic classification has been widely employed in the field of application identification,
anomaly detection, network management, and so on. As the payload of encrypted traffic cannot be
analyzed directly, the traditional traffic classification methods based on payload matching[1,2] cannot
effectively handle encrypted traffic. The current typical encrypted traffic classification methods mainly
include traditional Machine Learning (ML) [3-7] and Deep Learning (DL) [8—18] methods. These
two methods can classify and identify traffic based on statistical characteristics without analyzing its
payload. Thus, they are less affected by the encryption technology [19].

This work is licensed under a Creative Commons Attribution 4.0 International License,
@ @ which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.


https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.023764
https://www.techscience.com/doi/10.32604/cmes.2023.023764
mailto:jiangtaozhai@nuist.edu.cn

2070 CMES, 2023, vol.136, no.2

However, the existing typical classification methods are always based on the assumption of
balanced data. This assumption does not hold in many practical cases. Data imbalance often exists
in network traffic [20]. There are huge differences in the number of samples among different traffic
classes. Among them, the class which has a large sample size is called the majority class, and the class
that has a small size is called the minority class. The class imbalance always leads to the misclassifying
problems of the minority class. This seriously affects the performance of the classifier and causes
low classification accuracy for the minority class. In most cases, the minority class data often contains
more valuable information and the misclassification of it would cause serious consequences. Therefore,
the class imbalance of traffic data poses a severe challenge to the classification and identification of
network traffic.

The current learning strategies for imbalanced data mainly include classification model improve-
ment and data preprocessing [21]. This paper mainly focuses on the classification of imbalanced traffic
data from the data preprocessing level. Data preprocessing refers to preprocessing the original data
through some methods before sending it to the classifier. Its purpose is to convert the imbalanced data
set into a balanced data set. The main preprocessing methods are under-sampling and oversampling
[22-24]. The under-sampling methods can reduce the imbalance ratio between classes by reducing the
number of majority class samples. The oversampling methods balance the data set by synthesizing
new minority samples. The Synthetic Minority Oversampling Technology (SMOTE) is an improved
scheme based on the Random Oversampling (ROS) algorithm. Unlike the ROS which increases the
number of minority samples through random replication, SMOTE is not prone to overfitting. That is
because it synthesizes new minority samples to reduce the imbalanced ratio.

Over recent years, as an oversampling method, generative models, including Generative Adver-
sarial Network (GAN) [25], have been used to generate minority samples to solve the problem of class
imbalance. The concept of GAN was proposed by Goodfellow in 2014. Its inspiration comes from
the zero-sum game idea. GAN is widely adopted in computer vision, especially in image generation
[26-28]. Compared with other generative models, the concept of adversarial training is introduced
into GAN because it can generate images that are of higher quality and more realistic. Concerning
the application of GAN in image generation, in this paper, the traffic data is converted into grayscale
images, and GAN is used to generate and augment minority classes. GAN is composed of two entities,
namely, generator and discriminator. The generator is used to generate samples according to the real
data distribution, while the discriminator is used to distinguish the pseudo noise generated by the
generator from the real samples. Although GAN has certain advantages over other generative models,
it still has the following problems:

e The training process of GAN is unstable and prone to causing gradient explosion and disappear-
ance. Thus, it is difficult for the model to cover. It also makes the generator unable to achieve
optimization and causes realistic samples not to be generated.

e The Kullback-Leibler (KL) divergence is used to measure the distance between real and
generated distribution. However, the asymmetry of KL is prone to causing mode collapse, which
leads to insufficient sample diversity.

In order to address the above-mentioned problems, an improved GAN-based imbalanced
encrypted traffic data augmenting method called GraphCWGAN-GP is proposed. The main
contributions of this paper can be concluded as:

e We propose a new traffic data augmentation method, called GraphCWGAN-GP, to augment
the number of samples in the minority class to balance the number of samples in each class.
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This method can effectively alleviate the problem that the classifier pays more attention to the
majority class but has a poor classification effect on the minority class due to the imbalance of
training data categories and improves the practical application value of the traffic classifier.

e In the GraphCWGAN-GP, we introduce the auxiliary conditional information to the Wasser-
stein GAN with gradient penalty (WGAN-GP). The traffic type labels are used as the precondi-
tion to control the mode of traffic data generation. Therefore, we only need to train one model
to generate traffic samples for all minority classes at one time, which can reduce the complexity
and time consumption.

e The proposed GraphCWGAN-GP method can greatly avoid the problems of unstable training
and mode collapse. It can generate more realistic and diverse traffic samples, which has great
potential to serve as a new idea for network traffic imbalance.

The rest of this paper is organized as follows. Section 2 introduces the related works of encrypted
traffic classification and existing typical methods for imbalanced traffic data classification. In
Section 3, the principle and network structure of the WGAN-GP model are introduced. And the
methodology of the proposed method is illustrated in Section 4. Section 5 shows the comparison
experimental results and analysis. Section 6 demonstrates the conclusions and future works.

2 Related Works
2.1 Network Encrypted Traffic Classification

At present, the method based on deep learning has become mainstream in the encrypted traffic
identification field. The methods proposed in [11-18] are all DL-based traffic classification methods,
which can not only avoid the feature design problems in traditional ML methods, but also achieve
higher accuracy in the classification and identification of encrypted traffic. In [11], the authors
proposed a DL-based encrypted traffic classification method called “Deep Packet”, which integrates
the feature extraction and classification stage into a system. The system framework uses two deep
neural network structures of Stacked Auto-Encoders (SAE) and CNN. This system can be used to
distinguish VPN and nonVPN traffic, and classify different types of application traffic. Experiments
on the ‘UNB ISCX VPN-nonVPN’ data set illustrates that the “Deep Packet” can achieve a high
classification accuracy.

In [12], a novel multimodal DL framework named MIMETIC for encrypted mobile traffic
classification is proposed. The MIMETIC method adopts features automatically extracted by DL to
design a traffic classifier. It allows us to inspect the traffic from complementary views, thus providing
an effective solution to the mobile scenario. The MIMETIC can capitalize on traffic data heterogeneity
by learning both intra-and inter-modality dependences, and pushing through performance limitations
of existing single-modality DL-based TC proposals. Experiments demonstrate the performance
improvement of MIMETIC over single-modality DL-based counterparts, state-of-the-art ML-based
mobile traffic classifiers, and classifier fusion techniques.

The encrypted traffic classification method called DataNets proposed in [14] is based on three DL
schemes, which are MLP, SAE and CNN. The authors proposed a software-defined network (SDN)-
HGW framework to better manage distributed smart home networks and support the SDN controller
of the core network. The DataNets can be applied to enable distributed application-aware SDN-HGW
in future smart home, and can achieve better end-to-end network management.

Dong et al. [15] proposed a semi-supervised Double Deep Q-Network (SSDDQN)-based opti-
mization method for network abnormal traffic detection, mainly based on Double Deep Q-Network
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(DDQN), a representative of Deep Reinforcement Learning algorithm. In SSDDQN, the current
network first adopts the autoencoder to reconstruct the traffic features and then uses a deep neural
network as a classifier. The target network first uses the unsupervised learning algorithm K-Means
clustering and then uses deep neural network prediction.

2.2 The Classification of Imbalanced Traffic Data

The existing imbalanced traffic data classification research mainly includes two strategies, namely,
improvement of the classification model and data preprocessing. In this paper, the imbalanced traffic
data classification based on the strategy of data preprocessing is studied. Ma et al. [26—33] introduced
the data preprocessing methods which include SMOTE-based method and GAN-based methods for
imbalanced traffic classification.

Zhang et al. [29] proposed a novel class imbalance processing technology for large-scale datasets,
called SGM. The SGM first combines SMOTE with under-sampling for clustering based on Gaussian
Mixture Model (GMM). Then, the SGM is used to combine with the CNN classifier to construct a
flow-based intrusion detection model, which is referred to as SGM-CNN. The authors also learned the
impact of different numbers of convolution kernels and the learning rate on the model performance.
Experiments on UNSW-NB15 and CICIDS2017 public network intrusion datasets demonstrate
that the SGM-CNN achieves a higher detection rate over other imbalanced preprocessing methods.
However, SMOTE has blindness partly in the selection of nearest neighbors, and it cannot solve the
problem of data distribution marginalization. It will result in the blurring of boundaries between
positive and negative samples.

To address the imbalance of current network traffic, Dong et al. [30] proposed a traffic identifica-
tion model based on generating adversarial deep convolutional networks (GADCN), which effectively
fits and expands traffic images, maintains a balance between classes of the dataset, and enhances the
dataset stability. Experiments on public datasets verify the effectiveness of the method.

In [31], the authors proposed a GAN-based imbalanced traffic data preprocessing method called
FlowGAN, which is used to tackle the class imbalance problem in traffic classification. The objective
function of FlowGAN is shown as follows, in which the G is Generator, D is Discriminator, P, (x)
is the probability density of real sample data, p.(z) is the prior distribution of random noise, D(x) is
the D predicts the probability that the input sample comes from the real data, G(z) is the generated
data obtained by inputting random noise into the G, D(G(2)) is the D predicts the probability that the
input sample comes from the generated data:

minmax ¥ (D, G) = Ev.p,,, 102 D (9] + E-.p.c [log (1 = D (G ()] (1)

As a data augmentation method, the FlowGAN generates synthetic traffic samples for the
minority class to reduce the imbalanced ratio. The MLP-based traffic classifier is trained to evaluate
the performance of it. The experiments on the public dataset ‘UNB ISCX VPN-nonVPN’ show that
the FlowGAN can outperform the imbalanced dataset and balanced datasets augmented by other
oversampling methods.

The method proposed in [32] is a CGAN-based data augmentation method which is called
PacketCGAN. In this method, the types of application traffic are added to the input as conditional
information, so that the PacketCGAN can control the mode of sample generation. The typical DL-
based classifiers are adopted to classify the balanced datasets augmented by PacketCGAN and other
data augmentation methods. The experimental results show that the new balanced dataset augmented
by PacketCGAN method can achieve better performance than other methods.
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Lee et al. [33] proposed a network attack traffic generation method to tackle with the problem of
class imbalance in network intrusion datasets. In their method, the network attack traffic is analyzed
based on deep packet inspection, and its features are extracted based on common traffic characteristics.
The WGAN with gradient penalty algorithm is used to generate new synthetic network attack
samples for the minority class. Experiments demonstrate that the dataset augmented by proposed
method has an approximate 5% improvement in accuracy. Also, the false detection rate is reduced by
approximately 8%.

3 Wasserstein Generative Adversarial Networks-Gradient Penalty

In GAN, the loss function of the generator is shown in Eq. (2). It needs to minimize this loss
function when optimizing the generator. It is equivalent to minimize the loss function in Eq. (3), in
which the P, represents the generated sample distribution and the P, represents the real sample
distribution. The loss function is optimized by reducing the KL divergence but meanwhile increasing
the Jensen-Shannon (JS) divergence, which will lead to training instability.

E, [ log(D(G(2)))] ()
KL(PgHPdata) - ZJS(PdataHPg) (3)

The asymmetry of the KL divergence will cause the problem of mode collapse, which will lead
to diversity insufficiency of the generated data. In addition, both KL and JS have the same problem,
that is, they cannot measure the distance between two distributions that do not overlap mutually or
the overlap is negligible. In this situation, the KL is meaningless, while the value of JS is a constant. It
means that the gradient of the Generator disappears and the Generator cannot be optimized.

The Wasserstein GAN with Gradient Penalty (WGAN-GP) [34] introduces the Wasserstein
distance to replace JS and KL. Meanwhile, the gradient penalty is introduced to meet the Lipschitz
restrictive condition. The model architecture of WGAN-GP is shown in Fig. 1.
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Figure 1: The architecture of WGAN-GP

The Wasserstein distance is also called the Earth-Mover (EM) distance, whose definition is shown
in Eq. (4).

W (Pra Pg) = lnf )E(x‘y)'vy [l |->C - y| I] (4)

V"’H(Pr,Pg

In Eq. (4), P, and P, are the real data distribution and the generated data distribution, and
[1(P,, P,) 1s the set of all possible joint distributions that combine the P, and P, distributions.
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E., . [llx —yll]is the expected value of the distance for each joint distribution y, and the Wasserstein
distance is the minimum value among the expected values of all joint distributions. The Wasserstein
distance is achieved by removing the log in the loss function of the generator and the discriminator.

The gradient penalty is introduced to WGAN-GP to meet the Lipschitz restrictive condition. In
order to achieve gradient penalty, a two-norm between the obtained gradient of the discriminator and
customized constant K should be established. Considering the high computational consumption in the
sampling in the entire sample space, it is only to generate a random number 6 by uniform distribution.
And then, it is used to do an interpolation between the real data X,.,, and generated data X,,, which is
shown in Eq. (5). Finally, the Lipschitz condition is met by sampling each batch of the data samples.

5(: == 9 * X’eal + (1 - 9) * Xf“k" (5)

4 Descriptions of the Proposed Method

The proposed GraphCWGAN-GP method includes three phases which are traffic data prepro-
cessing, traffic data augmentation and traffic data classification. The work process of GraphCWGAN-
GP is shown in Fig. 2.
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Figure 2: The work process of the GraphCWGAN-GP algorithm

4.1 Traffic Data Preprocessing

The traffic data in the imbalanced encrypted traffic dataset is saved as PCAP or PCAPNG format.
It cannot be directly used as the input to the model. Therefore, the original traffic data is converted
into gray images by preprocessing. And then the gray images are used as the input to the model for
learning. The process of traffic data preprocessing that is shown in Fig. 2 is described as follows.

Packet filtering. For the original PCAP file, some useless packets in it should be removed and
filtered firstly, such as TCP retransmission packets and TCP handshake packets. These packets are
only used to establish and complete the connection during the TCP triple handshake, and they do
not contain any valid load data. In addition, the protocol packets such as ARP, DHCP and ICMP
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have nothing to do with the application traffic characteristics and traffic classification, thus, they also
should be removed by the packet filtering process.

Data packet segmentation. In the original data set, the traffic data packets of each application are
stored in a large PCAP file. After removing data packets that are useless for traffic classification, the
traffic in the original PCAP file is segmented according to the form of session.

Image generation. According to the definition of the maximum transmission unit (MTU), the
maximum length of the data packet transmitted in the Ethernet is 1500 bytes, thus, we choose 784
bytes as the uniform length to truncate and fill the data packets. The data packets that are longer than
784 bytes were truncated, and for the packets whose length is less than 784 bytes, zero-padding was
performed at the end of them. The unified-length data packets were converted to 28 28 grayscale
images, and each byte corresponds to a pixel value of the images.

IDX format transformation. The generated grayscale images are transformed to an IDX file. The
IDX file contains the image information and label information. Then we use the IDX file as the input
file of the models.

4.2 Traffic Data Augmentation

The most critical part of the proposed method is dataset balancing. In this paper, the proposed
GraphCWGAN-GP is used to generate new traffic data samples for minority class. The new generated
samples are combined together with the imbalanced traffic data samples to build a new balanced
dataset. The model architecture of our proposed GraphCWGAN-GP is shown in Fig. 3.
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Figure 3: The model architecture of GraphCWGAN-GP

The proposed method combines the advantages of WGAN-GP and CGAN. It is built by adding
auxiliary conditional information to the WGAN-GP. Its objective function is shown in Eq. (6), in
which the y is class labels, P, is the generated sample distribution, P, is the real sample distribution
and P; is the distribution of the mixed samples produced by interpolation.

minmax ¥ (D, G) = E [D(%ly)] = E [D ] +2 E [IIV:D (%13) Il — 1] (6)
x~Pg x~Py x~Ps
In GraphCWGAN-GP, the traffic class labels are used as additional condition information to

control data generation. The digital label of each traffic sample is converted into a 10-dimensional
vector by one-hot encoding. And then, it is combined with samples as the input to the Generator and
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Discriminator. GraphCWGAN-GP only needs to train one model to generate traffic data samples for
all minority class, while the typical GAN is required to train multiple models for each minority class,
which greatly reduces the complexity and time consumption.

Meanwhile, the GraphCWGAN-GP adopts the Wasserstein distance to measure the difference
between the real and generated samples distribution, which leads to a large extent avoids training
instability and mode collapse. The gradient penalty is used to restrict the gradient of discriminator in
order to eliminate the gradient explosion and vanish. Therefore, the GraphCWGAN-GP can generate
more realistic and diverse samples for minority classes than the typical GAN.

The GraphCWGAN-GP consists of Generator G and Discriminator D. The G model is built by a
simple MLP, it consists of three layers: the input layer, two hidden layer and the output layer. Both the
hidden layers and the output layer are Fully Connected (FC) layers, in which the number of neuron
nodes are 32, 64, and 784, respectively. The 100-dimensional uniform distribution data vector that is
generated randomly and the one-hot encoded 10-dimensional random class label vector is put into
the G. The activation function of the hidden layers and output layer is a ReLu function which is also
called linear correction unit, whose expression is shown in Eq. (7).

0,x<0

fx) = (7)
x, x>0

The activation function of the output layer uses the tanh, and its expression is shown in Eq. (8).

Except for the last layer, each layer in G uses Batch Normalization (BN). It can accelerate and stabilize

the training by adding BN. Besides, the dropout layers are added behind the all-link FC layers to

prevent over-fitting and enhance the generalization ability of the network.

e — e

8

e +e~ ®

The overall training process of the G is shown in Algorithm 1, in which the Z, is the 100-
dimensional random noise vector, y, is the label vector from ground truth label set.

tanh x =

Algorithm 1: The training of G of GraphCWGAN-GP
Input: random noise Z,, and label y,, n is the number of iterations
Output: generated data g,

1: Initializing the parameters, e represents the training cycle: epoches. m represents the batch size
2: for nin e do
for ecach batch of m input data do

Sample {z”}", ~ p(z) a batch of noise sample

Label {y”}", ~ y a batch of label vector
Concatenate Z, with y,:
Compute the output in hidden layer 1, output activated by using Eq. (7);
Compute the output in hidden layer 2, output activated by using Eq. (7);
Output generation data in output layer, output activated by using Eq. (8);
9:  Optimize the loss function
10:  Update weights and bias;
11: end for
12: end for

w
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The D of GraphCWGAN-GP also contains four layers. The number of neuron nodes in hidden
layers and output layer are 64, 32, and 1, respectively. The input is a 784-dimensional vector which is
converted from the 28 x 28 grayscale images that are generated by the G and come from the imbalanced
data set, with the one-hot encoded 10-dimensional traffic class label vector that is generated randomly
and corresponds to real images. The Leaky ReLu function is used as the activation function of the
hidden layers, it is also known as the linear correction unit with leakage, which is a variant of the
linear correction function, the expression as following Eq. (9).

<
f<x>=["x’x—0 9)
x, x>0

The symbol « in Eq. (9) is a fixed minimum value. Compared with the linear correction unit ReLu,
the Leaky ReLu can give a small negative gradient to keep the neurons learning even if the input value
is negative. Different from the ordinary GAN model, the D of GraphCWGAN-GP does not perform
a true-false binary classification task, but a regression task. Thus, the output layer of the D no longer
uses the sigmoid activation function. The gradient penalty is added to each sample in each batch, thus,
the layers of D cannot use BN. The overall training process of the D is shown in Algorithm 2, in which
the X, is the real data from IDX file, y, is the corresponding label vector.

Algorithm 2: The training of D of GraphCWGAN-GP
Input: real data X, and label y, from IDX file,  is the number of iterations
Output: the probability of the output data being real or false

1: Initializing the relevant parameters, ¢ represents the training cycle: epoches. m represents the

batch size

2: for nin e do

3: for each batch of m input data do

4: Sample {x”}" ~ P, a batch of real sample from X, Label {y’}", ~ y a batch of label vector A
random number ¢ ~ U(0, 1)

4: Concatenate X, with y,:

5: Compute the output in hidden layerl, output activated by Eq. (9);
6: Compute the output in hidden layer2, output activated by Eq. (9);
7: Approximate fit the Wassertein distance in output layer;

8: Randomly interpolate between true and false samples using Eq. (5);
9: Optimize the loss function

10:  Update weights and bias;

11: end for

12: end for

The Adam optimizer is used to optimize the loss functions of the G and the D in the
GraphCWGAN-GP. The traditional GAN is set the same learning rate for the G and the D generally,
which leads to that balancing the update rate of G and D is of difficulty. If the G updates too fast,
the D will reach the local solution prematurely. And on the contrary, if the D updates too fast, it is
detrimental to the parameter update of G. Therefore, the proposed GraphCWGAN-GP in this paper
sets different learning rates and parameter update scale for the G and D. During the training, firstly,
the parameters of the G are fixed, and the D is optimized three times. Then the parameters of the D are
fixed, and the parameters of the G are optimized at one time. Besides, in order to converge faster and
find the global optimal solution, the input data are mapped to the range of [—1, 1] by normalization.
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4.3 Traffic Data Classification

The new balanced dataset is obtained by augmenting samples for minority classes using
GraphCWGAN-GP. The balanced dataset is classified by using the DL classifier. In this paper, the
NIN-CNN model is adopted as the classifier. NIN-CNN is a special CNN model which uses micro-
network convolution kernel instead of the linear convolution kernel. Compared with the general
CNN, the NIN-CNN uses the global average pooling to replace the FC layer to reduce the network
parameters and improve the generalization ability. The NIN-CNN used in this paper contains 9
convolutional layers, including 3 ordinary convolutional layers, 6 1% 1 convolutional layers, 2 max-
pooling layers and 1 global average pooling layer. The network structure of the NIN-CNN-based
classifier is shown in Fig. 4.
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Figure 4: The network structure of NIN-CNN based classifier

5 Experiments and Analysis
5.1 Experimental Preparation
5.1.1 Experimental Dataset

The dataset used in the experiment is an imbalanced encrypted traffic dataset which is composed of
the traffic that is selected from the ‘UNB ISCX VPN-nonVPN’ [35]. The ‘UNB ISCX VPN-nonVPN’
encrypted traffic dataset contains 15 kinds of application traffic, among which 10 applications are
chosen to form a new imbalanced encrypted traffic dataset for the experiment in this paper.

Table 1 shows the number of image samples of ten applications and the proportion in the total
image data set. Obviously, the number of samples of various applications in the image data set is
extremely imbalanced. The Netflix and YouTube with the largest number of samples account for
26.30% and 25.46%, respectively, while the icq, aim and spotify with the smallest number of samples
only account for 0.63%, 1.03% and 2.99%, respectively. The maximum sample number ratio is nearly
42 times, and thus, the data set belongs to the class of imbalanced encrypted traffic data set.

Table 1: The number of grayscale image samples for ten applications

Application ~ Number Proportion  Application ~Number Proportion
aim 1347 1.03% spotify 3898 2.99%
email 15,493 11.87% torTwitter 7270 5.57%

(Continued)
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Table 1 (continued)

Application ~ Number Proportion  Application =~ Number Proportion
gmail 12,228 9.37% vimeo 16858 12.92%
icq 818 0.63% voipbuster 5034 3.86%
nexflix 34,313 26.30% YouTube 33219 25.46%

5.1.2 Experimental Environment

The hardware and software configuration used in this paper is shown in Table 2.

Table 2: Experimental environment parameters

Category Parameters

CPU Inter(R) Core (TM)i7-9700k processor, 3.6 GHz CPU
GPU Nvidia GeForce GTX 1080Ti

Operating system Ubuntu 16.04 TLS

Deep learning framework TensorFlow (version 1.15.0) + Keras (version 2.1.2)
Programming language Python 3.6

5.1.3 The Performance Metrics

In this experiment, the overall performance for classification is evaluated by using indicators that
include precision, recall, and F1-Score.

The Precision is also called precision rate which measures the accuracy of the predicted positive
samples, it is also to say that how many in the samples predicted to be positive samples are true positive
samples. The formula is expressed as follows in Eq. (10).

TP
Precision = ———— (10)
TP+ FP

The recall rate, which measures the proportion of positive samples with correct classification to
the total positive samples, can be expressed as follows in Eq. (11).

TP
Recall = ——— (11)
TP+ FN

The F1-Score is the harmonic average of precision rate and recall rate, which can better reflect
the overall performance of the classifier since it combines the precision rate and recall rate. It can be
expressed as follows in Eq. (12).

F1 — Score — 2 precision * recall

(12)

precision + recall

Among them, TP refers to the positive sample to be predicted as negative sample; FP refers to the
negative sample predicted as positive sample; FN refers to the positive sample predicted as negative
sample.
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5.2 Experimental Results and Analysis
5.2.1 Dataset Balancing

The traffic data in the imbalanced encrypted traffic dataset is converted into grayscale images
through preprocessing. The generated grayscale images that correspond to various traffic classes are
shown in Fig. 5.

nexflix

spotify torTwitter vimeo voipbuster youtube

Figure 5: The grayscale images of various traffic classes

The grayscale images are divided into training set and testing set according to the ratio of 9:1. The
training set has a total of 130,478 images and the testing set has 14,498 images. The data in both of
the two sets are saved as IDX format. In order to prevent the generated image samples from affecting
the classification result, the training set is only balanced by using GraphCWGAN-GP, and the testing
set is used to verify the performance of the classifier.

In this paper, different scale update rules are used for the Generator and Discriminator in
GraphCWGAN-GP to stabilize the training process. In order to select the suitable update ratio, the
Generator and Discriminator of GraphCWGAN-GP are trained under the update ratio of 1:1, 1:2, and
1:3, respectively. It is a total of 5,000 rounds of training, and the results are shown in the form of loss
value curves during the training process. [ig. 6 shows the loss value curves in three different update
ratios.

From the results shown in Fig. 6, it can be clearly seen the trend of loss value in the updated ratios
of 1:1, 1:2 and 1:3. It can also be seen from (a) that the model does not fully converge after 5,000 rounds
of training in the ratio of 1:1. From (b) we can see that the loss value curves of generator converge at
—0.75 after 4,200 rounds. When the model training in the ratio of 1:3, the loss value curve gradually
stabilized after 4,200 rounds, and the loss value reduces to —0.85. Its loss value curve fluctuates less
compared with (b), which means the training is more stable in the ratio of 1:3.

Apart from the updated ratio, different learning rates for the generator and discriminator to
balance the update rate are set. In the experiment, the training of the model in several learning rate
combinations are tested. In the four combinations, the learning rate is set to the same value for the
Generator and a different value for the Discriminator. Table 3 shows four learning rate combinations.
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Figure 6: The loss value curves of generator and discriminator in three update ratios

Table 3: The learning rate combinations

Learning rate combinations Generator Discriminator
1 0.0001 0.0001

2 0.0001 0.00015

3 0.0001 0.0002

4 0.0001 0.0003

The loss value curves of Generator and Discriminator in the above four learning rate combinations
is shown in (a), (b), (¢) and (d) of Fig. 7. By comparing (a), (b) and (c), it can be seen that the Generator
can converge faster as the learning rate of Discriminator increases. When the learning rate of the
Discriminator is set to 0.0002, the loss of Generator converges after 1,000 rounds of training. In (a)
and (b), the Generator respectively converges after 4,200 and 4,000 rounds of training. However, it can
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be seen from (d) that when the learning rate reaches to 0.0003, the Generator fluctuates after 1,500
rounds of training, and the loss value suddenly rises and eventually stabilizes after 3,000 rounds of
training. It can be concluded that an appropriate increase in the learning rate of Discriminator can
improve the convergence speed, but an excessively high learning rate will lead to unstable training.
Therefore, the learning rate combination 3 is chosen to train the model.
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Figure 7: The loss value curves of generator and discriminator

In the experiment, the data is loaded by using batch processing. The batch size in the training
process is set to 64, which means 64 gray-scale images are loaded in each batch. The hyperparameter
settings of the GraphCWGAN-GP are shown in Table 4.
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Table 4: Hyperparameter settings of GraphCWGAN-GP

Training parameters GraphCWGAN-GP

Optimizer Adam

Learning rate Generator: 0.0001 Discriminator: 0.0002
The update scale of generator and discriminator 1:3

Numbers of iterations 5000

Batch_size 64

In order to balance the sample number ratio among different types of application, a part of
samples appropriately for the majority class are discarded. The proposed GraphCWGAN-GP is used
to generate a certain number of grayscale images to augment the minority class. The dataset is balanced
by setting the number of samples in 10 traffic classes to the same value. To explore the suitable value, we
evaluate the classification performance on classifier of datasets that are balanced in different samples.
The number of traffic samples of the ten categories of applications we selected is in the range of
[818, 34,313]. Therefore, we take values at intervals according to a certain number of samples in this
interval, and obtain four values of 5,000, 12,000, 20,000, and 30,000, respectively. As the number of
samples of each category after expansion, and experiment comparison. We respectively balance the
datasets in 5,000, 12,000, 20,000 and 30,000 samples per traffic classes. The four balanced datasets
that have different data are classified by using NIN-CNN classifier. The classification performance on
the classifier of an imbalanced dataset and four balanced datasets are shown in Table 5.

Table 5: The overall classification performance of five datasets

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.9612 0.9593 0.9603
5,000 per class 0.9483 0.9758 0.9612
12,000 per class 0.9751 0.9858 0.9801
20,000 per class 0.9790 0.9763 0.9776
30,000 per class 0.9815 0.9798 0.9807

From Table 5, it can be seen that the balanced dataset which contains 5,000 samples per class
has not significantly improved classification performance compared with the imbalanced dataset.
It respectively has an increase of 1.65% and 0.09% on recall and F1-Score. Although the dataset is
balanced by unifying the sample size of each class to 5,000, there are so many samples deleted in
the majority class that some potentially useful information is lost, which influences the classification
performance. Compared with the imbalanced dataset, the datasets which are 12,000, 20,000 and
30,000 per traffic class all have an obvious improvement in precision, recall and F1-Score, respectively
increasing by 2.03%, 2.65% and 2.04% on the three metrics highest. However, compared with the
12,000-sample size, the datasets with sample sizes of 20,000 and 30,000 each class only increase by
0.39% and 0.64% on precision, but decreased by 0.95% and 0.6% on recall. The improvement in
classification performance is not obvious.
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Similarly, the performance metrics of three minority classes in five datasets are shown from
Tables 6 to 8. It can be seen that the dataset with 12,000 samples per class outperforms greatly than the
imbalanced dataset and dataset with 5,000 sample per classes. However, when we increase the sample
size of each class to 20,000 and 30,000 on the basis of 12,000, the final classification performance
does not significantly improve. Therefore, considering the problems caused by increasing the number
of samples, such as the increase in the consumption of training time, easing to bring redundant data
affects the classification performance. We finally set the number of samples for each class to 12,000 to
balance the dataset. The number of samples in each class of the balanced dataset is shown in Table 9.

Table 6: The performance metrics of icq in five datasets

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.8533 0.8533 0.8533
5,000 per class 0.8020 0.8901 0.8438
12,000 per class 0.8641 0.9780 0.9175
20,000 per class 0.9000 0.8901 0.8950
30,000 per class 0.9222 0.9121 0.9171

Table 7: The performance metrics of aim in five datasets

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.8444 0.8352 0.8398
5,000 per class 0.8150 0.9400 0.8731
12,000 per class 0.9384 0.9133 0.9257
20,000 per class 0.9315 0.9067 0.9189
30,000 per class 0.9267 0.9267 0.9267

Table 8: The performance metrics of spotify in five datasets

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.9744 0.9654 0.9698
5,000 per class 0.9153 0.9977 0.9547
12,000 per class 0.9795 0.9954 0.9874
20,000 per class 0.9840 0.9931 0.9885
30,000 per class 0.9884 0.9838 0.9861
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Table 9: The number of image samples of each application in the balanced dataset

Application ~ Number Proportion  Application =~ Number Proportion
aim 12,000 10% spotify 12,000 10%
email 12,000 10% torTwitter 12,000 10%
gmail 12,000 10% vimeo 12,000 10%
icq 12,000 10% voipbuster 12,000 10%
nexflix 12,000 10% YouTube 12,000 10%

In order to verify the advantages of the GraphCWGAN-GP method compared with others, the
CGAN and WGAN-GP are also used respectively to balance the original imbalanced dataset in the
same way as the GraphCWGAN-GP method.

5.2.2 Data Classification

After obtaining the balanced dataset by using GraphCWGAN-GP, several typical DL-based
classifiers are used to classify it. The classifiers include NIN-CNN, 1-Dimensional CNN (1D-CNN)),
2-Dimensional CNN (2D-CNN) and MLP. Fig. § shows the confusion matrices of the four classifiers
based on the balanced dataset.
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Figure 8: Confusion Matrices of the classification results on the four classifiers

Table 10 shows the classification performance of each classifier based on the balanced dataset.
The NIN-CNN outperforms the other three DL-based classifiers in precision, recall and F1-Score.
Compared with typical CNN, the NIN-CNN can extract data features better because it adopts a
multilayer perceptron convolutional layer to replace the common convolutional layer. Besides, in the
NIN-CNN model, the global average pooling layer is used to replace the fully connected layer. It
greatly reduces the total network parameters. Therefore, in the next experiment, the NIN-CNN model
is used as the classifier to evaluate the data augmenting methods.

Table 10: The classification performance on DL based classifiers

Performance metrics Precision Recall F1-Score
MLP 0.9446 0.9586 0.9510
1D-CNN 0.9717 0.9605 0.9657
2D-CNN 0.9639 0.9675 0.9657
NIN-CNN 0.9751 0.9858 0.9801

5.2.3 Comparative Experiments

In order to illustrate the superiority of the proposed GraphCWGAN-GP method over other
methods, we also build CGAN and WGAN-GP models to enhance the imbalanced dataset. Compared
with the CGAN, the GraphCWGAN-GP avoids the problem of unstable training and gradient
explosion and disappear. The loss value curves of CGAN and GraphCWGAN-GP are shown in Fig. 9.
It can be seen that the loss value curve of generator in (a) has a larger fluctuation than (b). Therefore,
it can be concluded that the training of the proposed GraphCWGAN-GP is more stable than CGAN.

Compared with WGAN-GP, the proposed GraphCWGAN-GP only needs to be trained once to
generate samples for all minority classes. We can obtain the synthetic samples of specified classes by
adding auxiliary conditional information which is converted by traffic class labels. However, when the
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WGAN-GP is used to augment the minority classes, it needs to train a model for each minority class
separately. In our experiment, it has five classes that need to be augmented. Therefore, five WGAN-
GP models should be trained to generate samples for five minority classes. For the sample data of
the minority class is too little, it is prone to overfitting when each minority class is trained separately.
Therefore, compared with WGAN, the GraphCWGAN-GP has less complexity and is not prone to
overfitting.
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Figure 9: The loss value curves of CGAN and GraphCWGAN-GP

The data augmenting methods are evaluated and compared through the classification perfor-
mance on NIN-CNN. Fig. 10 shows the confusion matrices of the NIN-CNN based on the imbalanced
dataset and balanced datasets augmented by three methods which are CGAN, WGAN-GP, and
GraphCWGAN-GP, respectively.
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Figure 10: Confusion matrices of the classification results on the NIN-CNN model
The precision recall and F1-Score are used to evaluate the classification performance between the

imbalanced dataset and balanced dataset on NIN-CNN. The classification results with 10 classes in a
dataset are shown in Fig. 11.
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Figure 11: The classification performance of balanced datasets on NIN-CNN
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Table 11 shows the overall classification performance on four datasets which include an
imbalanced dataset and three balanced datasets augmented by using CGAN, WGAN-GP and
GraphCWGAN-GP. It can be seen that the classification performance based on the dataset augmented
by GraphCWGAN-GP is better than the other three datasets.

Table 11: The classification performance of four datasets

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.9612 0.9593 0.9603
CGAN 0.9602 0.9740 0.9668
WGAN-GP 0.9656 0.9746 0.9697
GraphCWGAN-GP 0.9751 0.9858 0.9801

As shown in Table 11, the three applications with the smallest number of samples in the imbal-
anced dataset are icq, aim, and spotify, which account for 0.63%, 1.03%, and 2.99% of the total
sample in the dataset, respectively. Thus, the classification performance is evaluated according to the
classification results of these three traffic classes. Tables 1214 show the performance metrics of icq,
aim and spotify in the datasets.

Table 12: The classification performance of icq

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.8533 0.8533 0.8533
CGAN 0.8404 0.8681 0.8541
WGAN-GP 0.8173 0.9341 0.8718
GraphCWGAN-GP 0.8641 0.9780 0.9175

Table 13: The classification performance of aim

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.8444 0.8352 0.8398
CGAN 0.8284 0.9333 0.8777
WGAN-GP 0.8904 0.8667 0.8784
GraphCWGAN-GP 0.9384 0.9133 0.9257

Table 14: The classification performance of spotify

Performance metrics Precision Recall F1-Score
Imbalanced dataset 0.9744 0.9654 0.9698
CGAN 0.9794 0.9885 0.9839
WGAN-GP 0.9885 0.9931 0.9908

GraphCWGAN-GP 0.9795 0.9954 0.9874
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According to the classification performance statistics shown in the above table, it is obvious
that the balanced dataset augmented by GraphCWGAN-GP has a significant improvement in
classification performance than imbalanced dataset. The precision, recall and F1-Score respectively
increase by 9.4%, 12.47% and 8.59% highest in the three minority classes. The statistic verifies the
effectiveness of the proposed method in traffic data augmentation. And, the dataset augmented by
GraphCWGAN-GP outperforms the other two methods for three minority classes. It proves that the
GraphCWGAN-GP can generate more realistic and diverse synthetic samples compared with CGAN
and WGAN-GP. Therefore, it can be concluded that the proposed GraphCWGAN-GP is better than
the existing data augmenting methods, such as CGAN and WGAN-GP.

6 Conclusions and Future Works

In this paper, we proposed a GraphCWGAN-GP-based traffic data augmenting method for
imbalanced encrypted traffic classification. In the method, the traffic data is converted into grayscale
images in data preprocessing. The minority class data is augmented with our proposed model, which
is built by introducing conditional constraints and a new distance metric in typical GAN. The NIN-
CNN classifier is used to classify the balanced dataset, and the classification performance is evaluated
by using three performance metrics. The experimental results demonstrate that the GraphCWGAN-
GP-based method is superior to the CGAN and WGAN-GP-based methods.

Although the classification performance of the minority class augmented by the GraphCWGAN-
GP has a significant improvement compared with other data augmenting methods, there is still a gap
in the majority class. We will further improve the generative model to generate more realistic data and
tackle the problem of class imbalance in traffic data sets.
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