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ABSTRACT

Probabilistic linguistic term sets (PLTSs) are an effective tool for expressing subjective human cognition that offer
advantages in the field of multi-attribute decision-making (MADM). However, studies have found that PLTSs have
lost their ability to accurately capture the views of decision-makers (DMs) in certain circumstances, such as when
the DM hesitates between multiple linguistic terms or the decision information is incomplete, thus affecting their
role in the decision-making process. Belief function theory is a leading stream of thought in uncertainty processing
that is suitable for dealing with the limitations of PLTS. Therefore, the purpose of this study is to extend PLTS
to incorporate belief function theory. First, we provide the basic concepts of the extended PLTS (i.e., belief-based
PLTS) through case analyses. Second, the aggregation operator of belief-based PLTS is defined with the ordered
weighted average (OWA)-based soft likelihood function, which is improved by considering the reliability of the
information source. Third, to measure the magnitude of different belief-based PLTSs, the belief interval of singleton
is calculated, and the comparison method of belief-based PLTS is constructed based on probabilities. On the basis
of the preceding discussion, we further develop an emergency decision framework that includes several novel
techniques, such as attribute weight determination and decision information aggregation. Finally, the usefulness
of the framework is demonstrated through a case study, and its effectiveness is illustrated through a series of
comparisons.
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1 Introduction

Emergencies of various types are occurring increasingly frequently in the modern interconnected
world, which is a phenomenon that has attracted great public attention [1]. Emergencies are char-
acterized by complexity, uncertainty and a high degree of destructiveness. Their occurrence causes
great harm in terms of both public health and property damage [2]. Proper awareness of disasters and
effective coping strategies can help the public respond such that they do not become life-threatening
[3]. Therefore, actively engaging in disaster prevention education is of great significance in minimizing
the damage caused by disasters [4].
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Choosing a multiple-disaster risk reduction education plan is an emergency decision problem
and therefore essentially a multi-attribute decision problem [5]. Due to the randomness, multi-
dimensionality and uncertainty of emergency decision-making, a disaster risk reduction education
plan should also consider the complexity of the decision environment [6]. Decision makers are the
main participants in emergency decision-making, and their professional knowledge and experience
play a key supporting role in evaluating events as they occur. Therefore, human subjectivity will
inevitably be a factor in emergency decision-making. To avoid the decision error caused by fuzziness
and uncertainty, a wide variety of information expression methods have been proposed to capture
DMs’ subjectivity, such as the intuitionistic [7,8], hesitant [9,10], and Pythagorean fuzzy sets [11],
among others.

Because of the lack of accurate information and the environmental uncertainty-as well as
the urgency to make a decision-linguistic information and judgment are often employed as they
represent the only means through which to represent DMs’ point of view in linguistic terms, such as
{bad, medium, good}, which is commonly applied to decision problems [12]. In particular, probabilistic
linguistic term sets [13], which have achieved great success in decision-making, have been proposed as
an extension of hesitant fuzzy linguistic term sets as a means to capture information inaccuracy and
event randomness.

Since PLTSs were first proposed in [13], the research on PLTS and MADM based on PLTS
has attracted considerable attention. Liao et al. [14] proposed a comprehensive approach for multi-
expert MADM problems that considers both quantitative and qualitative criteria and has been
implemented to address green enterprise ranking issues. Jiang et al. [15] combined PLTS and the
fuzzy least absolute regression to construct a fuzzy regression model capable of handling mixed types
of inputs. Nie et al. [16] developed a group decision-making support model using prospect theory-
based consistency recovery strategies based on PLTS. Wang et al. [17] extended TOPSIS, VIKOR
and TODIM methods based on PLTS to be applicable to multi-expert MADM issues. An integrated
MADM method based on PLTS was presented in [18] to determine the best medical product supplier.
Li et al. [19] applied PLTS to determine variable weights in solving multi-attribute two-sided matching
problems. To evaluate web celebrity shops, Liang et al. [20] employed long short-term memory and
PLTSs to describe customers’ satisfaction. Several novel aggregation operators of PLTSs were defined
in [21] to solve multi-attribute group decision-making problems. A MADM model was presented in
[22] based on incomplete dual probabilistic linguistic preference relations to help enterprises select
their 5G partners.

Although traditional PLTSs have been applied to different types of decision problems, the existing
approaches show certain limitations and weaknesses, which are reflected in three aspects. The first is
in terms of information expression. As probability information is often incomplete, normalization is
required in order to fill any gaps in the data [13,23,24]. Second, it only allows for the distribution of
probabilities on the singleton and cannot express situations in which the DM hesitates over two or
more linguistic terms [24–26]. Third, the PLTS-based decision methods mostly fail to consider the
missing attribute values, which are often unavoidable in practice [12,27,28]. In terms of information
aggregation, aggregation operators based on the traditional Dempster’s fusion rule or ER method
may suffer from information explosion caused by too many linguistic terms, which implies that the
complexity of the algorithm needs to be reduced. In terms of decision-making processes, there is no
research on the extension of belief-based PLTSs to emergency management issues, and any related
studies do not provide a complete decision-making framework. By recognizing these limitations, the
motivation of this study is to overcome these defects to make PLTSs more applicable to long-term
decision-making. In particular, as decision environments in many applications, such as responding
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to major emergencies, are highly uncertain and complex, more powerful tools are needed in order to
capture how DMs evaluate information. To achieve such a goal, this paper proposes and develops
an uncertain information representation and processing method using belief function theory [29,30],
which has been widely used in information fusion [31–34] and decision-making [35–37].

In short, the purpose of this study is to extend PLTS by incorporating belief function theory to
make it more flexible in terms of expressing opinions. The innovations of this paper can be summarized
as follows:

• The new concept of belief-based PLTS is first introduced, and then the composition of its belief
interval is proposed, which includes the belief and plausibility functions. Several examples are
provided to facilitate understanding of how the extended belief-based PLTS is used.

• The novel aggregation operator for belief-based PLTS is proposed using an OWA-based
soft likelihood function, which can effectively describe DMs subjective attitudes, and the
aggregation process is demonstrated using numerical examples. The aggregation operator is
upgraded by considering the reliability of information sources, and the aggregation process is
demonstrated using numerical examples.

• To compare different belief-based PLTSs, a novel possibility degree method is defined based on
the belief interval of the singleton. An illustrative example is provided to demonstrate how to
determine the sizes of different belief-based PLTSs.

• Based on the proposed belief-based PLTS and its corresponding operations, a multi-attribute
decision-making framework is constructed and applied to emergency decision-making, and the
detailed process is developed and explained step by step.

To illustrate the applicability of the proposed approach and verify its usefulness, a complete
case study is presented based on the defined emergency decision methodology for selecting the best
emergency risk education program. Decision results and comparative analysis are given to demonstrate
the usefulness and effectiveness of the method proposed in this paper.

The study is carried out according to the following organization. In Section 2, we introduce some
preliminaries, including probabilistic linguistic term set, belief function theory, and OWA operator.
In Section 3, we explore extending PLTS with belief function theory, introducing basic concepts,
aggregation operators, and comparison function. In Section 4, we provide a framework for multi-
attribute decision making and apply it to emergency decision problems. In Section 5, we give a case
study to demonstrate the usefulness and effectiveness of the proposed emergency decision method. In
Section 6, we summarize this study and provide future research.

2 Preliminaries

Some basic prerequisites are introduced in this section, including linguistic term set, probabilistic
linguistic term set, belief function theory, and OWA operator.

2.1 Linguistic Term Set (LTS)
In practical decision problems, the linguistic term set is very common and useful, because it is

more in line with the DM’s habit of thinking [38]. A subscript-symmetric linguistic term set is defined
as S = {sα|α = −τ , . . . , −1, 0, 1, . . . , τ }, in which τ is a positive integer, and sα satisfies the following
characteristics [39]:
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• sα indicates “positive” when α > 0, sα indicates “neutral” when α = 0, and sα indicates
“negative” when α < 0;

• sα > sα̂ iff α > α̂;

• the negation operator of sα is defined as neg(sα) = s−α.

2.2 Probabilistic Linguistic Term Set (PLTS)
Probabilistic linguistic term set was presented by Pang et al. [13] to address the weakness that all

linguistic term sets in hesitant fuzzy linguistic term set (HFLTS) have the same weight. To demonstrate
the shortcomings of HFLTS, and to emphasize the need to introduce PLTS, an illustrative example is
presented.

Example 1. In a serious mine accident, the DMs need to evaluate the emergency plans. With regard
to an emergency plan ERX , 100 experts use the LTS S = {s−1 = poor, s0 = medium, s1 = good} to
evaluate its feasibility, among which 80 consider it is “good”, and 10 believe it is “medium”, so this
case could be expressed as

Feasibility(ERX) = {medium(0.1), good(0.8)}, (1)

which is not appropriate for HFLTS.

From the above example it can be concluded that the assessment information is expressed not only
as a set of possible linguistic terms but also as their corresponding probabilities. To effectively express
the opinions of DMs, the probabilistic linguistic term set is proposed and defined as follows:

Definition 2.1. [13] Let S = {s−τ , . . . , s−1, s0, s1, . . . , sτ} be a LTS, a PLTS is denoted as

L (p) =
{

L(k)
(
p(k)
) |L(k) ∈ S, p(k) ≥ 0, k = 1, 2, . . . , #L (p) ,

#L(p)∑
k=1

p(k) ≤ 1

}
, (2)

where p(k) means the probability of L(k), and #L(p) is the number of nonzero linguistic terms. Note
that if

∑#L(p)

k=1 p(k) �= 1, the normalization process is started. The normalized PLTS is defined as L̇ (p) ={
L(k)

(
ṗ(k)
)}

, where ṗ(k) = p(k)/
∑#L(p)

k=1 p(k).

Based on the above definition, we can represent the evaluation information in Example 1
by a PLTS as L(p) = {s0(0.1), s1(0.8)}. The comparison method of two PLTSs was provided in
literature [13].

Definition 2.2. [13] Let two normalized PLTSs be represented as L1(p) and L2(p), we have

• If E(L1(p)) > E(L2(p)), then L1(p) � L2(p);

• If E(L1(p)) = E(L2(p)), then
– If σ(L1(p)) > σ(L2(p)), then L1(p) ≺ L2(p);

– If σ(L1(p)) = σ(L2(p)), then L1(p) ∼ L2(p),

where E(L(p)) and σ(L(p)) are the score and deviation degree of normalized PLTS L(p) respectively,
and their specific definitions are as follows.

Definition 2.3. [13] Let a normalized PLTS be L(p) = {L(k)(p(k)), k = 1, 2, . . . , #L(p)}, and r(k) be
the subscript of L(k), the score of L(p) can be calculated as

E (L (p)) = sα, (3)

where α = ∑#L(p)

k=1 r(k)p(k).
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Definition 2.4. [13] Let a normalized PLTS be L(p) = {L(k)(p(k)), k = 1, 2, . . . , #L(p)}, r(k) be the
subscript of L(k), and E (L (p)) = sα, then the deviation degree of L(p) can be calculated as

σ (L (p)) =
√√√√#L(p)∑

k=1

(p(k) (r(k) − α))
2. (4)

2.3 Belief Function Theory
The theory of belief function is an uncertain reasoning one initiated by Dempster [29] and

inherited and developed by Shafer [30], therefore also known as Dempster-Shafer theory (DST). After
half a century of development, the theory has been well developed and played an important role in a
wide variety of fields, such as decision-making [40–42] and information fusion [43–45]. Suppose that
the answer to the question of concern consists of a finite set of mutually exclusive elements, called
frame of discernement (FoD), expressed as � = {θ1, θ2, . . . , θn}. The power set of � has all of the
subsets of �, which is expressed as 2� = {θ1, θ2, . . . , θn, θ1θ2, . . . , �}. A piece of evidence or information
is defined as a mapping m: 2� → [0, 1] that satisfies

∑
A∈2� m (A) = 1 and m(φ) = 0, also known as the

basic belief assignment (BBA). Two significant concepts in the belief function theory are introduced
below, namely, belief function and plausibility function.

Definition 2.5. The belief function Bel: 2� → [0, 1] of propositions is defined as

Bel (A) =
∑
B⊆A

m (B) , ∀A ⊆ �. (5)

And we have Bel(φ) = 0 and Bel(�) = 1.

Definition 2.6. The plausibility function Pl: 2� → [0, 1] of propositions is defined as

Pl (A) = 1 − Bel
(
A
) =

∑
B∩A=φ

m (B) , ∀A ⊆ �, (6)

where A = � − A, and Bel(A) ≤ Pl(A). BI(A) = [Bel(A), Pl(A)] forms the belief interval of
proposition A [46,47].

2.4 OWA Aggregation Operator
OWA operator, originally introduced by Yager et al. [48–50], is an information aggregation method

between the maximum and minimum operators.

Definition 2.7. [48] Let {a1, a2, . . . , an} be a data set. The ordered weighted average operator is
defined as

OWA (a1, a2, . . . , an) =
n∑

j=1

wjbj, (7)

where ω = {w1, . . . , wn} is the weighting vector that satisfies wj ∈ [0, 1] and
∑n

j=1wj = 1, and bj is the
jth largest value in {a1, a2, . . . , an}. Let λ be an index function, and λ(j) is the index of jth largest value,
then the OWA operator can be described as

OWA (a1, a2, . . . , an) =
n∑

j=1

wjaλ(j). (8)

Definition 2.8. [48] OWA operators are highly dependent on weighting vector ω. When weight
distributions are special, several types of OWA operators are expressed as follows.
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• ω∗ : w1 = 1, wj,j �=1 = 0, the OWA operator can be denoted as

OWA(a1, a2, . . . , an) = aλ1
= max(ai). (9)

• ω∗ : wj,j �=n = 1, wn = 0, the OWA operator can be denoted as

OWA(a1, a2, . . . , an) = aλn = min(ai). (10)

• ωn : wj = 1/n, the OWA operator can be denoted as

OWA (a1, a2, . . . , an) = 1
n

n∑
j=1

aj. (11)

• ω�K� : wj,j �=K = 0, wK = 1, the OWA operator can be denoted as

OWA(a1, a2, . . . , an) = aλK
. (12)

Definition 2.9. The weighting vector for OWA operator can be determined as

wj = f
(

j
n

)
− f

(
j − 1

n

)
, (13)

where f is a monotonic function that satisfies f (0) = 0 and f (1) = 1.

In [51], a useful function f (x) = xm, m ≥ 0 was given, and then a parameter α was proposed to

measure the degree of optimism satisfies m = 1 − α

α
. So for a given α, the weighting vector can be

determined as

wj =
(

j
n

) 1−α
α

−
(

j − 1
n

) 1−α
α

. (14)

Note that the larger attitudinal character α is, the more optimistic the DM is.

3 Belief-Based Probabilistic Linguistic Term Sets

In this section, the belief-based probabilistic linguistic term sets are developed to overcome the
issues of PLTSs by expressing and dealing with more uncertainty. We first give the basic concept of
belief-based PLTSs, then provide the aggregation operator and finally define the score function in
order to effectively complete the emergency decision-making process.

3.1 The Basic Concept
The probabilistic linguistic term set effectively solves the problem that the HFLTS cannot assign

weight to the possible linguistic terms according to the DM’s preference. However, the PLTS has also
been criticized for its limitations in decision-making [28]. According to Definition 2.1, PLTS allows
probability information to be incomplete, but other operations of the PLTS can only be performed
after the probability is normalized. Allowing incomplete information expression is conducive to
contain more uncertainty, but the normalization for subsequent calculations directly distributes
the uncertainty to each linguistic term, which artificially removes some unknown uncertainties and
weakens the effectiveness of the modeling uncertainty.

In complex decision-making, especially emergency problems, there may be various uncertainties,
including randomness, vagueness and incompleteness [52]. Randomness comes from non-deterministic
conditions, ambiguity is caused by unclear classification of things, and incompleteness is caused by
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incomplete information. PLTS has some potential limitations in the expression of uncertainty, such
as the aforementioned normalization problem, the inability to express simultaneity, and the lack of
attribute values that are not considered. The belief function theory is a powerful tool for expressing
and dealing with uncertainty, which has been widely declared and recognized by authoritative literature
[29,34,35,46]. In order to solve the potential limitation of PLTS in MADM, the concept of belief-based
PLTS is introduced.

For instance, in Example 1, the evaluation is represented by PLTS as Feasibility(ERX) =
{medium(0.1), good(0.8)}, in which 10 experts have not expressed their opinions. This part of infor-
mation can be regarded as unknown or uncertain. Based on belief function theory, the evaluation can
be represented as

Feasibility1(ERX) = {medium(0.1), good(0.8), {poor, medium, good}(0.1)}
= {s0(0.1), s1(0.8), S(0.1)}, (15)

where S is FoD, indicating unknown or uncertain.

It is worth noting that incompleteness of information is also seen in another scenario in decision
making. For example, in multi-attribute emergency decision making, the DM has completed the
evaluation of the performance of an emergency plan under other attributes, but only in the aspect
of attribute “response speed” is unknown. The traditional PLTS-based emergency decision making
method rarely considers this situation, which leads to the interruption of the emergency procedure.
Within the frame of belief function theory, the missing attribute value can be represented as S(1). The
ability of the belief function theory to express uncertain information can ensure that the decision can
proceed even with the incomplete information.

Another motivation that we have to extend PLTS with belief function theory is to deal with a
decision scenario where a DM is hesitant between two or more linguistic terms. In other words, the
probability distribution on the single term no longer meets the expression requirements of DMs, but
needs to allocate the belief on multiple subsets. Take the decision scenario in Example 1, where 80
experts evaluate it “good”, 10 evaluate it “medium”, and 10 hesitate between the terms “good” and
“medium”. Obviously, PLTS is powerless to describe this case, but the theory of belief function can
handle and represent such a case well with the expression

Feasibility2(ERX) = {medium(0.1), good(0.8), {medium, good}(0.1)}
= {s0(0, 1), s1(0.8), s0s1(0.1)}. (16)

Through the above analysis and discussion, we identify some limitations of PLTS in expressing
DMs’ views, and analyze the advantages of belief function theory in solving these problems. This is
therefore an appropriate time to present the belief-based probabilistic linguistic term set as below:

Definition 3.1. Let S = {s−τ , . . . , s−1, s0, s1, . . . , sτ} be a LTS, a belief-based PLTS is defined as

L =
{

β (ι) |ι ∈ 2S, β (ι) ≥ 0,
∑
ι∈2S

β (ι) = 1

}
, (17)

where β(ι) means the basic belief assignment (BBA) of proposition ι (a subset of LTS S). Note that
the belief-based PLTS L is denoted by β for convenience.

Based on Definition 3.1, the evaluations in Eqs. (15) and (16) can be represented by belief-based
PLTSs as L1 = {s0(0.1), s1(0.8), S(0.1)} and L2 = {s0(0.1), s1(0.8), s0s1(0.1)}, which can also be
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written as β1(s0) = 0.1, β1(s1) = 0.8, β1(S) = 0.1 and β2(s0) = 0.1, β2(s1) = 0.8, β2({s0, s1}) = 0.1.
According to the above definitions and examples, we can conclude that the belief-based PLTS has the
following desired properties and advantages: (1) for PLTS with incomplete information, the operation
of normalization is no longer necessary, and the uncertainty is represented by the universal set (i.e.,
LTS S, can also be interpreted as FoD), thus unifying the information expression mode based on
linguistic term sets from the mathematical form (2) belief-based PLTS has the ability to capture DMs’
hesitations among possible linguistic terms, can more fully allow DMs to express opinions. It is worth
noting that belief-based PLTS degrades to the traditional PLTS when the belief is all assigned to the
singleton, i.e., it is backward compatible. Naturally, the belief function and plausibility function of
belief-based PLTS can be defined.

Definition 3.2. The belief function of belief-based PLTS BelL : 2S → [0, 1] is defined as

BelL (A) =
∑
B⊆A

β (B) , ∀A ⊆ S. (18)

And we have BelL (φ) = 0 and BelL (S) = 1.

Definition 3.3. The plausibility function of belief-based PLTS PlL : 2S → [0, 1] is defined as

PlL (A) = 1 − BelL
(
A
) =

∑
B∩A=φ

β (B) , ∀A ⊆ S, (19)

where A = � − A, and BelL (A) ≤ PlL (A). So BIL (A) = [BelL (A), PlL (A)] forms the belief interval
of proposition A.

3.2 A Novel Aggregation Operator for Belief-Based PLTS
In decision problems, an aggregation operator is inevitably employed, which is an approach

combining two or more single information expressions. The above manifests the advantages of the
belief-based PLTS in representing uncertain information. To make it exert maximum in decision
making, this section provides a novel aggregation operator for belief-based PLTS ground on soft
likelihood function.

Soft likelihood function was originally proposed by Yager et al. [53] for calculating likelihood
functions of probabilistic evidence in the context of forensic crime investigations. It breaks the
limitations of traditional likelihood functions that use logical “anding” to aggregate elements, and
has been extended to uncertain decision environments by D numbers [54], power OWA [55,56], and
Pythagorean fuzzy sets [57,58]. With the flexible and reliable combination ability of soft likelihood
function, in this section, an aggregation operator for belief-based PLTS is proposed.

Definition 3.4. Let L = {L1, L2, . . . , Ln} be n belief-based PLTSs on S = {s−τ , . . . , s−1, s0, s1, . . . , sτ}.
The likelihood value of ιi ⊆ S is defined as

�ιi =
n∏

j=1

βj (ιi) . (20)

The above definition multiplies the belief of ι in each belief-based PLTS to determine the value of
aggregated ι. It is easy to find that this definition is a logical “and”, that is, the aggregated ι depends on
the minimum ι in each belief-based PLTS. This means, however, that no matter how many belief-based
PLTSs have a large ι value, �ιi = 0 as long as βj(ιi) = 0 in one belief-based PLTS, which is obviously
not true in most applications. This kind of likelihood function is called hard likelihood function. To
fix the defect, a soft likelihood function based on OWA operator has been developed [53], which is
used to define the aggregation operator for belief-based PLTS.
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Definition 3.5. Let λιi be an index function of ιi ⊆ S, and λιi(k) indicate the index of the kth largest
belief of ιi in L . The product operation of the j largest belief of ιi can be defined as

Prodιi (j) =
j∏

k=1

βλιi (k) (ιi) , (21)

where βλιi (k)(ιi) is the kth largest belief of ιi. Note that when j = n, Eq. (21) degenerates into the hard
likelihood function, i.e., Prodιi(n) = �ιi . In addition, it is easy to tell that Prod is a monotonically
decreasing function, i.e., if j1 ≥ j2, then Prod(j1) ≤ Prod(j2).

Definition 3.6. The OWA-based soft likelihood function of ιi ⊆ S is defined as

�ιi ,OWA = OWA
(
Prodιi (1) , Prodιi (2) , . . . , Prodιi (n)

) =
n∑

j=1

wjProdιi (j) , (22)

where wj ∈ [0, 1] is the weighting vector that satisfies
n∑

j=1

wj = 1.

According to Definition 2.8, we analyze the OWA-based soft likelihood function corresponding
to the special forms of weight distribution.

• For ω∗ : w1 = 1, wj,j �=1 = 0, �ιi ,OWA = Prodιi(1) = βλιi (1)(ιi). In this case, the aggregated belief of ιi

is equal to the largest one in L .

• For ω∗ : wj,j �=n = 1, wn = 0, �ιi ,OWA = Prodιi (n) = ∏n

j=1 βj (ιi), which degenerates into the hard
likelihood function.

• For ωn : wj = 1/n, �ιi ,OWA = 1
n

∑n

j=1Prodιi (j) = 1
n

∑n

j=1

(∏j

k=1 βλιi (k) (ιi)
)
, which is a simple average

of Prodιi(j).

Definition 3.7. Based on Definition 2.9, the attitudinal character α can be employed to calculate
the soft likelihood value of ιi ⊆ S. Therefore the aggregated belief of ιi can be calculated as

�ιi ,α =
n∑

j=1

((
j
n

) 1−α
α

−
(

j − 1
n

) 1−α
α

)
j∏

k=1

βλιi (k) (ιi) , ιi ⊆ S. (23)

To ensure that the aggregated result is still a belief-based PLTS, it needs to be normalized as

ιi (β
α) = �ιi ,α∑

ιi⊆S �ιi ,α

. (24)

Therefore, the aggregation operator of n belief-based PLTSs can be defined as

L1 ⊕ L2 ⊕ · · · ⊕ Ln =
⎧⎨⎩ιi (β

α) |ιi ∈ 2S, βα (ιi) ≥ 0,
∑
ιi∈2S

βα (ιi) = 1

⎫⎬⎭ . (25)

To demonstrate the usage of the above-proposed aggregation operator, the following example is
given.

Example 2. Let S = {s−1, s0, s1} be a LTS, and five belief-based PLTSs on S be represented
by Definition 3.1 as L1 = {s−1(0.7), s0(0.2), s0s1(0.1)}, L2 = {s−1(0.55), s0(0.25), s1(0.2)}, L3 =
{s−1(0.8), s0s1(0.2)}, L4 = {s−1(0.5), s0(0.2), s0s1(0.3)}, and L5 = {s−1(0.5), s0(0.2), s0s1(0.3)}. We take
s−1 as an example to show the solution of OWA-based soft likelihood function.
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According to Definition 3.5, the product of the j largest belief of s−1 can be calculated as
Prods−1

(1) = βλs−1 (1)(s−1) = β3(s−1) = 0.8,
Prods−1

(2) = βλs−1 (1)(s−1) × βλs−1 (2)(s−1) = β3(s−1) × β1(s−1) = 0.8 × 0.7 = 0.56,
Prods−1

(3) = βλs−1 (1)(s−1) × βλs−1 (2)(s−1) × βλs−1 (3)(s−1) = β3(s−1) × β1(s−1) × β2(s−1) = 0.8 × 0.7 × 0.55 =
0.3080,
Prods−1

(4) = βλs−1 (1)(s−1)×βλs−1 (2)(s−1)×βλs−1 (3)(s−1)×βλs−1 (4)(s−1) = β3(s−1)×β1(s−1)×β2(s−1)×β4(s−1) =
0.8 × 0.7 × 0.55 × 0.5 = 0.1540,
Prods−1

(5) = βλs−1 (1)(s−1) × βλs−1 (2)(s−1) × βλs−1 (3)(s−1) × βλs−1 (4)(s−1) × βλs−1 (5)(s−1) = β3(s−1) × β1(s−1) ×
β2(s−1) × β4(s−1) × β5(s−1) = 0.8 × 0.7 × 0.55 × 0.5 × 0.5 = 0.0770.

Now we discuss the soft likelihood value of s−1 with different α.

• When α = 0.1, based on Eq. (14), the weighting vector is ω = (0, 0.0003, 0.0098, 0.1241, 0.8658)T ,
the soft likelihood value can be obtained by using Eq. (23) as �s−1,0.1 = 0×0.8+0.0003×0.56+
0.0098 × 0.3080 + 0.1241 × 0.1540 + 0.8658 × 0.0770 = 0.0890.

• When α = 0.5, based on Eq. (14), the weighting vector is ω = (0.2, 0.2, 0.2, 0.2, 0.2)T , the soft
likelihood value can be obtained by using Eq. (23) as �s−1,0.5 = 0.2 × 0.8 + 0.2 × 0.56 + 0.2 ×
0.3080 + 0.2 × 0.1540 + 0.2 × 0.0770 = 0.3798.

• When α = 0.9, based on Eq. (14), the weighting vector is ω = (0.8363, 0.0670, 0.0416, 0.0306,
0.0245)T , the soft likelihood value can be obtained by using Eq. (23) as �s−1,0.9 = 0.8363 × 0.8 +
0.0670 × 0.56 + 0.0416 × 0.3080 + 0.0306 × 0.1540 + 0.0245 × 0.0770 = 0.7260.

According to the above process, soft likelihood values of other propositions (s0, s1, and {s0s1})
under different α can be calculated and normalized by using Eq. (31). The results are manifested in
Table 1. The conclusion is that (1) when α = 0.1, L1⊕· · ·⊕L5 = {s−1(0.9911), s0(0.0045), s0s1(0.0045)},
(2) when α = 0.5, L1 ⊕· · ·⊕L5 = {s−1(0.6732), s0(0.1106), s1(0.0709), s0s1(0.1453)}, (3) when α = 0.9,
L1 ⊕ · · · ⊕ L5 = {s−1(0.5500), s0(0.1613), s1(0.1268), s0s1(0.1619)}.

Table 1: The soft likelihood value and normalized belief value of propositions under different α

α = 0.1 α = 0.5 α = 0.9

�ιi ,α ιi(β
α) �ιi ,α ιi(β

α) �ιi ,α ιi(β
α)

s−1 0.0890 0.9910 0.3798 0.6732 0.7260 0.5500
s0 0.0004 0.0045 0.0624 0.1106 0.2129 0.1613
s1 0.0000 0.0000 0.0400 0.0709 0.1673 0.1268
s0s1 0.0004 0.0045 0.0820 0.1453 0.2137 0.1619

3.3 The Aggregation Operator Considering the Reliability of Belief-Based PLTS
In practical decision problems, different belief-based PLTSs generally have different importance,

i.e., weight, also known as reliability. The aggregation operator proposed in the previous section
assumes that all belief-based PLTSs have the same reliability, which leads to certain limitations in
decision making. To solve this problem, this section develops an aggregation operator considering
reliability.
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From the definitions in the previous section, it can be concluded that the advantages of soft likeli-
hood function-based aggregation operator mainly come from two aspects: cumulative multiplication
and OWA. Reliability will affect the order determination and weight vector generation.

Definition 3.8. The reliability of {L1, L2, . . . , Ln} is denoted as {r1, r2, . . . , rn} that satisfies rj ∈ [0, 1]
and

∑n

j=1rj = 1. Let γιi be an index function of β(ιi) × r, and γιi(k) indicate the index of the kth largest
product of β(ιi) × r. The product operation of the j largest belief of ιi ⊆ S is defined as

˜Prod ιi (j) =
j∏

k=1

βγιi (k) (ιi) , (26)

where βγιi (k)(ιi) is the kth largest belief of β(ιi) × r. Note that ˜Prod is also a monotonically decreasing

function, i.e., if j1 ≥ j2, then ˜Prod (j1) ≤ ˜Prod (j2).

Definition 3.9. The OWA-based soft likelihood function of ιi ⊆ S considering reliability is defined
as

�̃ιi ,OWA = OWA
(
˜Prod ιi (1) , ˜Prod ιi (2) , . . . , ˜Prod ιi (n)

)
=

n∑
j=1

w̃j
˜Prod ιi (j) , (27)

where w̃j ∈ [0, 1] and
∑n

j=1w̃j = 1 is the weighting vector.

Definition 3.10. To determine the OWA weighting vector, the sum of reliability of the j largest
β(ιi) × r product is defined as

χj =
j∑

k=1

rγιi (k). (28)

Consequently, the OWA weighting vector of the soft likelihood function considering reliability
can be defined as

w̃j = (
χj

) 1−α
α − (

χj−1

) 1−α
α . (29)

Note that if the reliability of all belief-based PLTSs is equal, i.e., rj = 1/n, ω̃ is reduced to ω.

Definition 3.11. The aggregation operator of n belief-based PLTSs considering reliability is defined
as

L1⊕̃L2⊕̃ · · · ⊕̃Ln =
⎧⎨⎩ιi (β

α) |ιi ∈ 2S, βα (ιi) ≥ 0,
∑
ιi∈2S

βα (ιi) = 1

⎫⎬⎭ , (30)

where ιi(β
α) is defined as

ιi (β
α) = �̃ιi ,α∑

ιi⊆S �̃ιi ,α

. (31)

The case in Example 2 is used to demonstrate the aggregation operator considering reliability.

Example 3. Let the reliability of {L1, . . . , L5} be {r1 = 0.35, r2 = 0.25, r3 = 0.15, r4 = 0.2, r5 =
0.05}. Let’s take s−1 as an example, because β1(s−1) × r1 = 0.1050, β2(s−1) × r2 = 0.1375, β3(s−1) × r3 =
0.2800, β4(s−1) × r4 = 0.1000, and β5(s−1) × r5 = 0.0250, so γs−1

(1) = 3, γs−1
(2) = 2, γs−1

(3) = 1,
γs−1

(4) = 4, and γs−1
(5) = 5. Based on Definition 3.8, the product of the j largest belief of s−1 can

be calculated as ˜Prods−1
(1) = β3 (s−1) = 0.8, ˜Prods−1

(2) = β3 (s−1) × β2 (s−1) = 0.44, ˜Prods−1
(3) =
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˜Prods−1
(2) × β1 (s−1) = 0.3080, ˜Prods−1

(4) = ˜Prods−1
(3) × β4 (s−1) = 0.1540, and ˜Prods−1

(5) =
˜Prods−1

(4) × β5 (s−1) = 0.0770. According to Definitions 3.9 and 3.10, the soft likelihood values of s−1

with different α are calculated considering reliability, and the results are manifested in Table 2.

Table 2: The solution of soft likelihood function of s−1 under different α considering reliability

j rγs−1 (j) χj χj−1 α = 0.1 α = 0.5 α = 0.9

w̃j
˜Prods−1

(j) �̃s−1,α w̃j
˜Prods−1

(j) �̃s−1,α w̃j
˜Prods−1

(j) �̃s−1,α

1 0.35 0.35 0 0.0001 0.8000 0.0001 0.35 0.8000 0.2800 0.8899 0.8000 0.7119
2 0.25 0.6 0.35 0.0100 0.4400 0.0044 0.25 0.4400 0.1100 0.0549 0.4400 0.0242
3 0.15 0.75 0.6 0.0650 0.3080 0.0200 0.15 0.3080 0.0462 0.0237 0.3080 0.0073
4 0.2 0.95 0.75 0.5552 0.1540 0.0855 0.20 0.1540 0.0308 0.0258 0.1540 0.0040
5 0.05 1 0.95 0.3698 0.0770 0.0285 0.05 0.0770 0.0039 0.0057 0.0770 0.0004∑ = 0.1385

∑ = 0.4709
∑ = 0.7478

According to the above process, soft likelihood values of other propositions (s0, s1, and {s0s1}) under
different α can be calculated and normalized by using Definition 3.11. Finally, the conclusion is that (1)
when α = 0.1, L1⊕̃ · · · ⊕̃L5 = {s−1 (0.9802) , s0 (0.0134) , s1 (0.0036) , s0s1 (0.0028)} (2) when α = 0.5,
L1⊕̃ · · · ⊕̃L5 = {s−1 (0.6661) , s0 (0.1197) , s1 (0.1132) , s0s1 (0.1010)} (3) when α = 0.9, L1⊕̃ · · · ⊕̃L5 =
{s−1 (0.5335) , s0 (0.1291) , s1 (0.1560) , s0s1 (0.1814)}.

In Examples 2 and 3, we present several special cases to reflect the impact of parameter α on the
result of aggregation. In order to further highlight the effect, the experiment is carried of aggregation
operator based on soft likelihood function (with ans without) considering reliability. As can be seen
from Fig. 1, with the increase of α, the belief of s−1 is decreasing while the other belief is increasing,
from which we can see the influence of DM’s attitude on the aggregation result.

Figure 1: The belief distribution of the aggregated belief-based PLTS with different α
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3.4 The Comparison between Belief-Based PLTSs
Belief-based PLTS is a new expression of uncertainty based on linguistic information. Due to its

complexity, it is not easy to define score functions like PLTS. Therefore, by virtue of belief interval, we
propose a novel possibility degree method for comparing belief-based PLTSs.

Definition 3.12. Let L be a belief-based PLTS on S = {s−τ , . . . , s−1, s0, s1, . . . , sτ}, the belief interval
of each singleton constitutes a belief interval vector of L , expressed as

−→
BIL = (BIL (s−τ ) , . . . , BIL (s−1) , BIL (s0) , BIL (s1) , . . . , BIL (sτ ))

T , (32)

where BIL (sα) = [BelL (sα), PlL (sα)] means the belief interval of linguistic term sα.

Definition 3.13. Let
→

BIL be the belief interval vector of belief-based PLTS L , the score of
→

BIL

can be calculated as

E
( →

BIL

)
=
[∑

α∈S

αBel (sα) ,
∑
α∈S

αPl (sα)

]
= [belL , plL ] . (33)

Definition 3.14. Let L1 and L2 be two belief-based PLTSs,
→

BIL1
and

→
BIL2

be their belief interval

vector, and the corresponding scores be E
( →

BIL1

)
= [

belL1
, plL1

]
and E

( →
BIL2

)
= [

belL2
, plL2

]
, the

possibility degree for L1 � L2 can be defined as

p (L1 � L2) = min{IL1
+ IL2

, max{plL1
− belL2

, 0}}
IL1

+ IL2

, (34)

where IL1
= plL1

−belL1
and IL2

= plL2
−belL2

. The order relationship between L1 and L2 is denoted
by L1 � L2

p
.

Based on above definitions, under the assumption that L1, L2, L3 are three belief-based PLTSs

and their scores are E
( →

BIL1

)
= [

belL1
, plL1

]
, E
( →

BIL2

)
= [

belL2
, plL2

]
, E
( →

BIL3

)
= [

belL3
, plL3

]
,

four theorems as below can be easily deduced.

Theorem 3.1. p(L1 � L2) ∈ [0, 1].

Theorem 3.2. p(L1 � L2) = 1 iff plL2
≤ belL1

.

Theorem 3.3. p(L1 � L2) = 0 iff plL1
≤ belL2

.

Theorem 3.4. p(L1 � L2) + p(L1 < L2) = 1. Particularly, p(L1 � L1) = 0.5.

The above theorems are obvious, so the proof is omitted. Definition 3.14 provides the possible
degree calculation method for two belief-based PLTSs sorting, and we further extend it to the scenario
of n belief-based PLTSs.

Definition 3.15. Let a set of belief-based PLTSs with n elements be represented as L =
{L1, L2, . . . , Ln}, and the score of Li is E

( →
BILi

)
= [

belLi , plLi

]
, i ∈ {1, . . . , n}. The possible degree

matrix of L can be obtained as P = (pij)n×n, where pij = p(Li � Lj), Li, Lj ∈ L . Matrix P contains
the possible degree relations among all belief-based PLTSs, so sorting L is transformed to solve the
sorting vector problem of matrix P. Based on [59], the sort value of belief-based PLTS Li can be
calculated as

ρ (Li) = 1
n(n − 1)

(
n∑

j=1

pij + n
2

− 1

)
, Li ∈ L , (35)
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which can be employed to sort L .

The belief-based PLTSs in Example 2 are used to be sorted by using the above method in this
section.

Example 4. We take L1 as an example to demonstrate the calculation of its score of belief interval
vector. Based on Definitions 3.2, 3.3 and 3.12, the belief interval vector of L1 can be calculated as
−−→
BIL1

= (BIL1
(s−1), BIL1

(s0), BIL1
(s1))

T

= ([BelL1
(s−1), PlL1

(s−1)], [BelL1
(s0), PlL1

(s0)], [BelL1
(s1), PlL1

(s1)])T

= ([0.7, 0.7], [0.2, 0.3], [0, 0.1])T . (36)

Then the score of
→

BIL1
can be calculated by using Definition 3.13 as

E
( →

BIL1

)
= [

belL1
, plL1

] = [(−1) ∗ 0.7 + 0 ∗ 0.2 + 1 ∗ 0, (−1) ∗ 0.7 + 0 ∗ 0.3 + 1 ∗ 0.1]

= [−0.7, −0.6] . (37)

So the scores of L1, . . . , L5 can be obtained as E
( →

BIL2

)
= [−0.35, −0.35], E

( →
BIL3

)
=

[−0.8, −0.6], E
( →

BIL4

)
= [−0.5, −0.2], and E

( →
BIL5

)
= [−0.5, −0.2], respectively. The possible degree

between two belief-based PLTSs is calculated based on Definition 3.14 below. Taking L1 and L2 as an
example, p(L1 � L2) = 0 can be obtained. Then the possible degree matrix can be obtained as

P = (
pij

)
5×5

⎡⎢⎢⎢⎢⎣
1/2 0 2/3 0 0
1 1/2 1 1/2 1/2

1/3 0 1/2 0 0
1 1/2 1 1/2 1/2
1 1/2 1 1/2 1/2

⎤⎥⎥⎥⎥⎦. (38)

According to Definition 3.15, the sort value of the belief-based PLTSs can be calculated as
ρ(L1) = 0.1333, ρ(L2) = 0.25, ρ(L3) = 0.1167, ρ(L4) = 0.25, and ρ(L5) = 0.25. So the order
can be determined as L2 �

0.5
L4 �

0.5
L5 �

1
L1 �

2/3
L3.

4 Emergency Decision-Making Based on Belief-Based Probabilistic Linguistic Term Sets

In recent years, various unconventional emergencies have occurred frequently, which has become
a major risk and disaster facing mankind. How to reduce the loss caused by a disaster and carry out
effective rescue work based on emergency decision methods has become an important step in dealing
with emergencies. In this section, we propose a multi-attribute decision making method for emergency
decision based on the defined belief-based PLTS.

4.1 Problem Description
In a multi-attribute emergency decision making problem, the alternative set is {A1, A2, . . . , Am},

the attribute is represented as {C1, C2, . . . , Cn}, the corresponding weight is {w1, w2, . . . , wn}, the set
of decision experts is {E1, E2, . . . , Eq}, with weight {g1, g2, . . . , gq}. Experts use belief-based PLTSs to
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evaluate alternatives under different attributes, and the resulting decision matrix is expressed as

D(k) = (
L k

ij

)
m×n

=

⎡⎢⎢⎣
L k

11 L k
12 · · · L k

1n

L k
21 L k

22 · · · L k
2n

...
...

. . .
...

L k
m1 L k

m2 · · · L k
mn

⎤⎥⎥⎦ =

⎡⎢⎢⎣
βk

11 βk
12 · · · βk

1n

βk
21 βk

22 · · · βk
2n

...
...

. . .
...

βk
m1 βk

m2 · · · βk
mn

⎤⎥⎥⎦ , (39)

where L k
ij indicates the evaluation of alternative Ai under attribute Cj from expert Ek.

4.2 Aggregation of Decision Information of Experts
After obtaining the experts’ decision matrices, the opinions need to be aggregated first. For the

comprehensive performance of alternative Ai under attribute Cj, the evaluations provided by experts
are aggregated by using the aggregation operator considering reliability proposed in Subsection 3.3.
Note that the reliability here is the weight of the expert. According to Definition 3.11, the aggregated
evaluation is calculated as Lij = L 1

ij ⊕̃L 2
ij ⊕̃ · · · ⊕̃L q

ij , so the aggregated decision matrix is expressed as

D = (
Lij

)
m×n

⎡⎢⎢⎣
L11 L12 · · · L1n

L21 L22 · · · L2n

...
...

. . .
...

Lm1 Lm2 · · · Lmn

⎤⎥⎥⎦ , (40)

where Lij denotes the aggregated belief-based PLTS of L 1
ij , . . . , L q

ij .

4.3 Determination of Attribute Weight
The methods for determining attribute weights can be divided into the subjective, objective and

combination weighting methods. The last method combines the characteristics of the former two,
avoids the subjective arbitrariness, and captures the preference of DMs for the attribute. Therefore,
based on the defined belief-based PLTS, this paper proposes a combination weighting method which
aggregates both subjective and objective.

4.3.1 Determination of Subjective Weight Based on Belief-Based PLTSs

Humans are at a loss when asked to compare multiple attributes. But it is much easier for humans
to compare pairs of attributes, an idea that has been repeated in the AHP and BWM approaches [60].
Based on this consideration, we propose a method to determine the subjective weight of attributes.

Let the set of attributes be represented as {C1, C2, . . . , Cn}. The pairwise comparison between Ci

and Cj is expressed as a belief-based PLTS Lij on S = {s−τ , . . . , s−1, s0, s1, . . . , sτ}. Lij is the degree to
which attribute Ci is better than attribute Cj, and if α > 0 (subscript of sα) indicates that Ci is superior
to Cj, and vice versa. In particular, α = 0 indicates that Ci is equally important to Cj, so the belief-based
PLTS can be obtained as L C

ii = {s0(1)}. Referring to literature [36,61], the concept of the negation of
belief-based PLTSs is defined to express the comparison between Cj and Ci based on L C

ij .

Definition 4.1. For a given belief-based PLTS L C on S, its negation L
C

is defined as

β (ι) =
⎧⎨⎩β(sα), ι = S − sα∑

∀s,|s|�=1

β (s) , ι = S (41)

where sα is a singleton, and s is the focal element which has a cardinality greater than 1.
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To demonstrate how to use the defined negation of belief-based PLTSs, the following example is
given.

Example 5. The pairwise comparison between Ci and Cj is expressed by a belief-based PLTS L C
ij

on S = {s−1, s0, s1}, then the comparison between Cj and Ci can be calculated in the following cases
based on the above definition.

• Case 1: when L C
ij = {s−1(1/3), s0(1/3), s1(1/3)}, based on Eq. (41), we have L C

ji = {s0s1(1/3),
s−1s1(1/3), s−1s0(1/3)}.

• Case 2: when L C
ij = {s1(0.7), s0s1(0.3)}, based on Eq. (41), we have L C

ji = {s−1s0(0.7), S(0.3)}.
• Case 3: when L C

ij = {s0(1)}, which is a special case, indicating that Ci is of equal importance to
Cj. By using Eq. (41), we have L C

ji = {s−1s1(1)}, which means that belief-based PLTSs {s0(1)}
and {s−1s1(1)} have the same semantics in this case.

A pairwise comparison matrix C = (L C
ij )n×n can be obtained based on the above definitions, and

the actual number of comparisons of the DM is n(n−1)

2
. Then the score of belief interval vector of L C

ij

can be calculated by using Definition 3.13 as [belL C
ij

, plL C
ij

]. To make all the values participating in
the normalization positive, the scores will be shifted to ensure that the minimum lower limit of the

interval values corresponding to each attribute is 0, which is expressed as
[
b̃elL C

ij
, p̃lL C

ij

]
. Then the

support degree of attribute Ci can be determined as
[
supb̃el

i , supp̃l
i

]
=
[∑n

j=1,j �=ibelL C
ij

,
∑n

j=1,j �=iplL C
ij

]
.

Therefore, the subjective weight of attribute Ci is denoted by an interval value as
[
ws

i , ws
i

] =[
supb̃el

i /
∑n

i=1supp̃l
i , supp̃l

i /
∑n

i=1supp̃l
i

]
.

4.3.2 Determination of Objective Weight Based on Interval Entropy Weight Method

The basic idea of the entropy weight method is to determine the objective weight according to
the magnitude of the attribute variability. Generally, entropy is employed to reflect uncertainty. In
decision-making problems, the lower the entropy, the greater the uncertainty, the greater the degree of
variation of the attribute, the greater the degree of differentiation, and the greater the weight, and vice
versa.

For decision matrix D = (Lij)m×n shown in Eq. (40), the score of belief interval vector of Lij can
be calculated by using Definition 3.13 as

(
Eij

)
m×n

=
(

E
(−−→

BILij

))
m×n

=

⎡⎢⎢⎣
[belL11

, plL11
] [belL12

, plL12
] · · · [belL1n

, plL1n
]

[belL21
, plL21

] [belL22
, plL22

] · · · [belL2n
, plL2n

]
...

...
. . .

...
[belLm1

, plLm1
] [belLm2

, plLm2
] · · · [belLmn , plLmn ]

⎤⎥⎥⎦ . (42)

To make all the values participating in the normalization positive, the scores will be shifted to
ensure that the minimum lower limit of the interval values corresponding to each attribute is 0. The
interval entropy weight method is carried out in the following steps.

Step 1: Normalize data. Since there may be negative numbers in the matrix, we first translate the

data to get
(

Ěij

)
m×n

, and ensure that the minimum interval number under each attribute is 0. For each
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attribute, we compute the interval Ẽij =
[
b̃elLij , p̃lLij

]
by linear normalization as

b̃elLij =
ˇbelLij∑m

i=1
ˇbelLij

, p̃lLij
= p̌lLij∑m

i=1p̌lLij

. (43)

Step 2: Calculate the entropy of Ẽij based on Shannon entropy as

SE ˇbel
j = min

{
− 1

ln(m)

m∑
i=1

ˇbelLij ln
( ˇbelLij

)
, − 1

ln(m)

m∑
i=1

p̌lLij
ln
(

p̌lLij

)}
,

SEp̌l
j = max

{
− 1

ln(m)

m∑
i=1

ˇbelLij ln
( ˇbelLij

)
, − 1

ln(m)

m∑
i=1

p̌lLij
ln
(

p̌lLij

)}
.

(44)

Step 3: Calculate the diversification of
[
SE ˇbel

j , SEp̌l
j

]
as

div ˇbel
j = 1 − SEp̌l

j , divp̌l
j = 1 − SE ˇbel

j . (45)

Step 4: Obtain the objective weight
[
wo

j , wo
j

]
as

wo
j = div ˇbel

j∑n

j div p̌l
j

, wo
j = div p̌l

j∑n

j div p̌l
j

. (46)

4.3.3 Determination of Final Weight by Combining Subjectivity and Objectivity

The subjective weight ws
j = [

ws
j , ws

j

]
and objective weight wo

j = [
wo

j , wo
j

]
of attribute Cj are

obtained in Sections 4.3.1 and 4.3.2, then the comprehensive weight wj = [
wj, wj

]
of attribute Cj can

be calculated by combining subjectivity and objectivity as

wj = ws
j w

o
j∑n

j=1w
s
j w

o
j

, wj = ws
j w

o
j∑n

j=1w
s
j w

o
j

. (47)

4.4 Decision Information Aggregation
Based on the attribute weights obtained in the previous subsection and the decision matrix in

Eq. (40), the evaluations of alternative Ai under different attributes needs to be aggregated based on
the aggregation operator provided in Section 3.2. Since the attribute weight obtained is given in the
form of intervals, we first propose a transformation method to map them to real values. The golden
rule is an appropriate alternative for mapping interval numbers to real numbers, which has been used
and developed in many literature [62]. The interval weight conversion method based on the golden
rule is defined below.

Definition 4.2. Let the interval weight of attribute Cj be wj = [
wj, wj

]
, the representation of wj can

be defined based on golden rule as

G
(
wj

) = m
(
wj

)+ ϕ
r(wj)

2
, (48)

where m
(
wj

) = (
wj + wj

)
/2 is the midpoint of the interval wj, and r

(
wj

) = wj − wj is the range of wj.
ϕ ∈ [−1, 1] denotes the attitude of DMs, ϕ > 0 means that the DM is positive, the closer it is to 1, the
more positive the DM is, and vice versa, especially ϕ = 0 indicates that the DM is neutral.
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The normalized weight representative value defined above can be considered as the reliability of
the attribute, then different attribute values can be aggregated based on the aggregation operator in
Section 3.2.

Definition 4.3. Let the belief-based PLTSs of alternative Ai under different attributes be
{Li1, Li2, . . . ,
Lin}, and the corresponding reliability be {G (w1), G (w2), . . . , G (wn)}, the aggregated evaluation of
Ai can be calculated as

Li = Li1⊕̃Li2⊕̃ · · · ⊕̃Lin. (49)

4.5 Calculation of the Final Ranking of Alternatives
According to the aggregated results, the final ranking of alternatives can be calculated by compar-

ing the corresponding belief-based PLTSs. Let the belief-based PLTSs of alternative {A1, A2, . . . , An}
be {L1, L2, . . . , Ln}, the sort value of Li can be calculated based on Definition 4.3.1 as ρ(Li). The
final ranking result of each alternative is determined according to the magnitude of ρ.

The above proposed approach can be summarized as the emergency decision-making framework
based on belief-based probabilistic linguistic term sets as shown in Fig. 2.

Figure 2: Emergency decision-making framework based on belief-based PLTSs
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5 Case Study

The emergency management bureau of municipality S (EMB-SM) is the agency responsible for
the local government’s emergency management strategies. It coordinates and guides all districts in
the city in responding to emergencies such as production safety, natural disasters, and comprehensive
disaster prevention, mitigation and relief efforts. Citizen emergency education is an important step
toward modernizing the emergency management system of municipality S. To this end, EMB-SM
formulates three plans, namely, carrying out field exercises, developing emergency education apps,
and disseminating emergency knowledge through propaganda manuals. In order to choose the most
suitable of these three options, this section will demonstrate the effect of our proposed method based
on a case study.

5.1 Decision Procedure
Based on the decision-making method in Section 4, the decision process of this case is shown as

follows.

5.1.1 Problem Description

Three options (denoted as {A1 = ‘Drill

‘

, A2 = ‘APP(Digital Platform)

‘

, A3 = ‘Brochures

‘

})
have been identified to educate citizens about disaster reduction, and the most suitable one needs
to be selected. To select the best solution, three experts from EMB-SM (denoted as {E1, E2, E3})
evaluate them based on four attributes [4,63] (denoted as {C1 = ‘influence’, C2 = ‘coverage’, C3 =
‘interestingness’, C4 = ‘efficiency’}), and the results are recorded in the decision matrix, as shown in
Table 3.

Table 3: The decision matrices D(1), D(2) and D(3)

Expert Alternative Attribute

C1 C2 C3 C4

E1 A1
{s−2(0.4), s−1(0.5)

s−2s−1(0.1)} {s1(0.4), s2(0.6)} {s−2(0.5), s−1(0.5)} {S(1)}

A2 {s2(1)} {s1(0.2), s2(0.3)

s1s2(0.5)}
{s0(0.2), s1(0.5)

s2(0.3)} {s1(0.2), s2(0.8)}

A3 {s0(0.5), s1(0.5)} {s0(0.2), s1(0.3)

S(0.5)} {s1(1)} {s−1(0.7), s1(0.1)

S(0.2)}
E2 A1 {s−1(0.1), s0(0.9)

{s1(0.5), s2(0.4)

s1s2(0.1)} {s0(0.6), s2(0.4)} {s−2(1)}

A2
{s1(0.1), s2(0.3)

s1s2(0.6)} {s2(1)} {s1s2(1)} {s0(0.4), S(0.6)}

A3 {s0(0.5), s0s1(0.5)} {s1(0.5), s2(0.3)

s1s2(0.2)}
{s0(0.4), s1(0.3)

s1s2(0.3)} {s0(1)}

E3 A1 {s1(0.3), S(0.7)} {s1(0.1), s2(0.2)

s1s2(0.7)}
{s−2(0.4), s0(0.4)

S(0.2)} {S(1)}
A2 {s2(0.1), s1s2(0.9)} {s1(0.2), s1s2(0.8)} {s2(1)} {s0(1)}
A3 {s0(0.8), s1(0.2)} {s1s2(1)} {s0(0.3), s1s2(0.7)} {s−1(0.2), S(0.8)}
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To measure the level of suitability of emergency education plans, let the LTS be {s−2: Not at all,
s−1: Not suitable for, s0: General, s1: Suitable for, s2: Extremely suitable for}, and belief-based PLTSs
are used to express the evaluations in this study.

5.1.2 Aggregation of Decision Matrices from Different Experts

The decision matrices of D(1), D(2) and D(3) shown in Table 3 will be aggregated by using Definition
3.7, and in this case it is assumed that the experts have equal weight and α = 0.5. The aggregated
results are manifested in Table 4, which is the basis for subsequent decisions.

Table 4: The aggregated decision matrix of D(1), D(2) and D(3)

Alternative Attribute

C1 C2 C3 C4

A1

{s−2(0.14), s−1(0.19)

s−2s−1(0.03), s0(0.31)

s1(0.10), S(0.23)}
{s1(0.30), s2(0.37)

s1s2(0.33)}
{s−2(0.27), s−1(0.18)

s0(0.32), s2(0.15)

S(0.08)}
{s−2(0.33), S(0.67)}

A2

{s1(0.04), s2(0.46)

s1s2(0.50)}
{s−1(0.08), s2(0.46)

s0s1(0.28), s1s2(0.18)}
{s0(0.07), s1(0.16)

s2(0.43), s1s2(0.34)}
{s0(0.35), s1(0.05)

s2(0.45), S(0.15)}

A3

{s0(0.56), s1(0.24)

s0s1(0.20)}
{s0(0.07), s1(0.26)

s2(0.11), s1s2(0.37)

S(0.19)}
{s0(0.19), s1(0.48)

s1s2(0.33)}
{s−1(0.29), s0(0.34)

s1(0.03), S(0.34)}

5.1.3 Determination of Attribute Weight

According to Section 4.3, the determination of attribute weight is divided into two parts: subjective
and objective. We first determine the subjective weight of the attribute. The pair comparison between
attributes Ci and Cj (i < j) is provided by DMs, expressed as belief-based PLTSs. Based on Eq. (41), it
is easy to calculate the negation of Ci and Cj, as shown in blue font in Table 5.

Table 5: Comparisons between attributes by belief-based PLTSs

C1 C2 C3 C4

C1 {s0(1)} {s−2(0.6), S(0.4)} {s−2(0.8), S(0.2)} {s−1(0.3), s0(0.7)}
C2 {s−1s0s1s2(0.6), S(0.4)} {s0(1)} {s−1(0.4), s−1s0(0.6)} {s1(0.6), s1s2(0.4)}
C3 {s−1s0s1s2(0.8), S(0.2)} {s−2s0s1s2(0.4), S(0.6)} {s0(1)} {s−2(0.5), s−1(0.5)}
C4 {s−2s0s1s2(0.3), S(0.7)} {s−2s−1s0s2(0.6), S(0.4)} {s−1s0s1s2(0.5), s−2s0s1s2(0.5)} {s0(1)}

Based on Definition 3.13, the score of Lij can be calculated as
[
b̃elL C

ij
, p̃lL C

ij

]
, which are shown

in Table 6. The support degree of an attribute can be determined as
[
supb̃el

1 , supp̃l
1

]
= [3.7, 4.9],[

supb̃el
2 , supp̃l

2

]
= [6.8, 12.4],

[
supb̃el

3 , supp̃l
3

]
= [5.5, 9.5], and

[
supb̃el

4 , supp̃l
4

]
= [4.8, 11.6]. Then the sub-

jective weight of attribute can be obtained as
[
ws

1, ws
1

] = [0.0964, 0.1276],
[
ws

2, ws
2

] = [0.1771, 0.3229],[
ws

3, ws
3

] = [0.1432, 0.2474], and
[
ws

4, ws
4

] = [0.1250, 0.3021].
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Table 6: Scores of the comparison matrix

C1 C2 C3 C4

C1 [2, 2] [0, 0.8] [0, 0.4] [1.7, 1.7]
C2 [1.2, 4] [2, 2] [1, 1.6] [2.6, 3.8]
C3 [1.6, 4] [1.4, 3] [2, 2] [0.5, 0.5]
C4 [1.3, 3] [1, 1.6] [0.5, 5] [2, 2]

In what follows, the objective weight will be determined based on the interval entropy weight
method. Based on the aggregated decision matrix in Table 4, the score of the evaluation of alternative
Ai under Cj can be calculated by employing Definition 3.13 and the results are shown in Table 7.
The entropy of each attribute can be calculated based on Eq. (44) as

[
SE ˇbel

1 , SE ˇbel
1

] = [0.9151, 0.9635],[
SE ˇbel

2 , SE ˇbel
2

] = [0.9968, 0.9987],
[
SE ˇbel

3 , SE ˇbel
3

] = [0.9483, 0.9541], and
[
SE ˇbel

4 , SE ˇbel
4

] = [0.6003, 0.9260].

Next, the diversification of each attribute can be calculated based on Eq. (45) as
[
div ˇbel

1 , divp̌l
1

]
=

[0.0365, 0.0849],
[
div ˇbel

2 , divp̌l
2

]
= [0.0013, 0.0032],

[
div ˇbel

3 , divp̌l
3

]
= [0.0459, 0.0517], and

[
div ˇbel

4 , divp̌l
4

]
=

[0.0740, 0.3997]. Therefore, the objective weight of each attribute can be calculated by using Eq. (46)
as
[
wo

1, wo
1

] = [0.0677, 0.1574],
[
wo

2, wo
2

] = [0.0024, 0.0059],
[
wo

3, wo
3

] = [0.0851, 0.0958], and
[
wo

4, wo
4

] =
[0.1372, 0.7409]. Finally, the comprehensive weight of each attribute can be calculated based on
Eq. (47) by combining subjectivity and objectivity as w1 = [

w1, w1

] = [0.0242, 0.0745], w2 = [
w2, w2

] =
[0.0016, 0.0071], w3 = [

w3, w3

] = [0.0452, 0.0879], and w4 = [
w4, w4

] = [0.0452, 0.8305].

Table 7: Scores of the aggregated decision matrix

C1 C2 C3 C4

A1 [1.44, 1.53] [3.04, 4.03] [1.34, 1.71] [0, 1.34]
A2 [2.96, 4.46] [2.84, 3.66] [3.02, 4.04] [2.95, 3.4]
A3 [2.24, 2.44] [2.48, 4.16] [2.48, 3.47] [1.74, 1.74]

5.1.4 Aggregation of Attribute Information

Based on the attribute weights obtained and the decision matrix in Table 4, the evaluations of each
alternative under different attributes can be aggregated by the aggregation operator in Section 3.2.
First, the golden rule is used to transform the interval weight, without loss of generality, let ϕ = 0, the
normalized weight is w1 = 0.0883, w2 = 0.0079, w3 = 0.1192, and w4 = 0.7846. The weight obtained
can be considered as reliability, and the aggregated result of each alternative can be further calcu-
lated as L1 = {s−2(0.2935), s−1(0.0248), s0(0.0490), s1(0.0245), s2(0.0427), s−2s−1(0.0022), s1s2(0.0022),
S(0.5611)}, L2 = {s−1(0.0005), s0(0.2241), s1(0.1005), s2(0.5193), s0s1(0.0017), s1s2(0.0650), S(0.0889)},
L3 = {s−1(0.1550), s0(0.4386), s1(0.1366), s2(0.0006), s0s1(0.0120), s1s2(0.0406), S(0.2166)}.

5.1.5 Calculation of the Ranking of Alternatives

According to the aggregated results, the final ranking of alternatives can be calculated by
comparing the corresponding belief-based PLTSs. The sort value of Ai can be calculated based on
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Definition 4.3.1 as ρ(L1) = 0.2266, ρ(L2) = 0.4941, ρ(L3) = 0.2793. Therefore, the alternatives
are sorted as A2 �

1
A3 �

0.6754
A1. Based on the method proposed in this study, it can be concluded that

option A2 is the most suitable for emergency education, followed by A3 and A1. It was clear that option
A2 has the highest priority, but the relationship between A3 and A1 is less obvious. Note that APP is
indeed selected as the platform in the actual emergency education in S City, which is consistent with
the results obtained in this paper and can demonstrate the effectiveness of the proposed method.

5.2 Sensitivity Analysis
The decision method proposed in this study involves several parameters, α in OWA operator and

ϕ in the golden rule, respectively. In this section, the influence of parameters on the decision will be
analyzed.

The parameter in the golden rule will be analyzed first. The function of the golden rule is to convert
the interval weights into single values, where the parameter ϕ reflects the attitude of DMs. As can be
seen from Fig. 3a, as the attitude of DMs becomes optimistic, more weight is allocated to w1, while
the weights of other attributes decrease.

Figure 3: Sensitivity analysis of decision results to parameters ϕ and α

In addition, we analyze the influence of parameters ϕ and α on the decision result. In this case,
we need to prioritize 3 options, and there are 6 possible results, respectively (1) A1 � A2 � A3, (2)
A1 � A3 � A2, (3) A2 � A1 � A3, (4) A2 � A3 � A1, (5) A3 � A1 � A2 and (6) A3 � A2 � A1. In Fig. 3b,
we present the sorting result under the joint action of ϕ and α. It can be found that under different
parameters, there is only one sorting result, namely A2 � A3 � A1, indicating that in this case, the
sorting result is insensitive to parameters.

5.3 Comparison and Discussion
To further verify the effectiveness of the decision making method proposed in this paper, we

conduct a group of comparative experiments and analyze the experimental results. We choose several
decision methods with PLTS as the information expression to apply in the case in this paper. Since the
data type in this study is belief-based PLTS, to adapt it to PLTS environment, we propose the following
conversion method.



CMES, 2023, vol.136, no.2 2061

Definition 5.1. Let L be a belief-based PLTS on S = {s−τ , . . . , s−1, s0, s1, . . . , sτ}, it can be converted to
a PLTS as

p ( ι̃) =
∑

ι∈2S ,ι̃⊆ι

|ι̃ ∩ ι|
|ι| m (ι) , (50)

where |ι̃| denotes the cardinality of ι̃.

Based on Definition 5.1, the belief-based PLTSs in Table 3 can be converted to PLTSs, as shown in
Table 8. We will compare and analyze the different methods from the following aspects: aggregation
operator, score function, attribute weight, applications, and ranking. The results of the comparison
are shown in Table 9.

Table 8: The PLTS expression converted from belief-based PLTSs in Table 3

Expert Alternative Attribute
C1 C2 C3 C4

E1 A1 {s−2(0.45), s−1(0.55) {s1(0.4), s2(0.6)} {s−2(0.5), s−1(0.5)}
{s−2(0.2), s−1(0.2)

s0(0.2), s1(0.2),
s2(0.2)}

A2 {s2(1)} {s1(0.45), s2(0.55)} {s0(0.2), s1(0.5)

s2(0.3)} {s1(0.2), s2(0.8)}

A3 {s0(0.5), s1(0.5)}
{s−2(0.1), s−1(0.1)

s0(0.3), s1(0.4),
s2(0.1)}

{s1(1)}
{s−2(0.04),
s−1(0.74)s0(0.04),
s1(0.14), s2(0.04)}

E2 A1 {s−1(0.1), s0(0.9) {s1(0.55), s2(0.45)} {s0(0.6), s2(0.4)} {s−2(1)}

A2 {s1(0.4), s2(0.6)} {s2(1)} {s1(0.5), s2(0.5)}
{s−2(0.12),
s−1(0.12)s0(0.52),
s1(0.12), s2(0.12)}

A3 {s0(0.75), s1(0.25)} {s1(0.6), s2(0.4)} {s0(0.4), s1(0.45)

s2(0.15)} {s0(1)}

E3 A1

{s−2(0.14), s−1(0.44)

s0(0.14), s1(0.14),
s2(0.14)}

{s1(0.45), s2(0.55)}
{s−2(0.44), s−1(0.04)

s0(0.44), s1(0.04),
s2(0.04)}

{s−2(0.2), s−1(0.2)

s0(0.2), s1(0.2),
s2(0.2)}

A2 {s1(0.45), s2(0.55)} {s1(0.6), s2(0.4)} {s2(1)} {s0(1)}

A3 {s0(0.8), s1(0.2)} {s1(0.5), s2(0.5)} {s0(0.3), s1(0.35)

s2(0.35)}
{s−2(0.16),
s−1(0.36)s0(0.16),
s1(0.16), s2(0.16)}

Table 9: The comparison between different PLTS-based MADM method and the proposed method
in this study

Methods Aggregation
operator

Score function Attribute
weight

Applications Ranking

[12] OWA based on
D-S theory

An intuitive
method

Maximising
deviation

Emergency
decision

A2 � A3 �
A1

(Continued)
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Table 9 (continued)

Methods Aggregation
operator

Score function Attribute
weight

Applications Ranking

[13] Aggregation
operators for
PLTSs

Score and
deviation
degree

Ordered
weighted
geometric
operators

Company
development
decision

A2 � A3 �
A1

[16] Weighted
geometric
averaging
operator

Scores and
deviation
degrees

N/A Energy site
selection

A2 � A3 �
A1

[17] Aggregation
operators for
PLTSs

Maximum
deviation
method

Score and
deviation
degree

Tour recom-
mendation

A2 � A1 �
A3

[18] Power average
operator

Hamming
distance matrix

Combination
of subjective
and objective

Supplier
Selection

A2 � A3 �
A1

[21] Centered OWA
operator &
power average
operator

Possibility
degree

Deviation
maximizing

Sewage
treatment

A2 � A3 �
A1

[64] N/A Score and
deviation
degree

Grey relational
analysis

Waste
incineration
plants location

A2 � A1 �
A3

[60] N/A Two-level
possibility
degree

Best-worst
method

IoT platforms
evaluation

A2 � A3 �
A1

Our method OWA-based
soft likelihood
function

Belief
interval-based
possibility
degree

Combination
of subjective
and objective

Emergency
decision

A2 � A3 �
A1

Through comparison, it can be seen that the advantages of the proposed method in this paper
are as follows. First, the scope of expression of probabilistic linguistic information is extended, and
the related operations that can be used in decision-making, including the aggregation operator and
score functions, are proposed. Further, a decision-making framework is developed. In addition, in the
determination of attribute weights, we take both subjective and objective aspects into consideration to
avoid deviations caused by subjective weighting and make use of all decision information. Although
other methods have their own unique characteristics, the superiority of the method presented in this
study is quite obvious. From the ranking of the results, all methods suggest that option A2 should be
given the highest priority. Except for methods [17] and [64], A1 is superior to A3; all other methods
rank A1 last. The above findings also verify the usefulness of our approach. In conclusion, this study
offers many unique advantages in terms of its methods and results.
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6 Conclusions and Future Directions

Through a careful analysis of the relevant literature, we found that the traditional PLTS method
has deficiencies in its expression of uncertain information. To overcome this limitation, we incor-
porated the belief function theory into PLTS to construct belief-based PLTS and proposed a cor-
responding decision analysis approach that is able to address the aforementioned deficiencies through
methods such as probability allocation on multiple linguistic terms. We found that the OWA-based
soft likelihood function can be employed to define the aggregation operator of belief-based PLTS,
which has the advantage of being able to fully describe decision makers’ attitudes. In the actual
decision-making environment, belief-based PLTSs are usually reliable, so we also put forward an
aggregation operator that considers reliability. We found that the belief interval can express more
complete linguistic information, so we defined a score function that uses the belief interval to compare
different belief-based PLTSs. According to the results, a multi-attribute decision-making framework
was constructed for linguistic environments that is suitable for emergency decisions and can potentially
be applied to other areas. Finally, an example was given to demonstrate the usefulness and effectiveness
of the proposed method.

In future research, we aim to further develop these theories and methods based on belief-based
PLTS. First, we will study a variety of operations to further refine their mathematical forms. Second,
more methods, such as the analytic network process and the best-worst method, will be used to
determine attribute weights in the decision-making framework. Third, the decision problem presented
by the heterogeneous attributes of the belief-based PLTS environment will be further studied. Finally,
attribute interactivity should be taken into account in future research.
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