
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.025212

ARTICLE

A New Hybrid Approach Using GWO and MFO Algorithms to Detect
Network Attack

Hasan Dalmaz*, Erdal Erdal and Halil Murat Ünver

Department of Computer Engineering, Faculty of Engineering and Architecture, Kırıkkale University, Kırıkkale, 71450, Turkey

*Corresponding Author: Hasan Dalmaz. Email: hasandalmaz@gmail.com

Received: 28 June 2022 Accepted: 30 September 2022

ABSTRACT

This paper addresses the urgent need to detect network security attacks, which have increased significantly in recent
years, with high accuracy and avoid the adverse effects of these attacks. The intrusion detection system should
respond seamlessly to attack patterns and approaches. The use of metaheuristic algorithms in attack detection can
produce near-optimal solutions with low computational costs. To achieve better performance of these algorithms
and further improve the results, hybridization of algorithms can be used, which leads to more successful results.
Nowadays, many studies are conducted on this topic. In this study, a new hybrid approach using Gray Wolf
Optimizer (GWO) and Moth-Flame Optimization (MFO) algorithms was developed and applied to widely used
data sets such as NSL-KDD, UNSW-NB15, and CIC IDS 2017, as well as various benchmark functions. The ease
of hybridization of the GWO algorithm, its simplicity, its ability to perform global optimal search, and the success
of the MFO algorithm in obtaining the best solution suggested that an effective solution would be obtained by
combining these two algorithms. For these reasons, the developed hybrid algorithm aims to achieve better results
by using the good aspects of both the GWO algorithm and the MFO algorithm. In reviewing the results, it was
found that a high level of success was achieved in the benchmark functions. It achieved better results in 12 of the
13 benchmark functions compared. In addition, the success rates obtained according to the evaluation criteria in
the different data sets are also remarkable. Comparing the 97.4%, 98.3%, and 99.2% classification accuracy results
obtained in the NSL-KDD, UNSW-NB15, and CIC IDS 2017 data sets with the studies in the literature, they seem
to be quite successful.

KEYWORDS
Network; attack detection; hybrid; GWO; MFO

1 Introduction

Nowadays, it has become very popular to use machine learning and related techniques to find
solutions to real-world problems. The main feature of machine learning methods is the extraction of
characteristics from a large amount of data without human influence [1]. There are many different
classification studies that use machine learning methods and apply them to real-world problems.
Automated classification of epileptic Electroencephalogram (EEG) signals [2], anomaly detection [3],
iris recognition [4] are some of these studies. Network security is also a very important issue. The

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.025212
https://www.techscience.com/doi/10.32604/cmes.2023.025212
mailto:hasandalmaz@gmail.com

1278 CMES, 2023, vol.136, no.2

evolution of technology has increased network security in almost all fields. The continuous increase
in network traffic and networked systems, while bringing convenience in implementation, sometimes
results in the measures taken for network security being inadequate and creating a vulnerability for
possible network attacks. The Internet, which has become an essential part of our daily and working
lives, developments in Internet technologies, increasing use of Internet of Things (IoT) technology in
many fields, and Internet-based social networks can be considered as one of the main reasons for the
increase in network attacks [5]. Various reports on network security state that network attacks have
reached a disturbing level of scale and complexity, especially in recent years. Traditional methods such
as data encryption, user security, and the use of firewalls are used as initial security measures, but weak
passwords or password security breaches do not prevent unauthorized use, and user authentication
fails. However, firewalls may also suspect undefined or insecure security policies if there are errors in
the configuration [6]. In particular, threats to targets such as commercial, military, and public network
systems have made it necessary to increase cybersecurity, and awareness in this area [7].

Intrusion Detection Systems (IDS) aims detect and prevent attacks on the network from inside
or outside. In IDS, two types of systems are distinguished: signature-based and anomaly-based.
Signature-based systems store known and previously seen attack types in the database, while anomaly-
based systems evaluate real-time packets based on their anomalies with regular packets. Various
machine learning techniques are used for this evaluation [8]. In addition, IDS has some weaknesses.
The main drawback is that events that do not pose a threat are counted as attacks (false positives),
while events that pose a threat to the system are not counted as attacks (false negatives). For these
reasons, it is important to interpret the information received about the attacks.

Due to the anonymous structure of the Internet and the increasing ease of use, attacks on systems
have become relatively easy nowadays. The need for IDS is increasing day by day to protect important
and critical data [9]. As computer network attacks and their methods evolve, there are new approaches
to prevent these attacks. In particular, the algorithm used is of great importance to find the most
appropriate solution for network attack detection, which is considered as an optimization problem.
Algorithms for finding the optimal solution are divided into deterministic and stochastic classes. In
deterministic algorithms, the solution obtained does not change if the input value does not change.
However, structural difficulties may arise in finding the solution, and the desired solution may not be
obtained. For these reasons, metaheuristic algorithms, which are a nature-inspired type of stochastic
algorithm, are used. They are easy to construct, can be hybridized with metaheuristic algorithms,
can be easily applied to different problems, and avoid local optimal values [10,11]. Metaheuristic
algorithms are swarm and population-based algorithms. Examples of these algorithms include Salp
Swarm Algorithm (SSA), Genetic Algorithm (GA), Moth Flame Optimization (MFO), and Gray
Wolf Optimizer (GWO). While these metaheuristic algorithms have advantages, they also have some
disadvantages. Their weaknesses are in local search, stuckness, non-repeatable exact solutions, and
convergence uncertainties. In order to obtain a better solution, hybrid methods should be developed
that combine successful features by using more than one algorithm together [12]. In a developed hybrid
algorithm, an attempt is made to eliminate the weaknesses of the existing algorithms and achieve more
successful results.

In recent years, the topics of network attack detection and prevention have become very popular.
However, there are few studies in the literature on how algorithms can become more efficient in
classifying attacks. When developing a hybrid algorithm that uses different algorithms, it is necessary
to learn more about how the solution presented using benchmark functions can work more effectively
on which types of problems. New studies in this area continue to be of great importance, as
network security and the detection and prevention of network attacks is an area that needs constant

CMES, 2023, vol.136, no.2 1279

improvement. Each new study improves on the shortcomings of previous studies and sheds light on
future studies. For this reason, our work is significant because it applies not only to network security
but also too many problems that machine learning is designed to solve. In this study, a new hybrid
algorithm was developed and tested with NSL-KDD, UNSW-NB15, and CIC IDS 2017 data sets.
NSL-KDD one of these data sets widely used in the literature is an improved version of the KDD
Cup’99 data set. Although this dataset is an improved version of the KDD Cup’99 dataset, it has
limitations in handling modern attack types. The UNSW-NB15 and CIC IDS 2017 datasets, which
have had these shortcomings further reduced and their suitability for today’s attack types increased,
are also datasets that were evaluated as part of this study. To test the generalizability and robustness
of the algorithm developed in this study, these datasets, which are widely used in the literature, were
examined.

Unlike many similar studies, this study uses a newly introduced hybrid metaheuristic optimization
method called GWOMFO to solve benchmark problems and detect network intrusions. GWOMFO
contains the best features of GWO and MFO. The study aims to develop a new hybrid algorithm,
to show its effectiveness by achieving more successful results than existing algorithms, to introduce a
new hybrid algorithm into the literature so that it can be used on various problems in the scientific
community, and the study is of the original value in this regard. Briefly, the main contributions of the
study are as follows:

• We propose a new structure for network attack detection.

• The proposed hybrid approach is based on GWO and MFO algorithms. A hybrid solution is
presented that achieves higher accuracy by eliminating the weaknesses of these algorithms.

• In the development of a new algorithm, the contribution of tests against benchmark functions
is presented, and the developed algorithm has proven its success through successful results on
these functions.

• The newly developed hybrid algorithm has been tested on 3 different datasets and has achieved
successful results. The obtained results were compared with the studies in the literature and
showed that it is a successful algorithm with its performance.

The remainder of this paper is arranged as follows. Related works in the literature can be found
in Section 2, theoretical background in Section 3, materials and methods used in Section 4, and
experimental results in Section 5. Conclusions and future work can be found in the last part of the
study.

2 Related Works

Data mining and machine learning in network attack detection using various classification
methods are now widely used. The main reason for this is to detect different attacks and their types.
For effective and successful attack detection, the classification technique used is crucial. So far, several
techniques have been proposed to detect attacks and improve existing systems. The use of hybrid
methods is one of these techniques.

Researchers continue to develop hybrid IDS to detect network attacks. The most important
reason is that a hybrid classifier can improve its ability to detect unknown attacks, its threat detection
performance, and its detection speed depending on the underlying algorithms. This section presents
some studies in the literature on network attack detection and the limitations of these studies. In
addition, some recent studies on network security are mentioned and information about the trend
is given.

1280 CMES, 2023, vol.136, no.2

In the first of these studies, Teng et al. [13] proposed a hybrid method created with a 2-class
support vector mechanism and a decision tree. In the results obtained, the training time is much shorter
than the traditional Support Vector Machine (SVM) algorithm. However, the detection accuracy of
unknown or new attacks is quite low. Guo et al. [14] proposed a framework consisting of two stages,
anomaly detection and misuse detection. First, network connections pass through stage 1, and if an
anomaly is detected, it is forwarded to the anomaly detection component. If it was reported as normal
in the first stage, it is forwarded to the misuse detection component. Clustering and k-NN algorithms
are used in this structure. In the results obtained, 91.86% TPR and 93.29% accuracy were achieved.
Khraisat et al. [15] proposed a hybrid structure using One Class Support Vector Machine (OCSVM)
and C5.0 decision tree classifiers. They found that in this study, which aimed at a low false discovery
rate and high recognition accuracy, they achieved quite good results compared to existing studies.
Ahmim et al. [16] proposed a new IDS called HCPTCIDS that combines the probability estimates
of the classification tree. In this structure, which consists of two layers, the first layer contains a tree
structure and the second layer contains the final classifier structure of the first layer, which consists
of different probability estimates. It was found that the proposed system achieves higher performance
than most studies in the literature. Al-Yaseen et al. [17] proposed a new hybrid structure consisting
of Extreme Learning Machine, K-means Clustering and SVM algorithms. It was highlighted that this
proposed structure significantly improved the network intrusion detection results and they stated that
they achieved 95.75% detection accuracy. Kevric et al. [18] proposed a new hybrid structure consisting
of the combination of 3 different algorithms. In this study, using C4.5 decision tree, random tree, and
Naive Bayes algorithms, it was found that the hybrid structure gave better results than the individual
classifiers. Aslahi-Shahri et al. [19] developed a hybrid method consisting of GA and SVM algorithms.
They stated that they reached 97.3% True Positive Rate (TPR) in their results.

The main idea in developing a hybrid algorithm, which is also used in this study, is to create a
better combined model and obtain more accurate, better, and more reliable results. In another study
based on the idea of creating a new model by integrating multiple algorithms, Mahmod et al. [20]
proposed a hybrid system based on a multilayer perceptron. In this study, using Multi Layer Perceptron
(MLP) and Artificial Bee Colony (ABC) algorithms, it was found that the detection accuracy of
new attacks increased with the increase of food sources and colony size, but the success of intrusion
detection in multiple classes was low in the NSL-KDD. Elbasiony et al. [21] proposed a new hybrid
solution based on K-means and random forest algorithms for network attack detection. Reviewing
the obtained results, it was stated that the detection rate and false positive rate were better than many
of the compared studies. Panda et al. [22] proposed a hybrid attack detection algorithm consisting of
random forest, decision tree, and SVM algorithms to classify network attacks. However, the proposed
technique is insufficient to respond to all intrusion attempts. It does not achieve a high detection
rate and a low false alarm rate. Mohamad Tahir et al. [23] developed a hybrid intelligent system
based on Support Vecor Machine and K-means clustering algorithms for network attack detection.
In the results studied, it was found that they achieved 96.24% accuracy and 3.72% false alarm rate.
Gupta et al. [24] developed a hybrid algorithm in their study by combining the ABC and SVM
algorithm. This study found that the developed hybrid method achieves better average accuracy than
both ABC and SVM.

In general, only the accuracy values are given as a result in the studies in the literature. In this study,
additional analyzes were made on 3 different data sets according to the attack type. Comparisons
were also made with metrics such as accuracy, True Positive Rate (TPR), False Positive Rate (FPR).
In addition to these, calculations were made by keeping the number of features low in most studies,
which makes the reliability of the obtained result questionable. In addition to these studies, many

CMES, 2023, vol.136, no.2 1281

have appeared in the literature, especially in recent years that address network security and provide
solutions to security problems from various aspects. In recent years, many studies have appeared
in the literature on popular topics such as IoT and Fog/Cloud Computing that address security
issues. Regarding these issues, Kumar et al. [25] proposed a unified IDS for use in IoT environments.
Depending on the threshold confidence factor, the rules created from different decision tree models
are selected, and the analysis of the data set is performed. In this study, using the UNSW-NB15 data
set, they performed better than decision tree models in attack detection rates. Mousavi et al. [26]
proposed a hybrid model using ABC, Secure Hash Algorithm 256 (SHA256), and Elliptic Curve
Cryptography (ECC) to improve data security in IoT applications. It was found that the efficiency
of encryption and decryption operations can be increased by more than 50% and the execution time
for encryption is 52.31% lower than the method RSA-AES, when a private key is generated using
the algorithm ABC. Al-Qerem et al. [27] studied fog/cloud networks. In their study, they propose
concurrency control protocols for this subject. This study, which aims to reduce the communication
and computation load in fog and cloud nodes, shows that they succeed in improving network quality.
In another study, Bhushan et al. [28] proposed a new approach for flowchart sharing. This proposed
method aims to protect Software-Defined Networking (SDN) networks from DDoS attacks with flow
table overloading. The increased resilience of the network to the flow table has also been shown to be
successful in preventing DDoS attacks. Stergiou et al. [29] discussed the issue of privacy and security in
fog environments. They presented a cloud computing-based solution for working with Big Data. In this
solution, a security wall was inserted between the cloud server and the Internet to create an architecture
to improve network security. Mousavi et al. [30] proposed a study for IoT-based irrigation systems. A
cryptographic algorithm is presented to improve the security of these systems. This study highlights
that cryptography is one of the most important solutions to protect confidentiality and integrity
between nodes. Rivest Cipher (RS4), SHA−256 and ECC are used in this approach. Summary of
related works are shown below in Table 1.

Table 1: Summary of related works

Authors Year Method Dataset Advantages Disadvantages

Teng et al. [13] 2017 2-Class SVM and
Decision Tree

KDD99 The training time is much
shorter than SVM.

The accuracy of new or
unknown attack is very low.

Guo et al. [14] 2016 Clustering and
k-NN algorithm

KDD99 and
Kyoto

Two level hybrid solution
consisting of misuse detection
and anomaly detection.

TPR and accuracy values are
low.

Khraisat et al.
[15]

2020 One Class Support
Vector Machine
(OCSVM) and
C5.0 decision tree

NSL-KDD
and ADFA

This study is the integration of
the signature and anomaly
intrusion detection systems,
which takes advantage of the
respective strengths of SIDS
and AIDS.

There is no detailed analysis
according to attack types.

Ahmim et al.
[16]

2018 HCPTCIDS KDD99 and
NSL-KDD

Low false alarm rate. Low detection rate for DoS
and Probe attacks.

(Continued)

1282 CMES, 2023, vol.136, no.2

Table 1 (continued)
Authors Year Method Dataset Advantages Disadvantages

Al-Yaseen et
al. [17]

2017 Extreme Learning
Machine, K-means
Clustering and
Support Vector
Machine
algorithms

KDD99 High detection accuracy. Only KDD99 dataset was used
in the study. There is no
detailed analysis according to
attack types.

Kevric et al.
[18]

2017 Random Tree, C4.5
decision Tree,
NBTree

NSL-KDD Improved results according to
individual classifiers.

There is no detailed analysis
according to attack types.

Aslahi-Shahri
et al. [19]

2016 Genetic Algorithm
and SVM

KDD99 High detection accuracy. Only KDD99 dataset was used
in the study. There is no
detailed analysis according to
attack types.

Mahmod et
al. [20]

2015 MLP and Artificial
Bee Colony

NSL-KDD Easy to understand and simple. Low accuracy rate.

Elbasiony et
al. [21]

2013 A hybrid approach
using weighted
K-means and
random forest
algorithms

KDD99 The classifier can detect new
attack types.

Only KDD99 dataset was used
in the study.

Panda et al.
[22]

2012 Random forest,
decision tree, and
SVM

NSL-KDD High detection rate and low
false alarm rate.

Only binary classification has
been studied.

Mohamad
Tahir et al.
[23]

2015 Support Vecor
Machine and
K-means clustering

NSL-KDD High TPR and low False alarm
rate.

There is no detailed analysis
according to attack types.

Gupta et al.
[24]

2015 Artificial Bee
Colony Algorithm
(ABC) and SVM

KDD99 Improved results according to
individual classifiers.

Low detection rate and only
KDD99 dataset was used.

Yin et al. [31] 2017 Recurrent neural
networks

NSL-KDD With feature extraction, a
better representation of the
data set was obtained.

The training is performed
several times to get the best
learning rate and number of
hidden nodes.

Almi’ani et
al. [32]

2018 K-means clustering
and self organized
map

NSL-KDD Easy to understand and simple. Weak sensitivity and time
consuming method.

Kamarudin et
al. [33]

2017 Hybrid feature
selection using
wrapper and filter
Methods

NSL-KDD and
UNSW-NB15

It can detect unknown attacks. Uses only five features and
eight classes of dataset.

Naoum et al.
[34]

2013 Resilient
backpropagation
artificial neural
network

NSL-KDD High generalization
Fast converge.

Low detection rate.

Lei [35] 2017 Support vector
machine and
partical swarm
optimization

KDD99 and
DARPA

Improved SVM parameters
with PSO.

The system uses only 6 features.

3 Theoretical Background of Hybrid Approach

The following subsections provide the necessary background for hybridization. The most promi-
nent feature of the GWO algorithm is its social hierarchy. This hierarchy is also well adapted for solving

CMES, 2023, vol.136, no.2 1283

complex problems. However, to increase the performance of the algorithm, hybridization with the
MFO algorithm was considered. In general, the MFO algorithm can achieve good results in finding
the best solution, but it is not sufficient to refine the optimal solution in each iteration. For this reason,
it is aimed to improve performance by hybridizing with the GWO algorithm. By hybridizing these two
algorithms, the goal is to arrive at a precise solution and improve the convergence feature instead of
being trapped in local optima. GWO and MFO algorithms are examined in detail in this section.

3.1 Gray Wolf Optimizer (GWO) Algorithm
This algorithm, which considers the social leadership and hunting strategy of gray wolves, was

presented in 2014 by Mirjalili [11]. In gray wolves, which generally live in groups, groups consist of
5–12 individuals. Wolves referred to as alpha wolves are defined as leader wolves. There are four
main groups: Omega, delta, beta, and alpha wolves. Alpha wolves are the best wolves, while omega
wolves are the lowest. Alpha wolves are the decision-makers in managing the other wolves in the group,
hunting areas, and sleeping times.

The priority in the hunting strategy of gray wolves is to find the prey. Then the prey is besieged
under the leadership of the alpha wolf. Delta, beta, and alpha wolves are used as the three best solutions
for updating the location of wolves because they are believed to provide better information about the
location of the prey [36,37].

The GWO algorithm is based on the hierarchy of wolves as a model. The best solution found is
alpha, the second and third solutions are beta and delta. The remaining solutions are called omegas.
In this algorithm, alpha, beta, and delta give commands to omega, and omega searches the solution
space for these commands.

In this algorithm, the first step of the hunting process is to encircle the prey. Eqs. (1)–(4) used in
the mathematical model and their explanations can be found below.

X (t + 1) = Xp (t) − A.D (1)

In Eq. (1), X represents the position of the gray wolves, while Xp represents the position of the prey
and t represents the number of iterations. D is distance from prey. D in the equation is calculated with
Eq. (2), and A and C are the coefficients calculated with Eqs. (3) and (4), respectively. Using Eqs. (1)
and (2), the gray wolfs can randomly update its position around its prey.

D = ∣∣C.Xp (t) − X (t)
∣∣ (2)

A = 2α.r1 − α (3)

C = 2r2 (4)

The value α in Eq. (3) is a linearly reduced value from 2 to 0. It is calculated by Eq. (5). While
the TotIter value indicates the total number of iterations, r1 and r2 are the values randomly assigned
between 0 and 1 and used for the optimal solution. During the phase of attacking the prey, the value
of α is decreased and so is the range of change of A. If A has random values in the range [−1, 1],
the next position of the search agent is somewhere between its current position and the position of
the prey. Gray wolves usually search for alpha, beta, and delta positions. They separate from each
other to search for their prey and come together at the moment of attacking their prey. To model
the distribution mathematically, the parameter A is used with random values greater or less than 1.
This makes the search important and supports the global search of the GWO algorithm. Alpha, beta,
and delta wolves have good information about the potential location. However, the alpha, beta, and

1284 CMES, 2023, vol.136, no.2

delta solutions help the other wolves to update their positions. Eq. (6) contains the equation used for
position update.

α = 2 − t (2/TotIter) (5)

X (t + 1) = (X1 + X2 + X3)/3 (6)

X1 = |Xα − A1.Dα| (7)

X2 = |Xβ − A2.Dβ| (8)

X3 = |Xδ − A3.Dδ| (9)

The 3 best solutions at time t are represented by X1, X2, and X3. The values A1, A2 and A3 in their
equations are calculated according to Eq. (3). Eqs. (10)–(12) also calculate Dα, Dβ and Dδ. The values
for C1, C2, and C3 in these equations are calculated according to Eq. (4).

Dα = |C1.Xα − X | (10)

Dβ = |C2.Xβ − X | (11)

Dδ = |C3.Xδ − X | (12)

The alpha, beta, and delta species of gray wolves have exceptional knowledge of the current
location of their prey. Therefore, the three best solutions are recorded, and the other wolves can update
their positions relation to the positions of the best search agents. Eqs. (6)–(12) can be used in this
context. The pseudocode of the GWO algorithm is shown below in Table 2.

Table 2: GWO pseudo-code

Algorithm

01: Set the max value for iterations I
02: Create the population Pi (i = 1, 2, 3, . . . , k)

03: Assign initial values
04: Calculate fitness values for wolves
05: Xα = assign best agent
06: Xβ = assign second best agent
07: Xδ = assign third best agent
08: While (t < I) do
09: For each agent do
10: Perform update current agent with specified equation

Xt + 1 = (X1 + X2 + X3)/3
11: End For
12: Update parameters
13: Calculate fitness values

(Continued)

CMES, 2023, vol.136, no.2 1285

Table 2 (continued)

Algorithm

14: Update Xa, Xβ and Xδ

15: T = t + 1
16: End While
17: Return Xa

3.2 Moth-Flame Optimization (MFO) Algorithm
This algorithm, presented by Seyedali Mirjalili, was developed by exploiting the particular

navigation behavior of moths in nature, called cross-orientation [38]. When the moth moves, it
determines a fixed angle to the moon and flies at that angle. This movement enables the moth to
fly straight for long distances. However, if you observe moths, you will notice that they make a spiral
movement around the light. This situation is caused by artificial light [39]. The extreme proximity to
the light source and the attempt to maintain the fixed angle with respect to the light source reveals the
spiral trajectory.

In the mathematical model of this algorithm, the moth cluster is represented by the matrix M. The
fitness values are stored in an array called AM. At the beginning of the algorithm, a moth population
is assigned at a random location based on lower and upper bounds. The flame matrix is updated by
calculating the fitness values. It represents the flames and contains the best position each moth has
ever reached. The flames are also updated when the moth finds a better solution. Each moth must
update its position with only one of the flames. After each iteration, the positions are updated relative
to the flame. The position of the moths is updated with Eq. (13). In the equation given in Eq. (13), the
positions of the moths in the search space are updated based on the logarithmic spiral function.

S
(
Mi, Fj

) = Di.ebt. cos (2πt) + Fj (13)

Here i’th moth Mi, j’th flame Fj and distance between moth and flame in each iteration is expressed
in Di. In the equation, t is a randomly generated number between −1 and 1 and b is a constant. After
the moths are updated, the fitness values are re-evaluated. After this process, the best solutions are
updated and stored in the flame matrix. For the position update process to be more successful and
effective, the number of flames is reduced at each iteration step. The variation of the reduction in the
number of flames as a function of iteration, where N is the maximum number of flames, is shown in
Eq. (14). The number of flames for each iteration can be calculated using this equation.

FlameNo (N, I , T) = round(N − I(N − I)/T) (14)

In the equation, N expresses the maximum number of flames. In other equation expressions,
l represents the number of iterations, and T represents the maximum number of iterations. The
pseudocode of the MFO algorithm is shown in Table 3.

1286 CMES, 2023, vol.136, no.2

Table 3: MFO pseudo-code

Algorithm

01: Initialize the parameters to be used for Moth-flame
02: Randomly generate position for Moth Mt

03: For each i = 1:k do
04: Calculate the fitness values
05: End For
06: While (iteration ≤ max_iteration) do
07: Update Moth position of Mi

08: Using FlameNo = round(N−l(N−l)/T) equation detect number
of flames

09: Check the results for fitness values
10: If(iterations == 1) then
11: F = sort(Moth M)
12: AF = sort(Moth Array AM)
13: Else
14: F = sort(Mt−1, Mt)

15: AF = sort(Mt−1, Mt)

16: End If
17: For each i = 1:k do
18: For each j = 1:m do
19: Update the values
20: Using Di = |Mi − Fj| equation calculate the value
21: Using Mi = S

(
Mi, Fj

)
equation update M(i, j)

22: End For
23: End For
24: End While
25: Print best solution

4 Materials and Methods
4.1 Research Framework

In this part, the framework of the proposed study, which consists of 5 phases, is presented.

4.1.1 Data Preprocessing

This study used the data sets NSL-KDD, UNSW-NB15, and CIC IDS 2017, which are commonly
used for network attack detection. Usually, the data sets contain numerical and categorical data that
humans can read and understand. However, some machine learning and deep learning models cannot
handle categorical data. Therefore, normalization and transformation processes are performed to
clean unnecessary data and improve performance. The result is a more suitable data set.

CMES, 2023, vol.136, no.2 1287

In the conversion processes, the nominal values in the data set were converted to numeric values.
One-to-one digitization of the data used label coding and assigned a numeric value to each categorical
value. The result of these processes is a data set consisting of numeric values.

In normalization processes, a linear transformation was made on the data by using min-max
normalization, and the data was spread between 0–1. Eq. (15) used for this process is given below.

X ′ = (X − Min (X))

(Max (X) − Min (X))
(15)

The min.-max. normalization process examines at how far the field value is from the minimum
value and ranks these differences [40].

4.1.2 Hybrid Classification (GWOMFO)

Solutions in the literature for network attack detection systems face many problems such as low
detection accuracy, unbalanced detection rates, and difficulty of attack detection in real-time networks.
As a result, hybrid algorithms were developed to achieve the best possible accuracy by combining
several algorithms to solve these problems. In hybrid techniques, in general, each component has tasks
in different phases, such as preprocessing, classification, clustering, and they can also be used together
in the same phase. In this study, the hybrid structure obtained by combining the GWO and MFO
algorithms was applied and tested in the classification phase. Our aim is to develop a new metaheuristic
approach for training artificial neural network (ANN) and to show that the method we have developed
is also successful in the network attack detection system using the models trained with the algorithms
we have compared. The values in the population of the hybrid algorithm form the weights and biases
used in training the ANN. The data we observed and obtained show that the network was well trained
and successfully detects attacks compared to studies trained with other algorithms.

In this section, the developed hybrid algorithm is presented. We propose a method to develop a
hybrid IDS that combines two machine learning algorithms. In this hybrid model, GWO and MFO are
combined to create a hybrid model. Metaheuristic algorithms are algorithms that aim to find global
or near-optimal solutions. The ability of the GWO algorithm to find a global optimum and the success
of the MFO algorithm in achieving the best result suggest that better performance can be achieved by
combining these two algorithms.

In GWO, wolves update their positions according to the food source. During this update, the
alpha wolves and the other wolves try to be closest to the food source. Poorly obtained positions are
not considered in the GWO calculations. In the MFO algorithm, the best solutions are included in
the calculations to obtain the new solution. It is assumed that in this way the best solution is found
to reach the food source. The GWOMFO algorithm was developed based on the GWO algorithm,
whose pseudocode is given in Table 4. The equations developed for the GWOMFO algorithm, and
the explanations of these equations are as follows.

Table 4: GWOMFO pseudo-code

Algorithm

01: Initialize the parameters to be used
02: Create the population Xi (i = 1, 2, . . . , k)

(Continued)

1288 CMES, 2023, vol.136, no.2

Table 4 (continued)

03: Calculate the fitness values
04: Xa = assign best agent
05: Xb = assign second best agent
06: Xd = assign third best agent
07: Xm = assign Moth’s best agent
08: While (t < L) do
09: For each agent do
10: If (p ≤ 0, 5)
11: Using Eq. (6) update the position for current agent
12: Else
13: Using Eq. (16) update the position for current agent
14: End For
15: Update parameters
16: Recalculate the fitness values for all agents
17: Update Xa, Xb, Xd and Xm

18: t ++
19: End While
20: Return solution

The data set obtained after the data preprocessing described in the previous Section 4.1.1 was used
to train and test the proposed system. In this algorithm, the effect of the agents of the GWO algorithm
is improved based on the MFO algorithm. This method aims to improve the global convergence,
discovery, and exploitation performance instead of running the variant for countless generations
without improvement.

The flowchart of the developed hybrid algorithm is shown below in Fig. 1.

In the mathematical model for gray wolf hunting strategy, delta, beta, and alpha wolves are
assumed to provide better information about prey location. Therefore, the first three best solutions
are used to update the positions of wolves in the GWO algorithm. Moreover, the best solution from
the MFO algorithm was evaluated with the found solutions, and a new best solution was created.
The equation given by Eq. (16) is used to improve the position in the GWOMFO algorithm. In this
equation, the position obtained with the GWO agents is evaluated together with the position from the
MFO algorithm. The 4 best solutions at time t are represented by Xa, Xb, Xd and Xm.

Xt+1 = (Xa + Xb + Xd + Xm)/4 (16)

In this algorithm, hybridization was achieved by interfering with the standard GWO algorithm in
2 stages. First, a condition was added in the exploitation stage to improve hunting performance. Then,
Eq. (16) was applied. A new mechanism was added to improve the solution. This improved the hunting
mechanism of the GWO. After each iteration, the solution is evolved. Also, the added condition
improves the search ability and the exploration phase and increases the quality of the solution.

CMES, 2023, vol.136, no.2 1289

Figure 1: Flowchart of the proposed algorithm (GWOMFO)

GWOMFO is started by initializing the population size of both the MFO and GWO search agents.
After this process, the fitness value is calculated. After the value assignments for the agents are made,
the position updates of the existing search agents are performed using the appropriate equations
according to the value of parameter p up to the maximum number of iterations (L) in the loop. After
these operations, the fitness value is calculated, and the process continues until a suitable solution is
found.

The parameter p is a randomly generated number. If the random value is less than or equal to
0.5, position updates are performed using alpha, beta, and delta position equations. The calculation
is performed using Eq. (6) in this condition. The positions are updated if the new position is better
than the old one. If it is greater than 0.5, Eq. (16) is used and updated again, comparing it with the old
positions. As a result, the fitness value is calculated again. The best fitness value is returned.

In metaheuristic approaches, there are two main components directly related to the search ability
of an algorithm: exploration and exploitation. Exploration seeks to find promising solutions by
going deep into unknown territory. In other words, exploration aims to increase the diversity of
solutions. In contrast, exploitation aims to improve the quality of solutions by searching locally around

1290 CMES, 2023, vol.136, no.2

discoverable and promising solutions. These components conflict with each other and influence each
other. Therefore, an optimization algorithm should be designed with a correct and appropriate balance
between exploration and exploitation. With this hybrid algorithm, an improvement in exploration and
exploitation performance was observed. This is also reflected in the results obtained. The pseudocode
of the GWOMFO algorithm is shown in Table 4.

4.1.3 Training

Before modeling or estimation, data sets are separated into training and test data sets. In this
separation, the hold-out method was used, and 2/3 of the original data was reserved as the training
data set and 1/3 as the test data set [41]. Training of the algorithm was performed using the training
sets obtained in this way.

4.1.4 Testing

During the testing phase, eight swarm intelligence-based algorithms (GWO, MFO, DE, PSO,
MVO, JAYA, SSA, and SCA) and the algorithm developed in this study were applied separately and
tested on the NSL-KDD, UNSW-NB15, and CIC IDS 2017 data sets. The results obtained by each
algorithm were studied separately.

4.1.5 Evaluation

Several quantitative metrics are used to interpret the results obtained by the testing process
performed in the study. These metrics are:

Accuracy: Shows the percentage of correct estimates. It is calculated based on the Confusion
Matrix.

Accuracy = TPs + TNs/n

True Positive Rate (TPR): Total number of true positives.

TPR = TPs/(FNs + TPs)

False Positive Rate (FPR): The formula used to calculate this ratio is below.

FPR = FPs/TNs + FPs

Sensitivity (Recall): Shows how well positive situations are predicted.

Sensitivity = TPs/(TPs + FNs)

Precision: It is the criterion that shows the success in positive predictions.

Precision = TPs/(TPs + FPs)

F-measure: Harmonic average of the values for sensitivity and precision.

Studies were assessed and compared using these metrics.

4.2 Data Set Descriptions
In this study, 3 different data sets were examined. The data sets used in this study are known in

the literature as commonly used data sets for network attack detection. These data sets, which differ
in terms of attack types and number and type of features, were evaluated in the study to obtain more
accurate results about the generalizability and robustness of the developed algorithm. By using these
three different data sets, the performance changes and consistency of the algorithm developed in this
study will be examined. These data sets are listed below, respectively.

CMES, 2023, vol.136, no.2 1291

4.2.1 NSL-KDD

NSL-KDD is a commonly used data set for network attack detection and can also be represented
as a model. This data set has been used in many studies in the literature [42–46]. It is an extended
version of the data set known as KDD Cup’99. Several problems with the KDD Cup’99 data set
have been fixed with the NSL-KDD data set [47]. In particular, biased results should be avoided by
removing unnecessary records [48]. The NSL-KDD data set is the result of an evolution of the KDD
Cup’99 data set, but has the same characteristics as the KDD Cup’99 data set in terms of features. It
contains no unnecessary data, but enough data to train and test. These data sets, defined as attacks,
are classified into four main classes. These are DOS, Probe, User to Root (U2R), and Remote to Local
(R2L) attacks. The distribution of the data set used is shown in Table 5.

Table 5: Data distribution of dataset NSL-KDD

Class Record

DoS 45,927
U2R 52
Probe 11,656
R2L 995
Normal 67,343
Total 125,973

In the NSL-KDD data set, which contains 125,973 records, 67,343 were classified as normal, and
58,630 as attack. With 41 features (32 numeric, six binary, three nominal), this data set contains 24
different attacks and records labeled as normal. Features in NSL-KDD data set shown in Table 6.

Table 6: Features in NSL-KDD data set

Feature
no.

Feature name Feature
no.

Feature name Feature
no.

Feature name

1 Duration 15 Su_attempted 29 Same_srv_rate
2 Protocol Type 16 Num_root 30 Diff_srv_rate
3 Service 17 Num_file_creations 31 Srv_diff_host_rate
4 Flag 18 Num_shells 32 Dst_host_count
5 Src_Bytes 19 Num_access_files 33 Dst_host_srv_count
6 Dst_Bytes 20 Num_outbound_cmds 34 Dst_host_same_srv_rate
7 Land 21 Is_host_login 35 Dst_host_diff_srv_rate
8 Wrong_Fragment 22 Is_guest_login 36 Dst_host_same_src_port_rate
9 Urgent 23 Count 37 Dst_host_srv_diff_host_rate
10 Hot 24 Srv_count 38 Dst_host_serror_rate
11 Num_Failed_Logins 25 Serror_rate 39 Dst_host_srv_serror_rate
12 Logged_in 26 Srv_serror_rate 40 Dst_host_rerror_rate
13 Num_compromised 27 Rerror_rate 41 Dst_host_srv_rerror_rate
14 Root_shell 28 Srv_rerror, rate 42 Label

1292 CMES, 2023, vol.136, no.2

One of the most important factors in evaluating the performance of IDS and developing more
effective and efficient IDSs is the data sets used [49]. The most commonly used data sets to measure
the performance of IDS are KDD99 and NSL-KDD. Data sets are essential for developing IDS and
measuring its performance. The data set used should meet the time requirements and include current
attack types. The literature’s most commonly used KDD99 and NSLKDD data sets are different
from current conditions in terms of attack types and normal traffic scenarios, and the distribution
of training and testing data sets is also different. It is now assumed that current data sets should be
used in studies. To address these issues, data sets such as UNSW-NB15, CIC IDS 2017 have been
developed to capture current and modern attack types [50].

4.2.2 UNSW-NB15

This data set was created using the IXIA PerfectStorm tool at the Australian Cyber Security
Center (ACCS) Cyber Range Lab to merge modern, realistic normal network activity and attack
behavior from network traffic [50]. This data set has been used in many studies in the literature [51–
55]. Unlike NSLKDD, this data set contains original versions of the various identity states that are
common today. Attacks in this data set include fuzzer, analytics, backdoor, DoS, exploit, general,
reconnaissance, shellcode, and worm attacks. The distribution of the data set used is shown in Table 7.

Table 7: Data distribution of dataset UNSW-NB15

Class Record

DoS 12,264
Analytics 2,000
Exploits 33,393
General 40,000
Reconnaissance 10,491
Worm 130
Shellcode 1,133
Fuzzer 18,184
Backdoor 1,746
Normal 56,000
Total 175,341

This data set contains 175,341 records and 49 extracted features [56]. Features in UNSW-NB15
data set shown in Table 8.

Table 8: Features in UNSW-NB15 data set

Feature no. Feature name Feature no. Feature name Feature no. Feature name

1 Srcip 18 Dpkts 35 Ackdat
2 Sport 19 Swin 36 Is_sm_ips_ports
3 Dstip 20 Dwin 37 Ct_state_ttl

(Continued)

CMES, 2023, vol.136, no.2 1293

Table 8 (continued)

Feature no. Feature name Feature no. Feature name Feature no. Feature name

4 Dsport 21 Stcpb 38 Ct_flw_http_mthd
5 Proto 22 Dtcpb 39 Is_ftp_login
6 State 23 Smeansz 40 Ct_ftp_cmd
7 Dur 24 Dmeansz 41 Ct_srv_src
8 Sbytes 25 Trans_depth 42 Ct_srv_dst
9 Dbytes 26 Res_bdy_len 43 Ct_dst_ltm
10 Sttl 27 Sjit 44 Ct_src_ltm
11 Dttl 28 Djit 45 Ct_src_dport_ltm
12 Sloss 29 Stime 46 Ct_dst_sport_ltm
13 Dloss 30 Ltime 47 Ct_dst_src_ltm
14 Service 31 Sintpkt 48 Attack_cat
15 Sload 32 Dintpkt 49 Label
16 Dload 33 Tcprtt
17 Spkts 34 Synack

4.2.3 CIC IDS 2017

This data set was developed by the University of New Brunswick, School of Computer Science,
in 2017. It is an improved version of the ISCX 2012 data set [57]. This data set has been used in many
studies in the literature [57–61]. It consists of a generalization of real network traffic. The total number
of records in this dataset is 2,829,463. 2,358,036 of these records are normal, and the remaining records
are in the attack class. In this dataset, attacks are examined in 7 categories. These are DoS, DDoS,
Botnet, Port Scan, Infiltration, Web Attack and HeartBleed attacks. The distribution of the data set
used is shown in Table 9.

Table 9: Data distribution of dataset CIC IDS 2017

Class Record

DoS 252,661
DDoS 41,835
Botnet 1,966
Port Scan 158,930
Infiltration 36
Web Attack 15,988
HeartBleed 11
Normal 2,358,036
Total 2,829,463

There are more than 80 features in this dataset. Features in CIC IDS 2017 data set shown in
Table 10.

1294 CMES, 2023, vol.136, no.2

Table 10: Features in CIC IDS 2017 data set

Feature
no.

Feature name Feature
no.

Feature name Feature
no.

Feature name

1 Flow ID 29 Fwd IAT Std 57 ECE Flag Count
2 Source IP 30 Fwd IAT Max 58 Down/Up Ratio
3 Source Port 31 Fwd IAT Min 59 Average Packet Size
4 Destination IP 32 Bwd IAT Total 60 Avg Fwd Segment Size
5 Destination Port 33 Bwd IAT Mean 61 Avg Bwd Segment Size
6 Protocol 34 Bwd IAT Std 62 Fwd Avg Bytes/Bulk
7 Time stamp 35 Bwd IAT Max 63 Fwd Avg Packets/Bulk
8 Flow Duration 36 Bwd IAT Min 64 Fwd Avg Bulk Rate
9 Total Fwd Packets 37 Fwd PSH Flags 65 Bwd Avg Bytes/Bulk
10 Total Backward Packets 38 Bwd PSH Flags 66 Bwd Avg Packets/Bulk
11 Total Length of Fwd Pck 39 Fwd URG Flags 67 Bwd Avg Bulk Rate
12 Total Length of Bwd Pck 40 Bwd URG Flags 68 Subflow Fwd Packets
13 Fwd Packet Length Max 41 Fwd Header Lenth 69 Subflow Fwd Bytes
14 Fwd Packet Length Min 42 Bwd Header Lenth 70 Subflow Bwd Packets
15 Fwd Pck Length Mean 43 Fwd Packets/s 71 Subflow Bwd Bytes
16 Fwd Packet Length Std 44 Bwd Packets/s 72 Init_Win_bytes_fwd
17 Bwd Packet Length Max 45 Min Packet Length 73 Act_data_pkt_fwd
18 Bwd Packet Length Min 46 Max Packet Length 74 Min_seg_size_fwd
19 Bwd Packet Length Mean 47 Packet Length Mean 75 Active Mean
20 Bwd Packet Length Std 48 Packet Length Std 76 Active Std
21 Flow Bytes/s 49 Packet Len. Variance 77 Active Max
22 Flow Packets/s 50 FIN Flag Count 78 Active Min
23 Flow IAT Mean 51 SYN Flag Count 79 Idle Mean
24 Flow IAT Std 52 RST Flag Count 80 Idle Packet
25 Flow IAT Max 53 PSH Flag Count 81 Idle Std
26 Flow IAT Min 54 ACK Flag Count 82 Idle Max
27 Flow IAT Total 55 URG Flag Count 83 Idle Min
28 Fwd IAT Mean 56 CWE Flag Count 84 Label

5 Experimental Results

In this section, information about the simulation and its environment is given, and the results
obtained with the hybrid algorithm are explained and discussed.

5.1 Simulation Setup
To briefly discuss the working environment and the programs used in this study, the computer

configurations used for the proposed method are as follows. Two computers are used for development
and deployment. The development computer is a home PC with an Intel Core i7-4500U CPU, 16 GB
RAM, and a 1 TB SATA HDD. The deployment computer has Intel Xeon E5-2620 v4 2.10 GHz
processors (8 cores) server, 64 GB RAM, 512 GB SSD, and 1 TB SATA HDD. In addition, Python
version 3.7.6 was used as the programming language and programmed with Spyder IDE.

CMES, 2023, vol.136, no.2 1295

In all experiments, the values of common parameters such as total number of iterations and
population size used in each algorithm are chosen to be the same. Equal search agent, equal run, and
equal iteration are set in all run algorithms. The search agent used in all algorithms is set to 30, the
number of runs is set to 30, and the number of iterations is set to 100. The developed algorithm was first
tested in benchmark functions and its results were examined. Then, it was tested on 3 different data sets
that are commonly used in the literature. It is aimed to ensure the consistency and generalizability of
the algorithm by running the developed algorithm under the same conditions on 3 different data sets.

In the study, Evolopy framework which developed for ANN training, optimization problem
solving, clustering operations and feature selection was used. Each algorithm studied may use its own
parameters, may use various constant values, and these may vary according to the applied problems.
The values in the Evolopy framework are used in the parameter values of the algorithms [62]. In this
study, the method in which the number of hidden neurons is (2 × N + 1) was chosen; N is the number
of features in each dataset. For each dataset, all input features values are normalized in the range [0, 1]
with normalization technique Eq. (15).

5.2 Benchmark Functions and Results
Benchmark functions to test and validate newly created optimization algorithms with different

properties. One of the most important properties of these functions is that they are differentiable,
decomposable, scalable, continuous, unimodal, bimodal, continuous, and discontinuous. These prop-
erties can determine which problems an algorithm will succeed on.

The hybrid algorithm developed in this study was tested using benchmark functions with different
characteristics and compared with various optimization algorithms from the literature. These func-
tions, studied in 2 groups as single-mode and multi-mode, are characterized as single-mode functions
containing only one global optimum, and functions with more than one local and global optimum are
called multi-mode benchmark functions. Functions F1–F7 are called unimodal functions, which have
a single solution. This makes the convergence rate very suitable for testing and applying algorithms. As
a result, the GWOMFO exploitation capability can be evaluated by using these unimodal functions.
In other functions, such as F8–F13, which are multimodal functions and they are useful to assess our
proposed algorithm in terms of exploration. For multimode benchmark functions, there is more than
one optimal value, and one of them is the global optimum while the other values are defined as local
optima. This is a more complex problem than for single-mode benchmark functions. If the discovery
process of an evolved algorithm is poorly designed, no effective wide-angle search can be performed,
resulting in the algorithm getting stuck in the local optimum. For this reason, these functions seem to
be the most difficult problem for many algorithms.

In this study, 13 functions were investigated as single-mode and multi-mode. These functions
provide an important starting point to test the reliability of a developed algorithm. There are many
local optimal points in the solution spaces for these functions. As the complexity increases, the number
of local optima also increases. In the following, we describe in detail each of the benchmark functions
used in this study.

These studied functions are listed in Table 11.

1296 CMES, 2023, vol.136, no.2

Table 11: Characteristics of the benchmark test functions
Mathematical formulation Name D Mode Range fmin

F1(x) = ∑n
i=1X2

i Sphere 30 Single [−100, 100] 0

F2(x) = ∑n
i=1

∣∣ xi
∣∣ + ∏n

i=1| xi| Schwefel 2.22 30 Single [−10, 10] 0

F3(x) = ∑n
i=1

(∑i
j−1xj

)2
Schwefel 1.2 30 Single [−100, 100] 0

F4(x) = maxi {|xi| , 1 ≤ i ≤ n} Schwefel 2.21 30 Single [−100, 100] 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i)
2 + (

xi − 1)2
]

Rosenbrock 30 Single [−30, 30] 0

F6(x) = ∑n
i=1([xi + 0.5])2 Step 30 Single [−100, 100] 0

F7(x) = ∑n
i=1ix4

i + random [0, 1] Quartic 30 Single [−1.28, 1.28] 0

F8(x) = ∑n
i=1−xi sin

(√|xi|
)

Schwefel 30 Multi [−500, 500] –418.9829xB

F9(x) = ∑n
i=1[x2

i − 10 cos (2πxi) + 10] Rastrigin 30 Multi [−5.12, 5.12] 0

F10(x) = 20exp(−0.2

√
1
n

∑n
1x2

i) –exp
(

1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e Ackley 30 Multi [−32, 32] 0

F11(x) = 1
4000

∑n
1x2

i − ∏n
i=1 cos

(
xi√

i)

)
+ 1 Griewank 30 Multi [−600, 600] 0

F12(x) = π

n
{10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] Penalized 30 Multi [−50, 50] 0

+yn − 1)2} + ∑n
i=1u(xi, 10, 100, 4)

yi = 1 + xi + 1
4

u (xi, a, k, m) =
⎛
⎝k(xi − a)m xi > a

0 − a < xi < a
k(−xi − a)m xi < −a

⎞
⎠

F13(x) = 0.1{sin2 (3πx1) + ∑n
i=1(xi − 1)2[1 + sin2 (3πxi + 1)] Penalized2 30 Multi [−50, 50] 0

+(xn − 1)2[1 + sin2 (2πxn)]} + ∑n
i=1u(xi, 5, 100, 4)

In these functions, F1 is continuous, differentiable, separable and convex. x is a n-dimensional
vector located within the range [−100; 100]. The global minimum is located at the origin with a function
value of zero. F2 is continuous, differentiable, non-separable and scalable. x is a n-dimensional vector
located within the range [−10.0; 10.0]. The global minimum is located at the origin with a function
value of zero. F3 is continuous, differentiable, non-separable and scalable. x is a n-dimensional vector
located within the range [−100.0; 100.0]. The global minimum is located at the origin with a function
value of zero. F4 is continuous, non-differentiable, separable and scalable. x is a n-dimensional vector
located within the range [−100.0; 100.0]. The global minimum is located at the origin with a function
value of zero. F5 is continuous, differentiable, non-separable and scalable. x is a n-dimensional vector
located within the range [−30.0; 30.0]. The global minimum is located at (1, . . . , 1) with a function
value of zero. F6 is discontinuous, non-differentiable, separable and scalable. x is a n-dimensional
vector located within the range [−100.0; 100.0]. The global minimum is located at (0.5, . . . , 0.5) with
a function value of zero. F7 is continuous, differentiable, separable and scalable. x is a n-dimensional
vector located within the range [−1.28; 1.28]. The global minimum is located at (0, . . . , 0) with a
function value of zero. F8 is continuous, differentiable, separable and scalable. x is a n-dimensional
vector located within the range [−500; 500]. The global minimum is located at ±[π(0.5 + k)]2 with a
function value of −418.983. F9 is continuous, differentiable, convex and separable. In this function, x

CMES, 2023, vol.136, no.2 1297

is a n-dimensional vector located within the range [−5.12; 5.12]. The global minimum is located at the
origin and its function value is zero. F10 is continuous, differentiable, non-convex and non-separable. x
is a n-dimensional vector that is normally located within the range [−32.0; 32.0]. Ackley’s function is a
highly multimodal function with regularly distributed local optima. The global minimum is located at
the origin and its value is zero. F11 is non-separable and non-convex with several local optima within
the search region defined by [−600, 600]. The global minimum is located at the origin and its value is
zero. F12 is discontinuous, no separable, and non-convex functions. x is a n-dimensional vector located
within the range [−50.0; 50.0]. The exact global minimum for all of these problems is achieved for an
objective function value of zero. F13 is discontinuous, nonseparable, and non-convex functions. x is a
n-dimensional vector located within the range [−50.0; 50.0]. The exact global minimum for all these
problems is obtained with an objective function value of zero. The developed algorithm was applied
to these 13 benchmark functions.

Each function was run 30 times for the benchmark functions, and the standard deviation and
mean were calculated based on the obtained results. The developed hybrid algorithm was applied to
benchmark functions, and the results were compared with algorithms based on swarm intelligence such
as DE, PSO, MVO, JAYA, SSA, SCA. Table 12 contains the comparison results. This table contains
the mean and standard deviation of the algorithms used in the benchmark functions. When examining
the means and standard deviations, it was found that GWOMFO generally achieved better means and
standard deviations for all benchmark functions.

In addition to these results, the average convergence curves of the benchmark functions optimized
by GWOMFO are shown in Fig. 2.

The graphs in Fig. 2 represent the convergence curves generated for benchmark functions. In these
graphs, the horizontal axis represents the index of repetitions, and the vertical axis is the divergence
between two consecutive objective function values. The convergence curve shows the value of the
objective function compared to the computation time during minimization (model calibration). This
testing procedure aims to solve the optimization problems in earlier iterations, reduce the convergence
time and obtain a better solution. Thirteen benchmark functions known in the literature were used for
the experimental studies. The ultimate goal of optimization is either to reduce the convergence time to
obtain the best solution or to increase the efficiency of the algorithm. In this context, the main goal
of the developed GWOMFO algorithm focuses on reducing the convergence time, obtaining effective
results and improving the local search capability. In this way, the algorithm is designed to reach the
solution in fewer iterations. By looking at the change on the y-axis, you can see how fast it converges
to the optimal result. In this case, we can say that the most suitable individuals are selected in early
iterations to reduce the computational cost of the algorithm.

1298 CMES, 2023, vol.136, no.2

T
ab

le
12

:C
om

pa
ri

so
n

of
be

nc
hm

ar
k

fu
nc

ti
on

re
su

lt
s

of
th

e
pr

op
os

ed
al

go
ri

th
m

(G
W

O
M

F
O

)a
nd

va
ri

ou
s

sw
ar

m
in

te
lli

ge
nc

e
ba

se
d

al
go

ri
th

m
s

F
P

ro
po

se
d

al
go

ri
th

m
(G

W
O

M
F

O
)

D
E

P
SO

M
V

O
JA

Y
A

SS
A

SC
A

av
g

st
d

av
g

st
d

av
g

st
d

av
g

st
d

av
g

st
d

av
g

st
d

av
g

st
d

F
1

0
0

12
63

.8
7

40
0.

42
83

6.
88

2.
27

53
4

36
.0

4
10

.3
86

85
1

78
6.

1
51

7.
81

5
30

5.
25

60
.0

19
43

44
.5

27
31

.6
52

18
6

F
2

0
0

28
.9

7
6.

49
09

31
14

.1
7.

13
21

55
75

.6
3

61
.9

52
68

9
12

.2
6

4.
89

49
91

8.
24

0.
94

79
5.

6
2.

97
68

41
02

F
3

9.
72

53
.2

31
97

47
71

5.
65

84
85

.4
33

12
36

.1
1

48
5.

95
93

66
71

.8
5

17
47

.6
72

5
36

81
2

11
79

9.
82

28
53

.3
10

56
.6

31
77

1
12

07
6.

90
14

1
F

4
0

0
75

.6
7

6.
84

15
25

5.
31

1.
66

82
42

22
.4

6
8.

27
50

30
5

55
.1

3
9.

85
57

86
12

.8
7

2.
87

82
64

.9
4

10
.0

76
44

51
7

F
5

28
.8

4
0.

25
68

05
60

35
39

.7
37

74
97

.8
51

09
.0

8
16

47
5.

11
26

90
.7

3
22

16
.8

96
4

86
91

49
74

91
94

.9
13

07
3

60
20

.2
8E

+
06

87
02

09
0.

46
5

F
6

3.
32

0.
41

68
49

12
08

.8
5

29
8.

91
81

6.
17

3.
01

17
35

.9
6

8.
92

01
99

5
84

7.
74

37
4.

59
94

31
9.

89
70

.3
95

39
96

25
21

.3
25

61
3

F
7

0
0.

00
03

2
0.

59
0.

23
52

18
5.

3
4.

66
37

97
0.

14
0.

04
10

47
5

0.
89

0.
69

83
1

0.
15

0.
05

6
5.

97
5.

75
88

27
53

1
F

8
−3

91
7.

17
46

6.
64

63
−4

59
7.

06
34

1.
67

23
−3

25
4.

98
49

2.
19

64
−7

18
7.

4
62

7.
55

62
5

−4
24

7
52

8.
44

35
−5

82
5.

1
31

8.
35

−3
28

3
29

2.
65

05
87

6
F

9
7.

5
31

.8
96

74
24

6.
02

19
.0

27
49

21
3.

72
31

.3
23

9
16

4.
88

36
.0

19
50

4
20

0.
97

36
.8

31
16

12
5.

4
22

.7
25

15
8.

98
53

.8
06

37
74

4
F

10
0

1.
5E

−3
1

10
.0

6
2.

13
43

96
3.

11
0.

44
07

12
4.

82
4.

15
40

69
9.

44
2.

63
51

21
5.

49
0.

35
57

17
.4

7
4.

58
78

43
63

8
F

11
0

0
11

.7
1

3.
32

69
86

18
.5

8
4.

77
47

02
1.

34
0.

10
50

40
4

8.
32

4.
73

85
95

3.
85

0.
48

45
36

.3
1

22
.9

44
77

71
6

F
12

0.
5

0.
09

11
82

11
59

20
.1

29
93

82
.4

1.
11

1.
19

94
64

8.
75

3.
45

50
98

3
49

77
55

93
04

42
.9

8.
47

3.
64

03
4E

+
07

34
01

65
24

.7
2

F
13

2.
8

0.
19

30
06

65
34

90
.9

58
70

23
.1

2.
28

1.
07

41
85

24
.9

1
17

.6
91

80
2

2E
+

06
33

41
60

9
20

.5
3

7.
38

44
74

07
E

80
03

11
89

.9
9

N
ot

es
:a

vg
av

er
ag

e;
S

T
D

st
an

da
rd

de
vi

at
io

n
=

B
es

t
R

es
ul

t.

CMES, 2023, vol.136, no.2 1299

0

5000

10000

15000

20000

25000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F1 GWOMFO

0

2000

4000

6000

8000

10000

12000

14000

16000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F2 GWOMFO

0

10000

20000

30000

40000

50000

60000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F3 GWOMFO

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F4 GWOMFO

Figure 2: (Continued)

1300 CMES, 2023, vol.136, no.2

0

5000000

10000000

15000000

20000000

25000000

30000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F5 GWOMFO

0

5000

10000

15000

20000

25000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F6 GWOMFO

0
2
4
6
8

10
12
14
16

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F7 GWOMFO

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F8 GWOMFO

Figure 2: (Continued)

CMES, 2023, vol.136, no.2 1301

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F9 GWOMFO

0

2

4

6

8

10

12

14

16

18

20

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F10 GWOMFO

0

50

100

150

200

250

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F11 GWOMFO

0

5000000

10000000

15000000

20000000

25000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0A

vg
 C

on
ve

rg
en

ce
 C

ur
ve

Iteration

F12 GWOMFO

Figure 2: (Continued)

1302 CMES, 2023, vol.136, no.2

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

A
vg

 C
on

ve
rg

en
ce

 C
ur

ve

Iteration

F13 GWOMFO

Figure 2: Average convergence curves for benchmark functions optimized with GWOMFO

The GWOMFO algorithm appears to be quite successful in testing benchmark functions. How-
ever, the success of the algorithm needs to be demonstrated statistically. For this purpose, Wilcoxon
rank sum, a test for data analysis, was applied. It was assumed that the p-value is smaller than 0.05 to
express a significant difference. The results obtained are shown in Table 13.

Table 13: Wilcoxon rank sum test results

F Proposed algorithm
(GWOMFO)

DE PSO MVO JAYA SSA SCA

F1 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F2 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F3 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F4 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F5 N/A 5.30E-10 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F6 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F7 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F8 3.69E-01 5.15E-01 N/A 2.69E-09 2.84E-11 4.19E-01 2.84E-11
F9 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F10 N/A 2.84E-11 2.84E-11 6.17E-03 3.16E-07 5.12E-09 4.19E-11
F11 N/A 5.46E-06 2.78E-11 2.84E-11 4.46E-03 2.84E-11 2.84E-11
F12 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
F13 N/A 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11 2.84E-11
Note: NA = Not applicable.

The best algorithm was compared with other algorithms in each statistical test. When examining
the results, it was found that the developed algorithm has statistically significant differences. For this
reason, it can be concluded that the algorithm is quite successful.

CMES, 2023, vol.136, no.2 1303

5.3 Network Intrusion Detection Results
In this section, the results of the hybrid algorithm developed in detecting network attacks are

shared. The developed GWOMFO algorithm was applied to 3 different data sets. Confusion matrix
was used to evaluate the performance of the proposed technique. The results obtained with 3 different
datasets using Accuracy, TPR and FPR metrics are shown in Table 14. The population size was chosen
as 30, the number of iterations as 100, and applied.

Table 14: Performance of GWOMFO (%)

Datasets Accuracy TPR FPR

NSL-KDD 97.4 95.7 8.64
UNSW-NB15 98.3 97.2 5.71
CIC IDS 2017 99.2 98.3 4.11

The developed algorithm was compared with the algorithms on which it is based. The accuracy
results obtained are shown in Fig. 3.

95
.7

92
.5

97
.4

96
.1

92
.8

97
.8

96
.3

92
.9

97
.7

GWO MFO PROPOSED ALGORITHM

ACCURACY

NSL-KDD UNSW-NB15 CIC IDS 2017

Figure 3: Comparison of accuracy results of GWO, MFO and the proposed algorithm (GWOMFO)
on 3 different datasets

It was found that the proposed algorithm achieved the best result in terms of accuracy in all 3 data
sets. The proposed algorithm has achieved more successful results than GWO algorithm and MFO
algorithm. In other words, better results were obtained by combining GWO and MFO algorithms.
However, other criteria within the scope of the study were examined, and the results are shown in
Table 15.

Table 15: Comparison of the proposed algorithm (GWOMFO), GWO and MFO on 3 different
datasets

Classifiers Measure NSL-KDD UNSW-NB15 CIC IDS 2017

GWO Accuracy 95.7 96.1 96.3
Precision 94.9 95.3 95.5
Sensitivity 94.7 94.8 95.1

(Continued)

1304 CMES, 2023, vol.136, no.2

Table 15 (continued)

Classifiers Measure NSL-KDD UNSW-NB15 CIC IDS 2017

F-measure 94.8 95.0 95.3
MFO Accuracy 92.5 92.8 92.9

Precision 92.0 92.4 93.1
Sensitivity 91.4 92.0 92.7
F-measure 91.7 92.2 92.9

Proposed Algorithm
(GWOMFO)

Accuracy 97.4∗ 97.8∗ 97.7∗

Precision 97.7∗ 97.4∗ 97.8∗

Sensitivity 96.5∗ 97.2∗ 97.4∗

F-measure 97.2∗ 97.3∗ 97.6∗

Note: ∗: Best Results.

It is found that the developed hybrid algorithm achieves better results in terms of accuracy,
precision, sensitivity and F-measure. The successes of various swarm intelligence-based algorithms
performing classification processes in the literature are compared to demonstrate the success of the
developed hybrid algorithm in network attack detection. For comparison, these swarm intelligence-
based algorithms and proposed algorithm were run with the same parameters on 3 datasets. The
comparison results considering the accuracy measure are shown in the graph in Fig. 4.

86

93
.2

89
.8

88

86

90

97
.4

87
.1

94

90
.5

89
.5

87
.2

90
.6

97
.8

88

94
.2

91
.3

89
.7

87
.9

91
.4

97
.7

DE PSO MVO JAYA SSA SCA PROPOSED

ACCURACY

NSL-KDD UNSW-NB15 CIC IDS 2017

Figure 4: Comparison of the accuracy results of various swarm intelligence based algorithms and
proposed algorithm (GWOMFO) on 3 different datasets

It has been shown that the algorithm proposed in the accuracy measurement is the most successful
among all the algorithms compared. The results of the comparison considering other metrics are
shown in Table 16.

CMES, 2023, vol.136, no.2 1305

Table 16: Comparison of various swarm intelligence based algorithms and the proposed algorithm
(GWOMFO) on 3 different datasets

Data sets Measure DE PSO MVO JAYA SSA SCA Proposed
algorithm
(GWOMFO)

NSL-KDD Accuracy 86.0 93.2 89.8 88.0 86.0 90.0 97.4∗

Precision 88.8 94.1 88.0 90.8 87.9 90.8 97.7∗

Sensitivity 88.4 93.7 87.5 92.3 86.7 92.0 96.5∗

F-measure 88.6 93.9 88.0 91.5 87.3 91.4 97.2∗

UNSW-NB15 Accuracy 87.1 94.0 90.5 89.5 87.2 90.6 97.8∗

Precision 89.3 94.3 90.2 89.7 88.0 91.5 97.4∗

Sensitivity 89.1 94.6 91.3 90.3 88.5 91.6 97.2∗

F-measure 89.2 94.4 90.7 90.0 88.2 91.5 97.3∗

CIC-IDS 2017 Accuracy 88.0 94.2 91.3 89.7 87.9 91.4 97.7∗

Precision 89.3 94.3 90.7 90.2 88.3 91.6 97.8∗

Sensitivity 88.7 93.6 91.8 90.5 88.4 91.9 97.4∗

F-measure 89.0 93.9 90.5 90.3 88.3 91.7 97.6∗

Note: ∗Best Results.

In this study, the performance of the developed algorithm was investigated in three different
datasets depending on the type of attack. The obtained results were compared with studies performed
on these datasets. Overall, GWOMFO proved to be quite successful and achieved a high detection rate
for all types of attacks. The results are shown in Figs. 5–7.

0
10
20
30
40
50
60
70
80
90

100

DoS

Probe

U2R

R2L

Siam-IDS
[63]

85.37

48.66

56.72

33.25

HFR-MLR
[64]

83.94

85.17

7

38.53

RF [65]

75.8

64.8

4.9

52.2

MDPCA-
DBNs
[66]

81.09

73.94

6.5

17

I-ELM
[67]

76.37

83.36

11

32.35

TFTC [68]

88.2

87.32

70.15

42

Proposed

96.3

95.21

82.13

77.46

NSL-KDD

Figure 5: Comparison of TPR results on NSL-KDD dataset

1306 CMES, 2023, vol.136, no.2

0
10
20
30
40
50
60
70
80
90

100

ABC-AFS
[52]

DO-IDS [55] SVM [69] Naive Bayes
[70]

Proposed

DoS 83.3 93.1 95.2 92.97 98.11

Backdoor 63.4 98 99.3 90.02 98.41

Exploits 63.7 92.6 88.8 46.7 94.33

Reconnaissance 49.3 98.8 97.9 71.42 99.02

Fuzzers 60.3 95.3 86.8 80.03 95.72

Worms 55.3 100 99.9 99 99.4

General 87.3 100 97.3 92.61 99.37

Shellcode 70.9 99.2 99.2 75.24 99.46

Analytics 80.11 98.2 98.7 90.66 99.21

UNSW-NB15

Figure 6: Comparison of TPR results on UNSW-NB15 dataset

80
82
84
86
88
90
92
94
96
98

100

GA-BPNN [71] AD-H1CD [65] Proposed

Brute Force 97.89 98.05

Botnet 97.5 94.48 98.08

DoS 99.63 99.68

DDoS 99.86 99.89

Infiltration 96.4 97.1

Port Scan 96.01 99.82 99.86

Web Attack 97.85 87.38 98.4

CIC IDS 2017

Figure 7: Comparison of TPR results on CIC IDS 2017 dataset

The hybrid algorithm developed in this study was compared with studies using the publicly
available data sets NSL-KDD, UNSW-NB15, and CIC IDS 2017. In this study, studies conducted

CMES, 2023, vol.136, no.2 1307

separately on 3 different data sets were examined in detail. The results of these studies were compared
using accuracy criteria. The results obtained are presented in Table 17.

Table 17: Comparison of the proposed algorithm (GWOMFO) with various studies using the NSL-
KDD, UNSW-NB15 and CIC IDS 2017 data set

Algorithm or model Authors Datasets Accuracy

Quasi-optimal algorithm Nasr et al. [72] NSL-KDD 0.933
Canonical correlation + feature association
impact scale

Jyothsna et al. [73] NSL-KDD 0.910

PCA and optimized SVM Ikram et al. [74] NSL-KDD 0.965
Deep learning approach Javaid et al. [75] NSL-KDD 0.791
Random forest Aljawarneh et al. [76] NSL-KDD 0.806
Naïve bayes Aljawarneh et al. [76] NSL-KDD 0.765
Decision tree Aljawarneh et al. [76] NSL-KDD 0.810
Information gain and RepTree Belouch et al. [77] UNSW-NB15 0.900
ABC and AFS algorithms Hajisalem et al. [52] UNSW-NB15 0.980
Constrained-optimization-based extreme
learning machines

Wang et al. [78] UNSW-NB15 0.830

Skip-gram model classifier Carrasco et al. [79] UNSW-NB15 0.910
Hyper clique improved binary gravitational
search algorithm as FS and SVM

Gauthama Raman et al.
[80]

UNSW-NB15 0.960

Gradient boosted machine Tama et al. [81] UNSW-NB15 0.930
Random forest as feature selection and
k-nearest neighbors

Alrowaily et al. [82] CIC IDS 2017 0.990

Negative selection algorithm and classifiers Hosseini et al. [83] CIC IDS 2017 0.970
Random forest classifier Bindra et al. [84] CIC IDS 2017 0.960
LSTM, CNN AND FNN Lee et al. [85] CIC IDS 2017 0.980
Self-adaptive grasshopper optimization
algorithm

Shukla [86] CIC IDS 2017 0.990

LSTM Kaur et al. [87] CIC IDS 2017 0.990
BRS Prasad et al. [57] CIC IDS 2017 0.970
DBN Elmasry et al. [88] CIC IDS 2017 0.980
Proposed agorithm (GWOMFO) NSL-KDD 0.974∗

UNSW-NB15 0.983∗

CIC IDS 2017 0.992∗

Note: ∗Best Results.

6 Conclusions and Future Work

In this study, the topic of network attacks and detection is discussed, the data sets commonly
used to solve this problem are examined, and the studies in the literature and the results obtained
are mentioned. The importance of hybrid solutions to improve the performance of the proposed
algorithms for the solution has been highlighted. It has been shown that the use of benchmark
functions in the preliminary evaluation of the performance of a developed algorithm provides insight
into the performance of the algorithm. This study developed and tested a new hybrid algorithm with

1308 CMES, 2023, vol.136, no.2

NSL-KDD, UNSW-NB15, and CIC IDS 2017 data sets. There is always a need to improve existing
methods’ solution quality and develop new methods. Hybrid algorithms can be used to improve the
solution quality or performance of the algorithm. In the algorithm developed in this study, the effect
of the search agents of the GWO algorithm was improved by hybridizing it with the MFO algorithm.
To this algorithm, which was developed based on the GWO algorithm, a new mechanism was added
to improve the hunting mechanism of the GWO algorithm. It was observed that the search ability
and exploration phase were improved after each iteration, which improved the solution. The obtained
results show that the location updates are more successful and efficient depending on the search
agents. Unlike studies in the literature, the hybrid algorithm developed in this study was first tested
in benchmark functions and then tested on data sets used for network attacks. Performance analyzes
were performed by adapting the developed algorithm to 13 benchmark functions. The results obtained
were compared with many different studies in this study and the following conclusions were drawn:

i. GWOMFO achieved the best average results on 12 of the 13 benchmark functions compared
to other algorithms.

ii. The best classification accuracy was achieved in the NSL-KDD data set with 97.4%.

iii. The best classification accuracy was achieved in the UNSW-NB15 data set with 98.3%.

iv. The best classification accuracy was achieved in the CIC IDS 2017 data set with 99.2%.

v. In general, GWOMFO performed well and achieved high detection rates for all attack types.

The results were compared with the results of different optimization algorithms from the literature.
It was found that the developed hybrid model showed a successful result. The success of GWOMFO
is due to the newly developed equation, the structure of the algorithm and the parameters used.
The obtained results proved that the GWOMFO algorithm is successful in the benchmark functions
compared to the algorithms with which it is compared. The successful results obtained on the tested
datasets also support the algorithm’s success. By bringing this developed algorithm to the literature,
one of the expected goals is to extend techniques that can be adapted to real-world, hard-to-solve
problems.

Network security will continue to be a topic that will always be alive. This is because network
defense is a necessity. With many recent studies such as [25–28] listed in the related works section
of this study, network security is being discussed from many different angles and will continue to be
addressed from many different angles and with many new methods. In addition to this study, we are
currently working on simultaneous network attack detection, and other possible future work could
include the following:

1. Studies may be conducted to further increase the success rates achieved in this study. For this
purpose, hybridization with various improved algorithms from the literature can be performed.
Also, various improved feature extraction algorithms can achieve better performance.

2. This hybrid approach can be applied to different data sets, and the results can be observed. It
can also solve various optimization problems, such as feature selection. To improve network
security infrastructure, Deep Learning can be used to develop next-generation intrusion
detection systems that detect network threats instantly and with higher accuracy. Developing
an IDS model for multi-class data problems using multiple networks in Deep Learning is also
possible.

CMES, 2023, vol.136, no.2 1309

However, a possible limitation of the proposed method is that we tested GWOMFO on only three
datasets. It will also be important to test the method on a more recent dataset. We believe that the
proposed method can be extended to many domains in the future.

Funding Statement: This work is supported by the Kırıkkale University Department of Scientific
Research Projects (2022/022).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Predić, B., Vukić, U., Saračević, M., Karabašević, D., Stanujkić, D. (2022). The possibility of combining

and implementing deep neural network compression methods. Axioms, 11(5), 229. DOI 10.3390/ax-
ioms11050229.

2. Jukic, S., Saracevic, M., Subasi, A., Kevric, J. (2020). Comparison of ensemble machine learning methods
for automated classification of focal and non-focal epileptic EEG signals. Mathematics, 8(9), 1481. DOI
10.3390/math8091481.

3. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A. et al. (2018). Deep one-class
classification. International Conference on Machine Learning, pp. 4393–4402. Stockholm, Sweden, PMLR.

4. Adamović, S., Miškovic, V., Maček, N., Milosavljević, M., Šarac, M. et al. (2020). An efficient novel
approach for iris recognition based on stylometric features and machine learning techniques. Future
Generation Computer Systems, 107, 144–157. DOI 10.1016/j.future.2020.01.056.

5. Resul, D. A. Ş., Bitikçi, B. (2020). Analysis of different types of network attacks on the GNS3 platform.
Sakarya University Journal of Computer and Information Sciences, 3(3), 210–230.

6. Summers, R. C. (1997). Secure computing: Threats and safeguards. The McGraw-Hill, Inc., New York,
U.S.A.

7. Baker, S., Filipiak, N., Timlin, K. (2011). In the dark: Crucial industries confront cyberattacks McAfee annual
critical infrastructure protection report. 2nd edition, pp. 1–6. Santa Clara, CA: The Center for Strategic and
International Studies (CSIS).

8. Pehlivanoglu, M. K., Atay, R., Odabaş, D. E. (2019). İki seviyeli hibrit makine Öğrenmesi yöntemi ile saldırı
tespiti. Gazi Mühendislik Bilimleri Dergisi, 5(3), 258–272.

9. Radoglou-Grammatikis, P. I., Sarigiannidis, P. G. (2019). Securing the smart grid: A comprehensive
compilation of intrusion detection and prevention systems. IEEE Access, 7, 46595–46620. DOI 10.1109/Ac-
cess.6287639.

10. Gupta, D., Gupta, V. (2016). Test suite prioritization using nature inspired meta-heuristic algorithms. Inter-
national Conference on Intelligent Systems Design and Applications, pp. 216–226. Cham, Porto, Portugal:
Springer.

11. Mirjalili, S., Mirjalili, S. M., Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69,
46–61. DOI 10.1016/j.advengsoft.2013.12.007.

12. Senel, F. A., Gökçe, F., Yüksel, A. S., Yigit, T. (2019). A novel hybrid PSO–GWO algorithm for optimization
problems. Engineering with Computers, 35, 1359–1373.

13. Teng, S., Wu, N., Zhu, H., Teng, L., Zhang, W. (2017). SVM-DT-based adaptive and collaborative intrusion
detection. IEEE/CAA Journal of Automatica Sinica, 5(1), 108–118. DOI 10.1109/JAS.2017.7510730.

14. Guo, C., Ping, Y., Liu, N., Luo, S. S. (2016). A two-level hybrid approach for intrusion detection.
Neurocomputing, 214, 391–400. DOI 10.1016/j.neucom.2016.06.021.

https://doi.org/10.3390/axioms11050229
https://doi.org/10.3390/math8091481
https://doi.org/10.1016/j.future.2020.01.056
https://doi.org/10.1109/Access.6287639
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/JAS.2017.7510730
https://doi.org/10.1016/j.neucom.2016.06.021

1310 CMES, 2023, vol.136, no.2

15. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J., Alazab, A. (2020). Hybrid intrusion detection
system based on the stacking ensemble of C5 decision tree classifier and one class support vector machine.
Electronics, 9(1), 173. DOI 10.3390/electronics9010173.

16. Ahmim, A., Derdour, M., Ferrag, M. A. (2018). An intrusion detection system based on combining
probability predictions of a tree of classifiers. International Journal of Communication Systems, 31(9), e3547.
DOI 10.1002/dac.3547.

17. Al-Yaseen, W. L., Othman, Z. A., Nazri, M. Z. A. (2017). Multi-level hybrid support vector machine and
extreme learning machine based on modified K-means for intrusion detection system. Expert Systems with
Applications, 67, 296–303. DOI 10.1016/j.eswa.2016.09.041.

18. Kevric, J., Jukic, S., Subasi, A. (2017). An effective combining classifier approach using tree algo-
rithms for network intrusion detection. Neural Computing and Applications, 28(1), 1051–1058. DOI
10.1007/s00521-016-2418-1.

19. Aslahi-Shahri, B. M., Rahmani, R., Chizari, M., Maralani, A., Eslami, M. et al. (2016). A hybrid method
consisting of GA and SVM for intrusion detection system. Neural Computing and Applications, 27(6), 1669–
1676. DOI 10.1007/s00521-015-1964-2.

20. Mahmod, M. S., Alnaish, Z. A. H., Al-Hadi, I. A. A. (2015). Hybrid intrusion detection system using
artificial bee colony algorithm and multi-layer perceptron. International Journal of Computer Science and
Information Security, 13(2), 1.

21. Elbasiony, R. M., Sallam, E. A., Eltobely, T. E., Fahmy, M. M. (2013). A hybrid network intrusion detection
framework based on random forests and weighted k-means. Ain Shams Engineering Journal, 4(4), 753–762.
DOI 10.1016/j.asej.2013.01.003.

22. Panda, M., Abraham, A., Patra, M. R. (2012). A hybrid intelligent approach for network intrusion
detection. Procedia Engineering, 30, 1–9. DOI 10.1016/j.proeng.2012.01.827.

23. Mohamad Tahir, H., Hasan, W., Md Said, A., Zakaria, N. H., Katuk, N. et al. (2015). Hybrid machine
learning technique for intrusion detection system. 5th International Conference on Computing and Informat-
ics (ICOCI), Istanbul.

24. Gupta, M., Shrivastava, S. K. (2015). Intrusion detection system based on SVM and bee colony. Interna-
tional Journal of Computer Applications, 111(10). DOI 10.5120/19576-1377.

25. Kumar, V., Das, A. K., Sinha, D. (2021). UIDS: A unified intrusion detection system for IoT environment.
Evolutionary Intelligence, 14(1), 47–59. DOI 10.1007/s12065-019-00291-w.

26. Mousavi, S. K., Ghaffari, A., Besharat, S., Afshari, H. (2021). Improving the security of internet of things
using cryptographic algorithms: A case of smart irrigation systems. Journal of Ambient Intelligence and
Humanized Computing, 12(2), 2033–2051. DOI 10.1007/s12652-020-02303-5.

27. Al-Qerem, A., Alauthman, M., Almomani, A., Gupta, B. B. (2020). IoT transaction processing through
cooperative concurrency control on fog–cloud computing environment. Soft Computing, 24(8), 5695–5711.
DOI 10.1007/s00500-019-04220-y.

28. Bhushan, K., Gupta, B. B. (2019). Distributed denial of service (DDoS) attack mitigation in software defined
network (SDN)-based cloud computing environment. Journal of Ambient Intelligence and Humanized
Computing, 10(5), 1985–1997. DOI 10.1007/s12652-018-0800-9.

29. Stergiou, C., Psannis, K. E., Gupta, B. B., Ishibashi, Y. (2018). Security, privacy & efficiency of sustainable
cloud computing for big data & IoT. Sustainable Computing: Informatics and Systems, 19, 174–184. DOI
10.1016/j.suscom.2018.06.003.

30. Mousavi, S. K., Ghaffari, A. (2021). Data cryptography in the internet of things using the artificial bee
colony algorithm in a smart irrigation system. Journal of Information Security and Applications, 61, 102945.
DOI 10.1016/j.jisa.2021.102945.

31. Yin, C., Zhu, Y., Fei, J., He, X. (2017). A deep learning approach for intrusion detection using recurrent
neural networks. IEEE Access, 5, 21954–21961. DOI 10.1109/ACCESS.2017.2762418.

https://doi.org/10.3390/electronics9010173
https://doi.org/10.1002/dac.3547
https://doi.org/10.1016/j.eswa.2016.09.041
https://doi.org/10.1007/s00521-016-2418-1
https://doi.org/10.1007/s00521-015-1964-2
https://doi.org/10.1016/j.asej.2013.01.003
https://doi.org/10.1016/j.proeng.2012.01.827
https://doi.org/10.5120/19576-1377
https://doi.org/10.1007/s12065-019-00291-w
https://doi.org/10.1007/s12652-020-02303-5
https://doi.org/10.1007/s00500-019-04220-y
https://doi.org/10.1007/s12652-018-0800-9
https://doi.org/10.1016/j.suscom.2018.06.003
https://doi.org/10.1016/j.jisa.2021.102945
https://doi.org/10.1109/ACCESS.2017.2762418

CMES, 2023, vol.136, no.2 1311

32. Almi’ani, M., Ghazleh, A. A., Al-Rahayfeh, A., Razaque, A. (2018). Intelligent intrusion detection system
using clustered self organized map. 2018 Fifth International Conference on Software Defined Systems (SDS),
pp. 138–144. Barcelona, Spain, IEEE.

33. Kamarudin, M. H., Maple, C., Watson, T., Safa, N. S. (2017). A logitboost-based algorithm for detecting
known and unknown web attacks. IEEE Access, 5, 26190–26200. DOI 10.1109/ACCESS.2017.2766844.

34. Naoum, R. S., Abid, N. A., Al-Sultani, Z. N. (2012). An enhanced resilient backpropagation artificial neural
network for intrusion detection system. International Journal of Computer Science and Network Security,
12(3), 11.

35. Lei, Y. (2017). Network anomaly traffic detection algorithm based on SVM. 2017 International Conference
on Robots & Intelligent System (ICRIS), pp. 217–220. Huaian, China, IEEE.

36. Mirjalili, S. (2015). The ant lion optimizer. Advances in Engineering Software, 83, 80–98. DOI
10.1016/j.advengsoft.2015.01.010.

37. Doğan, L., Yüzgeç, U. (2018). Robot path planning using gray wolf optimizer. Proceedings of International
Conference on Advanced Technologies, Computer Engineering and Science (ICATCES’18), pp. 70. Safran-
bolu, Turkey.

38. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.
Knowledge-Based Systems, 89, 228–249. DOI 10.1016/j.knosys.2015.07.006.

39. Li, Z., Zhou, Y., Zhang, S., Song, J. (2016). Lévy-flight moth-flame algorithm for function optimization
and engineering design problems. Mathematical Problems in Engineering, 2016, 1–22.

40. Larose, D. T., Larose, C. D. (2014). Discovering knowledge in data: An introduction to data mining, vol. 4,
pp. 411–412. New Jersey, ABD, John Wiley & Sons.

41. Omary, Z., Mtenzi, F. (2010). Machine learning approach to identifying the dataset threshold for the
performance estimators in supervised learning. International Journal for Infonomics, 3(3), 314–325. DOI
10.20533/iji.1742.4712.

42. Relan, N. G., Patil, D. R. (2015). Implementation of network intrusion detection system using variant of
decision tree algorithm. 2015 International Conference on Nascent Technologies in the Engineering Field
(ICNTE), pp. 1–5. Navi Mumbai, India, IEEE.

43. Chauhan, H., Kumar, V., Pundir, S., Pilli, E. S. (2013). A comparative study of classification techniques for
intrusion detection. 2013 International Symposium on Computational and Business Intelligence, pp. 40–43.
New Delhi, India, IEEE.

44. Bhattacharjee, P. S., Fujail, A. K. M., Begum, S. A. (2017). A comparison of intrusion detection by K-means
and fuzzy C-means clustering algorithm over the NSL-KDD dataset. 2017 IEEE International Conference
on Computational Intelligence and Computing Research (ICCIC), pp. 1–6. Coimbatore, India, IEEE.

45. Ullah, I., Mahmoud, Q. H. (2017). A filter-based feature selection model for anomaly-based intrusion
detection systems. 2017 IEEE International Conference on Big Data (Big Data), pp. 2151–2159. Boston,
USA, IEEE.

46. Saleh, A. I., Talaat, F. M., Labib, L. M. (2019). A hybrid intrusion detection system (HIDS) based on
prioritized k-nearest neighbors and optimized SVM classifiers. Artificial Intelligence Review, 51(3), 403–
443. DOI 10.1007/s10462-017-9567-1.

47. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data
set. 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6.
Ottawa, Canada, IEEE.

48. Revathi, S., Malathi, A. (2013). A detailed analysis on NSL-KDD dataset using various machine learning
techniques for intrusion detection. International Journal of Engineering Research & Technology (IJERT),
2(12), 1848–1853.

49. Tsai, C. F., Hsu, Y. F., Lin, C. Y., Lin, W. Y. (2009). Intrusion detection by machine learning: A review.
Expert Systems with Applications, 36(10), 11994–12000. DOI 10.1016/j.eswa.2009.05.029.

https://doi.org/10.1109/ACCESS.2017.2766844
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.20533/iji.1742.4712.
https://doi.org/10.1007/s10462-017-9567-1
https://doi.org/10.1016/j.eswa.2009.05.029

1312 CMES, 2023, vol.136, no.2

50. Moustafa, N., Slay, J. (2016). The evaluation of network anomaly detection systems: Statistical analysis of
the UNSW-NB15 data set and the comparison with the KDD99 data set. Information Security Journal: A
Global Perspective, 25(1–3), 18–31. DOI 10.1080/19393555.2015.1125974.

51. Khammassi, C., Krichen, S. (2017). A GA-LR wrapper approach for feature selection in network intrusion
detection. Computers & Security, 70, 255–277. DOI 10.1016/j.cose.2017.06.005.

52. Hajisalem, V., Babaie, S. (2018). A hybrid intrusion detection system based on ABC-AFS algorithm for
misuse and anomaly detection. Computer Networks, 136, 37–50. DOI 10.1016/j.comnet.2018.02.028.

53. Boulaiche, A., Adi, K. (2018). An auto-learning approach for network intrusion detection. Telecommuni-
cation Systems, 68(2), 277–294. DOI 10.1007/s11235-017-0395-z.

54. Ahmad, U., Asim, H., Hassan, M. T., Naseer, S. (2019). Analysis of classification techniques for intrusion
detection. 2019 International Conference on Innovative Computing (ICIC), pp. 1–6. Lahore, Pakistan, IEEE.

55. Ren, J., Guo, J., Qian, W., Yuan, H., Hao, X. et al. (2019). Building an effective intrusion detection system
by using hybrid data optimization based on machine learning algorithms. Security and Communication
Networks, 2019. DOI 10.1155/2019/7130868.

56. Nawir, M., Amir, A., Yaakob, N., Lynn, O. B. (2018). Multi-classi_cation of UNSW-NB15 dataset for
network anomaly detection system. Journal of Theoretical and Applied Information Technology, 96(15),
5094–5104.

57. Prasad, M., Tripathi, S., Dahal, K. (2020). An efficient feature selection based Bayesian and rough set
approach for intrusion detection. Applied Soft Computing, 87, 105980. DOI 10.1016/j.asoc.2019.105980.

58. Panigrahi, R., Borah, S. (2018). A detailed analysis of CICIDS2017 dataset for designing intrusion detection
systems. International Journal of Engineering & Technology, 7(3), 479–482.

59. D’hooge, L., Wauters, T., Volckaert, B., de Turck, F. (2019). Classification hardness for supervised learners
on 20 years of intrusion detection data. IEEE Access, 7, 167455–167469. DOI 10.1109/Access.6287639.

60. Panwar, S. S., Negi, P. S., Panwar, L. S., Raiwani, Y. (2019). Implementation of machine learning algorithms
on CICIDS-2017 dataset for intrusion detection using WEKA. International Journal of Recent Technology
and Engineering Regular Issue, 8(3), 2195–2207. DOI 10.35940/ijrte.2277-3878.

61. D’hooge, L., Wauters, T., Volckaert, B., de Turck, F. (2019). In-depth comparative evaluation of supervised
machine learning approaches for detection of cybersecurity threats. 4th International Conference on Internet
of Things, Big Data and Security (IoTBDS), pp. 125–136. Heraklion, Greece.

62. Faris, H., Qaddoura, R., Aljarah, I., Bae, J. W., Fouad, M. M. et al. (2016). Evolopy, github.
https://github.com/7ossam81/EvoloPy/blob/master/optimizers/.

63. Bedi, P., Gupta, N., Jindal, V. (2020). Siam-IDS: Handling class imbalance problem in intrusion
detection systems using siamese neural network. Procedia Computer Science, 171, 780–789. DOI
10.1016/j.procs.2020.04.085.

64. Kunang, Y. N., Nurmaini, S., Stiawan, D., Suprapto, B. Y. (2021). Attack classification of an intrusion
detection system using deep learning and hyperparameter optimization. Journal of Information Security
and Applications, 58, 102804. DOI 10.1016/j.jisa.2021.102804.

65. Ma, C., Du, X., Cao, L. (2019). Analysis of multi-types of flow features based on hybrid neural network for
improving network anomaly detection. IEEE Access, 7, 148363–148380. DOI 10.1109/Access.6287639.

66. Yang, Y., Zheng, K., Wu, C., Niu, X., Yang, Y. (2019). Building an effective intrusion detection system using
the modified density peak clustering algorithm and deep belief networks. Applied Sciences, 9(2), 238. DOI
10.3390/app9020238.

67. Pajouh, H. H., Dastghaibyfard, G., Hashemi, S. (2017). Two-tier network anomaly detection model:
A machine learning approach. Journal of Intelligent Information Systems, 48(1), 61–74. DOI
10.1007/s10844-015-0388-x.

https://doi.org/10.1080/19393555.2015.1125974
https://doi.org/10.1016/j.cose.2017.06.005
https://doi.org/10.1016/j.comnet.2018.02.028
https://doi.org/10.1007/s11235-017-0395-z
https://doi.org/10.1155/2019/7130868
https://doi.org/10.1016/j.asoc.2019.105980
https://doi.org/10.1109/Access.6287639
https://doi.org/10.35940/ijrte.2277-3878
https://github.com/7ossam81/EvoloPy/blob/master/optimizers/
https://doi.org/10.1016/j.procs.2020.04.085
https://doi.org/10.1016/j.jisa.2021.102804
https://doi.org/10.1109/Access.6287639
https://doi.org/10.3390/app9020238
https://doi.org/10.1007/s10844-015-0388-x

CMES, 2023, vol.136, no.2 1313

68. Pajouh, H. H., Javidan, R., Khayami, R., Dehghantanha, A., Choo, K. K. R. (2016). A two-layer dimension
reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone net-
works. IEEE Transactions on Emerging Topics in Computing, 7(2), 314–323. DOI 10.1109/TETC.6245516.

69. Jing, D., Chen, H. B. (2019). SVM based network intrusion detection for the UNSW-NB15 dataset. 2019
IEEE 13th International Conference on ASIC (ASICON), pp. 1–4. Chongqing, China, IEEE.

70. Bagui, S., Kalaimannan, E., Bagui, S., Nandi, D., Pinto, A. (2019). Using machine learning tech-
niques to identify rare cyber-attacks on the UNSW-NB15 dataset. Security and Privacy, 2(6), e91. DOI
10.1002/spy2.91.

71. Manimurugan, S., Manimegalai, P., Valsalan, P., Krishnadas, J., Narmatha, C. (2020). Intrusion detection
in cloud environment using hybrid genetic algorithm and back propagation neural network. International
Journal of Communication Systems, 35(16), e4667.

72. Nasr, A. A., Ezz, M. M., Abdulmaged, M. Z. (2016). A learnable anomaly detection system using
attributional rules. International Journal of Computer Network and Information Security, 8(11), 58–64. DOI
10.5815/ijcnis.2016.11.07.

73. Jyothsna, V., Prasad, V. R. (2016). FCAAIS: Anomaly based network intrusion detection through
feature correlation analysis and association impact scale. ICT Express, 2(3), 103–116. DOI
10.1016/j.icte.2016.08.003.

74. Ikram, S. T., Cherukuri, A. K. (2016). Improving accuracy of intrusion detection model using
PCA and optimized SVM. Journal of Computing and Information Technology, 24(2), 133–148. DOI
10.20532/cit.2016.1002701.

75. Javaid, A., Niyaz, Q., Sun, W., Alam, M. (2016). A deep learning approach for network intrusion detection
system. Eai Endorsed Transactions on Security and Safety, 3(9), e2. DOI 10.4108/eai.24-5-2016.59124.

76. Aljawarneh, S., Yassein, M. B., Aljundi, M. (2019). An enhanced J48 classification algorithm
for the anomaly intrusion detection systems. Cluster Computing, 22(5), 10549–10565. DOI
10.1007/s10586-017-1109-8.

77. Belouch, M., El Hadaj, S., Idhammad, M. (2017). A two-stage classifier approach using reptree algorithm
for network intrusion detection. International Journal of Advanced Computer Science and Applications, 8(6),
389–394. DOI 10.14569/issn.2156-5570.

78. Wang, C. R., Xu, R. F., Lee, S. J., Lee, C. H. (2018). Network intrusion detection using equality
constrained-optimization-based extreme learning machines. Knowledge-Based Systems, 147, 68–80. DOI
10.1016/j.knosys.2018.02.015.

79. Carrasco, R. S. M., Sicilia, M. A. (2018). Unsupervised intrusion detection through skip-gram models of
network behavior. Computers & Security, 78, 187–197. DOI 10.1016/j.cose.2018.07.003.

80. Gauthama Raman, M. R., Somu, N., Jagarapu, S., Manghnani, T., Selvam, T. et al. (2020). An efficient
intrusion detection technique based on support vector machine and improved binary gravitational search
algorithm. Artificial Intelligence Review, 53(5), 3255–3286. DOI 10.1007/s10462-019-09762-z.

81. Tama, B. A., Rhee, K. H. (2019). An in-depth experimental study of anomaly detection using gradient
boosted machine. Neural Computing and Applications, 31(4), 955–965. DOI 10.1007/s00521-017-3128-z.

82. Alrowaily, M., Alenezi, F., Lu, Z. (2019). Effectiveness of machine learning based intrusion detection
systems. International Conference on Security, Privacy and Anonymity in Computation, Communication and
Storage, pp. 277–288. Cham: Springer.

83. Hosseini, S., Seilani, H. (2021). Anomaly process detection using negative selection algorithm and classifi-
cation techniques. Evolving Systems, 12(3), 769–778. DOI 10.1007/s12530-019-09317-1.

84. Bindra, N., Sood, M. (2019). Detecting DDoS attacks using machine learning techniques and contem-
porary intrusion detection dataset. Automatic Control and Computer Sciences, 53(5), 419–428. DOI
10.3103/S0146411619050043.

85. Lee, J., Kim, J., Kim, I., Han, K. (2019). Cyber threat detection based on artificial neural networks using
event profiles. IEEE Access, 7, 165607–165626. DOI 10.1109/Access.6287639.

https://doi.org/10.1109/TETC.6245516
https://doi.org/10.1002/spy2.91
https://doi.org/10.5815/ijcnis.2016.11.07
https://doi.org/10.1016/j.icte.2016.08.003
https://doi.org/10.20532/cit.2016.1002701
https://doi.org/10.4108/eai.24-5-2016.59124
https://doi.org/10.1007/s10586-017-1109-8
https://doi.org/10.14569/issn.2156-5570
https://doi.org/10.1016/j.knosys.2018.02.015
https://doi.org/10.1016/j.cose.2018.07.003
https://doi.org/10.1007/s10462-019-09762-z
https://doi.org/10.1007/s00521-017-3128-z
https://doi.org/10.1007/s12530-019-09317-1
https://doi.org/10.3103/S0146411619050043
https://doi.org/10.1109/Access.6287639

1314 CMES, 2023, vol.136, no.2

86. Shukla, A. K. (2021). Detection of anomaly intrusion utilizing self-adaptive grasshopper optimization
algorithm. Neural Computing and Applications, 33(13), 7541–7561. DOI 10.1007/s00521-020-05500-7.

87. Kaur, S., Singh, M. (2020). Hybrid intrusion detection and signature generation using deep recurrent neural
networks. Neural Computing & Applications, 32(12). DOI 10.1007/s00521-019-04187-9.

88. Elmasry, W., Akbulut, A., Zaim, A. H. (2020). Evolving deep learning architectures for net-
work intrusion detection using a double PSO metaheuristic. Computer Networks, 168, 107042. DOI
10.1016/j.comnet.2019.107042.

https://doi.org/10.1007/s00521-020-05500-7
https://doi.org/10.1007/s00521-019-04187-9
https://doi.org/10.1016/j.comnet.2019.107042

	A New Hybrid Approach Using GWO and MFO Algorithms to Detect Network Attack
	1 Introduction
	2 Related Works
	3 Theoretical Background of Hybrid Approach
	4 Materials and Methods
	5 Experimental Results
	6 Conclusions and Future Work

