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ABSTRACT

Star sensors are an important means of autonomous navigation and access to space information for satellites. They
have been widely deployed in the aerospace field. To satisfy the requirements for high resolution, timeliness, and
confidentiality of star images, we propose an edge computing algorithm based on the star sensor cloud. Multiple
sensors cooperate with each other to form a sensor cloud, which in turn extends the performance of a single sensor.
The research on the data obtained by the star sensor has very important research and application values. First, a star
point extraction model is proposed based on the fuzzy set model by analyzing the star image composition, which
can reduce the amount of data computation. Then, a mapping model between content and space is constructed to
achieve low-rank image representation and efficient computation. Finally, the data collected by the wireless sensor
is delivered to the edge server, and a different method is used to achieve privacy protection. Only a small amount of
core data is stored in edge servers and local servers, and other data is transmitted to the cloud. Experiments show
that the proposed algorithm can effectively reduce the cost of communication and storage, and has strong privacy.
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1 Introduction

A star sensor obtains the star image through charge coupled device (CCD) cameras, obtains the
orientation of the star point on the star image, and then locates the position of the spacecraft [1,2]. The
star image has a wide viewing angle and high dynamics, which can intuitively display the distribution of
star points [3]. The rapid development of sensor cloud technology enables the data interaction between
sensors. Currently, the research on sensor cloud mainly focuses on data storage, data application and
data security.

In terms of data storage and application, Sen et al. [4] established a multi-modal mechanism in the
face of the response needs of multiple users. Nastic et al. [5] built an intermediate structure between
the cloud and the base end to realize data interaction. Villari et al. [6] drew on the idea of internet of
things (IoT) to combine cloud computing with sensors. Wind et al. [7] used sensor cloud technology
to fuse the remote sensing data. Dinh et al. [8] proposed an on-demand distributed sensor cloud
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work scheme. Wieland et al. [9] constructed a convolutional neural network to coordinate multiple
sensors to achieve cloud shadow segmentation. Liang et al. [10] implemented a low-coupling model
based on edge computing. Sangulagi et al. [11] improved the neuro-fuzzy set algorithm to balance
the data-carrying status of the sensor cloud. Wang [12] proposed a decoupling scheme based on fog
computing. Gong et al. [13] used deep learning and matrix factorization to predict each sensor’s
weight. Dwivedi et al. [14] constructed a Gaussian distribution model to analyze abnormal data events.
Sun et al. [15] proposed a distributed intelligent processing scheme. Dash et al. [16] analyzed the data in
cloud, edge and fog computing to realize data management. Wu et al. [17] analyzed the effectiveness
of edge computing from an energy perspective. Peng et al. [18] analyzed the characteristics of IoT
computing in cloud computing and optimized the objective function. Qu et al. [19] built a deep meta-
reinforcement learning to increase edge computing performance. Lu et al. [20] analyzed the network
structure based on mobile data characteristics. Wan et al. [21] analyzed data characteristics and built
edge computing structures to enable real-time processing. Mousa et al. [22] used GPU to achieve fast
data calculation.

In terms of data security, Saha et al. [23] proposed a data security scheme based on a high-
density sensor cloud system. Kamburugamuve et al. [24] proposed a novel network scheme to meet
the requirements of fast computation. Dalvi et al. [25] established an adjustment mechanism to meet
the needs of different tasks. Wang et al. [26] conducted research on data credibility through fog.
Das et al. [27] constructed a sensor cloud energy-saving system. Zhu et al. [28] carried out research
on data protection under the condition of big data. Liang et al. [29] analyzed the construction of the
sensor cloud and proposed a solution for stability. El Rachkidi et al. [30] studied sensor usage and
sharing mechanisms. Zhang et al. [31] combined fog and trust evaluation method to realize sensor
cloud security detection. Chakraborty et al. [32] introduced a dynamic mechanism to manage data
confidentiality. Kim [33] constructed a game theory model to analyze the effectiveness of sensor
networks. Wang et al. [34] implemented data cleaning based on edge computing. Wang et al. [35]
proposed to use differential pair data for protection. Mo et al. [36] constructed a simplified neural
network to measure the stability of cloud systems. Thabit et al. [37] proposed a lightweight approach
to data encryption. Abel et al. [38] used the hybrid algorithm for cloud-based data protection.

To sum up, the main problems faced by the research on star sensor cloud are as follows. 1)
The analysis of the imaging characteristics acquired by the sensor is insufficient, resulting in the
weak pertinence of the built model. 2) The analysis of image content is insufficient, and the cost
of communication and transmission by constructing full information transmission is high. 3) The
data encoding and decoding methods in image units have certain limitations, which need further
improvement in data privacy.

In response to the above problems, we have conducted in-depth research on the characteristics
of star sensor imaging. This paper proposes an edge computing algorithm based on the star sensor
cloud. The work of this research is as follows. 1) This research analyzes the composition of star images,
builds an exponential entropy model based on fuzzy sets, and accurately extracts the star points. 2) A
content and space mapping model is constructed to reduce communication and storage cost. 3) A
multi-level data processing model is established and a differential mechanism is built to realize data
privacy protection.

2 Algorithm

Star sensors mainly have two roles. 1) Star sensors are a very important component of the satellite
attitude control system, providing the satellite attitude data to the system and making correction for
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gyroscopic drift. Star sensors determine the three-axis attitude of a satellite with respect to the celestial
coordinate system by sensitizing it to stellar radiation. 2) Star sensors are the most efficient way of
observing cosmic space as they can obtain a wide-area star image, which is of great importance. Besides,
autonomous navigation based on star sensors is also very important, as unpredictable targets such as
meteorites may appear in the universe. As the acquired star images are 16-bit data with high resolution,
it is a great challenge if the data is processed at the star sensor side due to the huge computation
amount. To reduce the computation burden on the star sensor side, we propose an edge computing
solution that improves the efficiency, stability and scalability of the algorithm and further increases
the stability of the system.

With the increase in the frequency of international satellite launches, satellites have formed
a network of interaction in space. Accordingly, satellite-to-satellite interactions will become more
frequent. We consider the servers contained in individual satellites as local servers, the servers of
other satellites and those that interact with ground stations as edge servers for edge computing. Edge
computing offers the following advantages. 1) High speed. Instead of data being transferred back to a
central server, IoT devices can process data at the edge data center or locally, reducing network latency.
2) High security. Edge computing distributes data processing work between different data centers and
devices, eliminating the need to transfer all data back to the main server, therefore reducing the risk
of data leakage and increasing the data security. 3) Easy scalability. Edge computing makes it easy to
scale infrastructure and extend networks by purchasing IoT devices. 4) High reliability. With all edge
data centers and IoT devices located close to the user, the probability of network disruption is very
low. If the edge data center is not available, the IoT devices will handle most functions automatically.

To this end, we propose a novel edge computing algorithm, as shown in Fig. 1. The first step is to
acquire images from space by star sensors. The fuzzy set-based algorithm is then used to extract star
points and construct a content-to-space mapping model to reduce the data dimensionality. Finally,
image reconstruction is achieved using an edge-based clustering computational algorithm.

Figure 1: Algorithm flow chart
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2.1 Fuzzy Set Based Star Point Extraction Algorithm
A star image is highly dynamic and high-resolution. A star image I can be regarded as the

superposition of star point S, noise N, and background B.

I = S + N + B (1)

where S is an important part of the star image, and it is particularly important to the research on star
points. The star points are displayed as a set of a few bright pixels in the image, which show a spherical
shape. The pixel values of star points are susceptible to noise interference, and the brightness of long-
distance star points is weak, resulting in blurred boundaries. However, it is difficult to effectively
determine star points and accurately extract star points from the perspective of computer calculation
as Fig. 2.

Figure 2: High dynamic star image

Fuzzy set theory is a mathematical means of describing uncertain things and phenomena. This
theory is close to human real thinking and decision making [39]. Hassaballah et al. [40] constructed
an image quality evaluation mechanism based on fuzzy sets. Ansari et al. [41] combined the fuzzy set
and entropy to extract the target boundary in an image. Mardani et al. [42] constructed deep fuzzy
sets to classify images. Zhang et al. [43] fused multi-sensor images based on fuzzy set theory. It can be
seen that the fuzzy set theory can better simulate the human cognitive process. As the boundaries of
the star points and the background have similar grey scale values, it is difficult to distinguish between
them. For this reason, we introduce fuzzy sets for analysis to achieve the distinction.

On the basis of fuzzy set theory, it is necessary to determine the appropriate measurement method
to achieve the accurate segmentation of image objects. Since the fuzzy set theory is an important way to
describe uncertain phenomena, an algorithm that can measure uncertainty should be selected for this
purpose. Entropy is a measure of the uncertainty of the probability of an event, which can effectively
reflect the information contained in the event.

Therefore, based on the fuzzy set theory, this research constructs the entropy measurement
mechanism, and proposes a star point extraction algorithm that conforms to the human cognitive
process. Firstly, an image is divided into bright and dark fuzzy sets according to the pixel value of
the star point. Then, the entropy is calculated to determine the threshold value to segment the image.
Finally, the star points are completely extracted according to the imaging characteristics of the star
points.
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A fuzzy set is a set whose elements have degrees of membership. It allows for a step-by-step
evaluation of the membership of elements in a set.

A =
n∑

i=1

μ (xi) /xi xi ∈ X (2)

where A represents the fuzzy set of X , μ (xi) is the fuzzy membership function, and μ (xi)/xi represents
the ambiguity of xi to A.

The probability of fuzzy event A is

P (A) =
G∑

i=0

μA (xi) Px (xi) (3)

Traditional entropy is a probability distribution to measure the randomness of a signal, which is
defined as

H = −
G∑

i=0

pi log (pi) (4)

where pi represents the probability of i appearing, and G represents the included signal level.

On the basis of traditional entropy, texture entropy [44], minimum cross entropy [45] and
exponential entropy [46], etc. are derived. The exponential entropy is used for calculation.

H = −
G∑

i=0

pie1−pi (5)

It can be seen that the randomness strength of the signal is inversely proportional to H. When an
image is displayed, the more severe the gray scale change of the image is, the larger the H value is; on
the contrary, the more flat the image gray scale change is, the smaller the H value is.

In the star image, S and N are displayed as bright pixels, and B is displayed as dark pixels.
According to the fuzzy set analysis, the bright pixel set is ASN, the dark pixel set is AB, and T is the
potential segmentation threshold point of the image. It satisfies

P (AB) =
T∑

i=0

μAB (xi) Px (xi) (6)

P (ASN) =
L−1∑

i=T+1

μASN
(xi) Px (xi) (7)

P (ASN) + P (AB) = 1 (8)

where μ(xi) is the membership function, which is used to distinguish the membership of different
pixels.

The exponential entropy is used to measure the difference between bright pixels and dark pixels,
and the optimal threshold T satisfies

Hmax = arg Max (H (T)) (9)

H = −
(

T∑
i=0

P (AB) e1−P(AB) +
L−1∑

i=T+1

P (ASN) e1−P(ASN)

)
(10)
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Since there is a transition area between ASN and AB, we construct

uAB (xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i ≤ α

1 − (i − α)
2

(γ − α) (β − α)
α < i ≤ β

(i − γ )
2

(γ − α) (γ − β)
β < i ≤ γ

0 i > γ

(11)

uASN
(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i ≤ α

(i − α)
2

(γ − α) (β − α)
α < i ≤ β

1 − (i − γ )
2

(γ − α) (γ − β)
β < i ≤ γ

1 i > γ

(12)

where the parameters satisfy 0 ≤ α < β < γ ≤ 255, β = (α + γ )/2. When Ti is the optimal threshold,
H = Hmax, uASN

(Ti) = uAB (Ti) = 0.5. Then we solve for α, β, γ at this time.

Bright areas and dark areas can be distinguished. It is still impossible to distinguish between S
and N. The change of S in the image collected in a short time should be relatively small, while the
change of N is random and the change is relatively large. For this reason, we collected 3 frames of
images from a fixed camera to determine whether there was a change in bright and dark areas at the
same location.

gj (x, y) =
j+1∑

i=j−1

{
Ii (x, y) − Ij (x, y)

}
(x, y) ∈ S ∩ N (13)

where Ii (x, y) is the pixel value of the i-th frame image at (x, y). If gj(x, y) < 0, then (x, y) ∈ N; otherwise
(x, y) ∈ S. The star points are accurately extracted on the basis of removing noise.

2.2 Content and Space Mapping Model
It is necessary to store and transmit the shooting data of stars efficiently. The star point is the

important observation object. S can be regarded as a comprehensive representation of the pixel value
V and the location L.

S = V + L (14)

In order to make full use of the storage space, the extracted star points are sorted from large to
small according to the number of pixels they occupy, as shown in Table 1. The nth star point is denoted
as Sn, and stored in the form of the following table, where Isn is the smallest rectangular area containing
the star point image. The storage location is (xbn, ybn, xen, yen), and the original star location is (Xbn,
Ybn, Xen, Yen). Notably, (xbn, ybn) and (Xbn, Ybn) are the coordinates of the initial point, and (xen, yen) and
(Xen, Yen) are the coordinates of the end point. Isn is extracted in the storage area, and then the area
corresponding to the star point is mapped to realize the storage and transmission of the star image.
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Table 1: The mapping relationship of star image information

V L

The storage position Star point position

S1 Is1 (xb1, yb1, xe1, ye1) (Xb1, Yb1, Xe1, Ye1)
S2 Is2 (xb2, yb2, xe2, ye2) (Xb2, Yb2, Xe2, Ye2)
. . . . . .

Sn Is2 (xbn, ybn, xen, yen) (Xbn, Ybn, Xen, Yen)

2.3 Edge Clustering Computing Algorithm
Data processing technology has been widely used in data privacy, data integrity, and data

availability [47]. The three layers storage (TLS) framework is arbitrarily divided into three parts and
stored, making full use of the data processing capabilities of edge servers to effectively manage cloud
servers [48].

Star images need huge computation amount and storage space due to their high resolution. In
addition to the current situation where the spacecraft cannot be manually involved in commissioning,
edge computing is used to break down the computation so that some of the information is kept between
the various sensor nodes to enable collaboration. With the increase in the frequency of international
satellite launches, satellites have formed a network of interaction in space. Accordingly, satellite-
to-satellite interactions will become more frequent. We consider the servers contained in individual
satellites as local servers, the servers of other satellites and those that interact with ground stations as
edge servers.

Previous research has shown that the data collected by the sensor follows a rent-free law.
Specifically, in a set of data, the data basically fluctuates around a certain value or a certain subset
of data sets. To this end, a new type of differential three layers storage (DTLS) with regular data
distribution is constructed. When a set of data is collected and processed, the data is split into basic
data M and differential data C. Then the complete dataset I can be expressed as

I = M + C (15)

where the selection of M is particularly important, which directly affects the efficiency of hierarchical
storage. In addition, the stored data set is divided into k parts in combination with binary coding. The
size of each part is l, and k blocks of data are generated into n coding blocks by the coding matrix,
then n = k + m, where m is the number of redundant blocks, and each data block is coded and stored in
the storage node. When the number of coded block losses is not greater than m, the system can repair
all coded data. When fewer than k coding blocks are used, the data cannot be recovered. In DTLS,
differential storage of raw data through different algorithms reduces storage costs in cloud servers
while improving cloud performance. In this way, user security is guaranteed. The steps of upload and
download are described below, as shown in Fig. 3.
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Figure 3: Flow chart of edge clustering algorithm

In the upload step, the data is transmitted to the edge server, and the data is divided into three
parts for processing. a) The monitoring value is divided into M and C. b) M and C are encrypted. c)
The encrypted C is uploaded to the cloud server for storage. The encrypted M is processed according to
the Reed-Solomon coding principle. To prevent data recovery, most databases and redundant blocks
smaller than k are stored in cloud server. The remaining data will be stored in the edge server and
backhauled locally according to user needs, so as to reduce storage cost and protect data security.

In the download step, when the user needs to use the data, he transmits the request to the cloud,
and the cloud transmits the separately stored C and part M to the edge layer. Some key data blocks
are transmitted locally to the edge layer, and the edge layer decodes C and M respectively to obtain
complete data and transmits it back to the local.

The above analysis shows that the selection of M is very important. In the actual starry sky scene,
the data collected by the sensor is relatively complex. Here, we introduce the idea of clustering, and
divide the data set with many attributes into multiple subsets according to the similarity. This leads to
the large intra-class similarity and large inter-class difference.

The dataset is divided into multiple clusters to determine M, so that the distance from the
minimized cluster center to the cluster sample is C.

Let the sample set be X = {X 1, X 2, . . . , Xi, . . . , Xn}, and each sample set Xi contains p attributes,
Xi = {

X 1
i , X 2

i , . . . , X p
i

}
. The sample set is sampled, and the optimal number of clusters kopt in the

range of [kmin, kmax] is selected according to the inter-class and intra-class partition index B. Then, the
sample set is divided into X = {T 1, T 2, . . . ., Tkopt}. The Euclidean distance is sued to measure the spatial
location relationship:

d
(
Xi, Xj

) =
√√√√ p∑

w=1

(
X w

i − X w
j

)2
, i, j ∈ (1, 2 . . . , n) (16)

Then, the corresponding average distance is

D =

n∑
i=1

n∑
j=1

d
(
Xi, Xj

)
n2

(17)
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The density of the sample Xi is defined as the data object contained in the area with Xi the center
and αD as the radius, the defined average density is

E =

n∑
i=1

n∑
j=1

Q
[
d

(
Xi, Xj

)]
n

, Q
[
d

(
Xi, Xj

)] =
{

1 d
(
Xi, Xj

) ≤ αD
0 others

(18)

High density points are defined as a set of data objects. The specific steps of the algorithm are as
follows:

Input: star image data
Output: basic data M, differential data C
1. Sample the data
2. Initialize the cluster k
3. Calculate the density e (xi) of each data object in the sample set
4. Calculate the high-density point set D and the sample center Xc

5. Find kopt by iterative calculation
6. Return to M and C.

3 Experimental Results and Analysis

In order to verify the effectiveness of the algorithm proposed in this paper, we constructed 2
groups of databases for simulation due to the rare availability of space equipment. The first group
was carried out for 10 onboard server databases and the second group was carried out for 20 ground-
based simulation server databases. The experiment used 4214 frames of 16-bit real star images with a
resolution of 1024 × 1024 to form a database. The program was run on FPGA. In order to ensure the
stability of data, we maintain 50% data duplication in different nodes and backup the data transmitted
to the local station.

3.1 Effects of Star Point Detection and Extraction
A star image consists of star points, noise, and background. The accurate detection of star points

is the premise of the future research on star images. The evaluation criteria are listed as Table 2.

Table 2: Evaluation criteria for star point detection

Detection result Ground truth

True stars False stars

True stars TP (True Positive) FP (False Positive)
False stars FN (False Negative) TN (True Negative)

Sensitivity (SEN) reflects the detection performance of the algorithm for true star points.
Specificity (SPE) reflects the detection performance of the algorithm for false star points. Accuracy
(ACC) reflects the ratio of correct detection results to all samples in the detection results. False Positive
Fraction (FPF) reflects the ratio of false positive detection results that are diagnosed as true star points
[49]. SEN, SPE and ACC are directly proportional to the results, and FPF is inversely proportional
to the results.
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SEN = TP
TP + FN

(19)

SPE = TN
TN + FP

(20)

ACC = TP + TN
TP + FP + TN + FN

(21)

FPF = 1 − ACC (22)

The comparison of star point detection effect by different algorithms is shown in Table 3. The
Fixed Threshold (FT) algorithm [50] manually sets the threshold and can extract star points, but does
not use the star point features to further discriminate, resulting in many non-star points, and the effect
is not good. The Region Growing (RG) [51] algorithm selects the high point of the local gray value
as the seed point for regional growth, and the number of extracted star points is higher than that of
the FT algorithm. The Mathematical Morphology (MM) algorithm [52] establishes a circular model
to extract and discriminate star points. The Image Enhance (IE) algorithm [53] combines gray scale
information with morphological information to extract star points with lower gray scale values. The
above algorithms all start from the perspective of a single-frame star image, and fail to consider the
excessive area between the star point and the background, resulting in an unsatisfactory detection
effect. The algorithm proposed in this paper simulates human’s real thinking and decision-making to
establish a fuzzy set model. It uses entropy to measure the difference between the star point and the
background. Besides, the proposed algorithm considers the information of multiple frames of images
comprehensively, so that the noise interference is further reduced and star points are extracted. The
detection effect of the proposed algorithm is higher than that of other algorithms.

Table 3: Effects of star point detection by different algorithms

Algorithm Detection result (%)

SEN SPE ACC FPF

FT 78 79 68 32
RG 83 81 75 25
MM 81 82 80 20
IE 85 84 85 15
Ours 87 89 90 10

In order to verify the segmentation effect of the algorithms, on the premise that the segmentation
area is a star point, the area overlap measure (AOM) is introduced to evaluate the segmentation effect,
which is defined as:

AOM (ξ , ϕ) = S(ξ ∩ ϕ)

S(ξ ∪ ϕ)
× 100% (23)

where AOM is the area overlap, ξ is the manually marked star points, ϕ is the segmentation result map,
S (.) represents the number of pixels in the area, and the larger the AOM, the better the segmentation
effect.
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The effect of star point segmentation is shown in Table 4. The MM algorithm establishes a
circular model to segment star points, and the segmentation speed is fast. The Wavelet Transform
(WT) algorithm [54] builds a model in the frequency domain to segment the star points. The Motion
Compensation (MC) algorithm [55] can extract the center of the star point for the motion-blurred
star points. The IE algorithm [53] builds an image enhancement model from grayscale and geometric
shapes to segment star points, but the algorithm is complex. From the perspective of human cognition,
the proposed algorithm establishes an analysis and quantification framework based on fuzzy sets and
entropy. Although the processing time of the proposed algorithm is slightly longer to that of the MM
algorithm, the segmentation accuracy of the proposed algorithm is the highest.

Table 4: Effects of star points segmentation by different algorithms

Algorithm AOM
(%)

The average time (frame/s)

MM 85 0.03
WT 87 0.13
MC 88 0.15
IE 86 0.16
Our 93 0.07

3.2 Performance Comparison of Edge Computing
Our experiment on a large number of open-source datasets shows that most of the data appear

Gaussian distribution over a period of time. The comparison of edge computing performance by
different algorithms is shown in Fig. 4. Under the same algorithm, the storage cost is the most
significant indicator to evaluate the algorithm’s performance.

Figure 4: Comparison of storage cost by different algorithms effects under different classifications

Through the above analysis, we fixed the expectation on the basis of Gaussian distribution to
investigate the performance of the algorithms on the experimental data with different variances.
As shown in Fig. 5, with the increase of the standard deviation of the Gaussian distribution, the
storage space occupied by the algorithm gradually decreases, and the storage cost tends to be stable.
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Differential privacy computing (DPC) [42] uses differential to reduce the amount of data to a certain
extent. Dynamic trust enforcing (DTE) [32], a dynamic adjustment scheme, operates on the data,
and has achieved certain effects. For the clustering-based difference method proposed by us, with the
increase of the standard deviation of the Gaussian distribution, it still stores part of the data locally
and at the edge, which shows that the proposed algorithm is superior to other algorithms.

Figure 5: Comparison of storage cost by different algorithms under different standard deviations

The efficiency of encryption and decryption in data processing is analyzed, as shown in Fig. 6.
The number of redundant blocks is fixed to 3 to show the effects under different data amount. As the
number of data blocks increases, both encryption and decryption time show an upward trend. When
the number of data blocks is increased to 400, the processing speed becomes even more obvious. The
decryption process consumes more time than the encryption process. Since encryption is processed in
the cloud, it has certain requirements for processing time. The decryption is performed at the base
station, and high-performance equipment can be used to reduce the decryption time.

Figure 6: Comparison of encryption and decryption time
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The proposed algorithm not only increases the storage efficiency of the sensor cloud but also
reduces the bandwidth consumption of the transmission process, as shown in Fig. 7. In the experiment,
the number of redundancy blocks was set to 3 and the data block data size was set to 400.
The interactive model (IM) [8] allocates bandwidth based on demand. Deep learning and matrix
factorization (DLMF) [13] algorithm allocate the bandwidth. As the amount of data grows, the
proposed algorithm consumes less bandwidth compared with the traditional algorithm that adopts
the difference and clustering strategies. It shows that the proposed algorithm can make full use of
resources to a certain extent and reduce the transmission burden.

Figure 7: Comparison of data transmission bandwidth by different algorithms

3.3 Storage and Reconstruction of Data
According to the algorithm proposed in this paper, the star point data is saved, and a mapping

mechanism is established. The star image can be obtained only by transmitting the compressed data
and the mapping function, with the effect shown in Fig. 8.

Figure 8: Flow chart of star image information storage algorithm
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4 Conclusions

This research focuses on the problem of a large amount of star image data, which is difficult to
process, store and keep confidential. In order to improve star sensor performance and give full play to
the advantages of fast, secure, reliable and scalable edge computing, we propose the edge computing
algorithm based on the star sensor cloud. Starting from the composition of the star image, this paper
builds a fuzzy set-based star point extraction model to accurately retain the integrity of its useful
information. The proposed content and space mapping model greatly reduces the data storage cost
and transmission memory. In addition, an edge clustering framework is proposed to distribute data
in the cloud and at the edge, and a differential model is built to protect data privacy. Experiments
show that the proposed algorithm has achieved good results on simulated and real datasets. The SEN
is 0.87, AOM is 0.93 and the average time is 0.07 frame/s. Due to the special nature of star images,
it is not possible to carry out large-scale star image starboard experiments. Subsequently, we will
further accumulate data, analyze data components, and improve data utilization efficiency, to realize
autonomous spacecraft navigation, expecting to provide data support for space research.
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