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ABSTRACT

This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the high-
precision computational fluid dynamics/computational structural dynamics methods. In the proposed method,
the aerodynamic simulation was conducted based on computational fluid dynamics, and the structural model
was established using the nonlinear finite element model and tangential stiffness matrix. First, the equilibrium
position was obtained using the nonlinear static aeroelastic iteration. Second, the structural modal under a steady
aerodynamic load was extracted. Finally, the generalized displacement time curve was obtained by coupling the
unsteady aerodynamics and linearized structure motion equations. Moreover, if the flutter is not at a critical state,
the incoming flow dynamic pressure needs to be changed, and the above steps must be repeated until the vibration
amplitude are equal. Furthermore, the high-speed geometrically nonlinear flutter of the wing-body assembly model
with a high-aspect ratio was investigated, and the correctness of the method was verified using high-speed wind
tunnel experiments. The results showed that the geometric nonlinearity of the large deformation of the wing caused
in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure
and frequency of the nonlinear flutter compared to those of the linear flutter.
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1 Introduction

A high-altitude long-endurance aircraft can be used as a transfer platform for scientific research
and remote communication because of its unique flight ability, which has resulted in its wide devel-
opment [1,2]. In recent years, high-altitude long-endurance unmanned aerial vehicles have primarily
adopted high-aspect-ratio wings, low structural densities, and large flexibility to obtain higher lifts
[3,4]. However, the large deformation of airfoil under aerodynamic loads makes the conventional
aeroelastic linear analysis method based on the small structural deformation inappropriate. Therefore,
the geometrical nonlinear effect caused by the large structural deformation must be considered in new
methods.

The strip theory and panel method are used to solve geometrically nonlinear aeroelastic prob-
lems by coupling structural nonlinear methods owing to the high computational efficiency [5,6].
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Patil et al. [7] investigated the influence of geometric nonlinearity on the flutter using the nonlinear
beam theory and panel method, and concluded that the large deformation effect significantly
decreased the flutter speed and affected the flight envelope. Shams et al. [8] used the Wagner function
to transform Theodorsen’s aerodynamic force from the frequency domain into the time domain to
couple the second-order beam theory and Hodges–Dowell equations; thus, they obtained the stability
problem of the high-aspect-ratio wing using the Galerkin method. Yang et al. [9] analyzed the static
aeroelasticity of flexible aircraft using the three-dimensional curved vortex lattice method coupled with
the nonlinear structural finite element method, and concluded that the aircraft design should avoid
excessive deformation on the aerodynamic performance. As for the efficiency of the nonlinear flutter
calculations, Xie et al. [10,11] linearized the structural motion equation at the nonlinear equilibrium
position, and analyzed the influence of the structural geometric nonlinearity on the natural vibration
and flutter response of high-aspect-ratio wings at low speeds. However, that method could not consider
aerodynamic nonlinear factors, such as the high attack angles and transonic flows. Additionally,
Arena et al. [12–14] used the stall strip theory and nonlinear beam equation to investigate the coupling
of wing dynamic response and flight dynamics. Kim et al. [15] adopted the transonic small perturbation
potential and large deformation beam theories to analyze the aeroelasticity of high-aspect-ratio wings.
Tang et al. [16] investigated the ONERA nonlinear aerodynamic model to couple the Hodges–Dowell
equations, and concluded that the geometric nonlinearity and aerodynamic stall affect the limit cycle
motion of the high-aspect-ratio wing after instability. A comprehensive study on the aerodynamic
nonlinearity of flexible wings with a high-aspect ratio was conducted in [17].

The high-precision computational fluid dynamics (CFD)/computational structural dynamics
(CSD) coupling methods are typically used to analyze nonlinear aeroelastic problems owing to
the improved performance of existing computers. Smith et al. [18] used the Euler equation solver
and nonlinear beam theory to calculate the large deformation of wings with a high-aspect ratio
under incompressible conditions. The results indicated that the panel method overestimated the static
deformation and lift compared with the conventional panel method. Garcia [19] used CFD and the
structural nonlinear coupling method to investigate the static deformation of a swept wing with a high-
aspect ratio under transonic conditions. It was found that the vertical bending displacement increased
the torque, which increased the effect of drag on the torque. The outward wash (bow twist) of the
swept wing in the nonlinear structure was less than that of the linear structure; thus, the local attack
angle was lifted and dragged higher than that of the linear structure. Nie et al. [20] concluded similar
results using a structured CFD program coupled with a nonlinear finite element method to investigate
the transonic large deformation of swept wings. Bendiksen [21] solved the transonic limit cycle flutter
of swept wings with a high aspect ratio using the nonlinear plate theory and Euler equation, and
concluded that the structural outward wash effect was the cause of limited cycle vibrations. Moreover,
the linear structure method overestimates the critical speed of the limit cycle by approximately three
times. The time-domain method based on CFD is used to calculate the flutter in linear structures.
Bartels et al. [22] calculated the unsteady aerodynamic force and the response of the linear wing-
body mode using the unstructured Navier–Stokes program FUN3D under no preload conditions.
However, the flutter velocity calculated using that method cannot consider the influence of geometric
nonlinearities.

Additionally, the geometrically nonlinear CFD/CSD coupling is primarily used to solve static
aeroelastic problems. Geometrically nonlinear flutter calculations and wind tunnel experiments are
focused on low-speed aspects. However, few studies have been conducted on the simulation and
wind tunnel verification experiments of high-speed geometrically nonlinear flutter characteristics.
The flutter velocity of a large deformation is associated with the static deformation of the structure,
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which requires the static equilibrium position to be correctly calculated prior to the flutter analysis.
In addition, the accurate prediction of structural static deformation and flutter boundary depends
on the high accuracy simulation of aerodynamic forces. The high-precision CFD method must be
used for calculations because the linearized potential flow theory cannot reflect viscous effects, surge,
zero attack angle aerodynamic forces, aerodynamic disturbances between components, and other
factors. Therefore, this study focused on the high-speed nonlinear flutter analysis of the wing-body
assembly based on the coupled CFD/CSD nonlinear flutter calculation method, and the reliability of
the calculation method in the high-speed range was verified using wind tunnel experiments.

2 Numerical Calculations of Geometrically Nonlinear Flutter Based on CFD/CSD

In this study, a computational method for the large deformation effect of flutter is introduced
based on CFD/CSD. The flowchart of the nonlinear flutter analysis is shown in Fig. 1. First, the
nonlinear static equilibrium state is predicted, and the equilibrium state of the aerodynamic shape and
the natural vibration mode of the structure are solved. Subsequently, the structure is assumed to make
micro-amplitude vibrations near its nonlinear static equilibrium state. Finally, the linear structural
motion equation of the equilibrium state and the time history of the generalized displacement are
solved, respectively. Moreover, the variable pressure is changed and the above steps are repeated if
the flutter is not at the critical state. Because both the geometric and aerodynamic nonlinearities are
considered, the method can be applied to the large deformation flutter calculations.

For provided Ma and α,
initial value of dynamic pressure qD

Nonlinear static aeroelastic analysis

Convergence

Vibration models at
nonlinear equilibrium

constant
amplitude

Yes

Unsteady
aeroelastic force

Time domain
flutter analysis

Change qD

No

qD is the flutter dynamic pressure

No

Yes

Figure 1: Flowchart of the nonlinear flutter analysis

2.1 Aerodynamic Model
The aerodynamic force is obtained by solving the Navier–Stocks equation, and the time-

dependent three-dimensional conservative compressible Reynolds average Navier–Stokes (RANS)
equation is used as the governing equation. In the curvilinear coordinate system (ξ , η, ζ ), its
dimensionless form is expressed as
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∂Q
∂t

+ ∂ (F − Fv)

∂ξ
+ ∂ (G − G v)

∂η
+ ∂ (H − H v)

∂ζ
= 0, (1)

where t and Q are the time and conservation variables, respectively. In addition, F, G, and H are
inviscid vector fluxes; and Fv, Gv, and Hv are viscous vector fluxes.

The Spalart–Allmaras model expressed in Eq. (1) is selected for turbulence simulations and the
implicit double time step method is used to time advance. The convection and viscous terms are
discretized using the upwind-biased ROE format and Jameson’s central difference scheme, respectively.
Additionally, the multi-grid technique is applied to accelerate the convergence of CFD calculations.

2.2 Structural Model
When the geometric nonlinearity deforms, the stress-strain relationship and strain-displacement

are linear and nonlinear, respectively. The structural stiffness characteristics during the analysis need
to be described using the tangent stiffness matrix, that is,

K = K 0 + Kσ + KL, (2)

where K0 and KL are the small displacement (elastic) and large displacement stiffness matrices,
respectively; the former is independent of the unit node displacement, whereas the latter depends on
it. In addition, Kσ is the initial stress stiffness matrix. A comprehensive study on the tangent stiffness
matrix was presented in [23].

The effect of structural geometric nonlinearity on the aeroelastic properties of high-aspect-ratio
wings is reflected as follows. First, the structural stiffness changes with load. Second, the nonlinear
deformation of the wing affects the aerodynamic distribution. Considering the structural dynamic
characteristics of geometric nonlinearity, the structure slightly vibrates near the equilibrium position
of the large static deformation. Consequently, the tangent stiffness matrix can be used to replace the
conventional stiffness matrix, and natural frequencies and modes can be used in the vibration theory
of linear systems.

2.3 Solution of the Nonlinear Static Equilibrium Position
The equilibrium relationship of geometrically nonlinear hydrostatic aeroelasticity is a balance

between the internal (elastic) and external forces, which can be written as

f int (u) = F , (3)

where f int is the structure elastic force, which is a nonlinear function of the static equilibrium
displacement u. In addition, F is the steady aerodynamic force solved using the iterative method.

To analyze the static aeroelastic deformation of the wing, the RANS equation is first used for
aerodynamic modeling. Second, the structural model is established using the nonlinear finite element
method with root solid boundary conditions to constrain the structural rigid body degrees of the wing
freedom, and the aerodynamic force and nonlinear structural deformation are calculated alternately.
Finally, the tangent stiffness matrix is extracted after calculating the aerodynamic force and shape at
the static equilibrium position.

2.4 Geometrically Nonlinear Flutter Calculation Method
In this study, the modal method was used to conduct the flutter analysis. First, the geometric

nonlinear static aeroelastic iteration method was used to obtain the static equilibrium force and
static equilibrium position, respectively. Subsequently, the flutter analyses are performed using the
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equilibrium position mode. Finally, the occurrence of the flutter is determined by observing the
attenuation or divergence of the time history curve in the generalized displacement.

The vibration equation of the structure near the equilibrium position is confirmed by

M ü + f int (u) = F , (4)

where M ü and F are the inertial and unsteady aerodynamic forces, respectively. The displacement u can
be decomposed by the sum of the static equilibrium displacement u and micro-vibration displacement
x, which can be expressed as

u = u + x. (5)

Because x is a small quantity, the elastic force f int can be linearized as follows:

f int (u) = f int (u + x) = f int (u) + ∂f int

∂u
(u) x = f int (u) + Kx, (6)

where K is the tangential stiffness matrix at the equilibrium position. The following equation can be
derived using Eq. (3) and substituting Eqs. (5) and (6) into Eq. (4):

Mẍ + Kx = F − F . (7)

Eq. (7) is linearized in terms of the vibration x, and F − F is the unsteady aerodynamic
force without the constant part. The structural equations of motion are solved using the modal
superposition method after linearization. The mode ϕ and frequency ω at the equilibrium position
can be obtained using the following eigenvalue analysis:

(K − ω2M)ϕ = 0, (8)

where x is expressed by the form of modal coordinates x = Φq. In addition, Φ and q are the modal
matrix and generalized displacement vector, respectively. Substituting the modal coordinates into
Eq. (7) can yield

M∗q̈ + K∗q = Φ
TF − Φ

TF , (9)

where M∗ and K∗ are the generalized mass and stiffness matrices, respectively; and Φ
TF and Φ

TF are
the generalized unsteady and steady aerodynamic vectors, respectively. Eq. (9) is iteratively calculated
using the prediction-correction method for coupling the time advance and flow control equations.

2.5 Pneumatic/Structural Data Transfer and Flow Field Mesh Deformation Methods
The analysis of aeroelasticity requires data exchange at the coupling surface of the aerodynamic

structure. Indeed, the aerodynamic forces derived from the aerodynamics calculations are applied to
the structural nodes. Moreover, displacements of the structural nodes are fed back to the aerody-
namics mesh nodes after the structural deformation. To increase the computational efficiency and
interpolation accuracy, this study adopts the 3D thin-plate spline interpolation (TPSI) method. The
TPSI method was presented in [24–26].

In this study, the radial basis function (RBF) combined with the trans-finite interpolation (TFI)
method was used to deform the structured flow field mesh. RBF can be regarded as a 3D extension
of the surface spline interpolation method [27]. Its interpolation equation is expressed as follows:

f (r) =
n∑

i=1

aiϕ (||r − ri||) + ψ (r) , (10)
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where ri (xi, yi, zi) is the coordinate of the known point with the number n and ϕ is the basis function
near the distance ||r−ri||. In this study, we assumed ϕ(||r−ri||) = ||r−ri||3 and ψ = b0 + b1x + b2y +
b3z. In addition, coefficients of the interpolation formula ai can be obtained using ri and the balance
condition.

After the displacement of points on the edge of each mesh block is obtained based on the RBF
method, the point displacements inside the grid block surface can be obtained by interpolation based
on the grid block edge TFI method. Similarly, displacement of the internal points of the mesh block
can be obtained by interpolation based on the mesh block surface using the TFI method [28].

3 Analysis Model
3.1 Wind Tunnel Experiment Model

As shown in Fig. 2, the experimental model is a wing-body assembly half-mode shape, which is
tested in a 2.4-m transonic wind tunnel. The model body and symmetrical wing are rigid with the
rectification effect and elastic, respectively. Fig. 3 shows that the length of the exposed wing, root, and
tip chord are 1800, 235, and 100 mm, respectively. Its leading and trailing edge swept-back angles are
4.3 and 0°, respectively. In Fig. 4, two main wing beams, ribs, and skin are made of fiber-reinforced
composites, glass fiber, and carbon fiber, respectively. The latter two parts are filled with Degussa
foam, whose finite element model is shown in Fig. 5. Finally, the ground and vibration stiffnesstests
(GVTs) are conducted based on the experimental model. In addition, the modal frequencies of each
order are obtained by GVTs. Table 1 lists the analysis results based on the finite element theory.
The comparison of the experimental and theoretical results reveals that the coincidence error is less
than 2.5%. Consequently, the constructed theoretical finite element model can reflect the structural
dynamic properties of the actual model.

Figure 2: A half-mode wing-body assembly

Figure 3: Experimental model diagram
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Figure 4: Internal structure diagram of a double-beam elastic wing

Figure 5: Finite element model

Table 1: Comparison of the ground vibration test and theoretical results

Modal order Vibration mode Calculated value/Hz Experimental value/Hz Error

1 Vertical bend 7.72 7.53 −2.46%
2 Vertical double bend 29.96 29.92 −0.13%
3 Horizontal bending

(in-plane)
47.52 48.42 1.89%

4 Vertical triple bend 71.62 72.89 1.77%
5 First order torsion 135.26 135.4 −0.20%

3.2 Numerical Model
The geometrically nonlinear computational model consists with the wind tunnel experiment

model, and its CFD calculation surface grid is shown in Fig. 6. The number of spatial grid cells
is approximately 2.5 M. Because the fuselage is considerably stiffer than the wing, the fuselage is
considered as a rigid body. To simulate the aerodynamic interference of the fuselage on the wing,
the aerodynamic shape of the fuselage is simulated in the numerical calculation process. The first fifth
order elastic mode of the wing is considered in the flutter calculation, whereas the effect of structural
damping is not considered. The calculation conditions are as follows:

i) Mach numbers (Ma) at 0.4, 0.6. and 0.7, respectively;

ii) Dynamic pressures (qD) at 18–65 kPa;

iii) Attack angles (α) at −2, −1, and 0°, respectively.
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(a) Spatial grid topology (b) Surface grid

Figure 6: Initial CFD computational grid

4 Results and Discussion
4.1 Results of the Conventional Flutter Calculation Method

When the geometrical nonlinearity of the wing is not considered, the flutter characteristics of
the wing near the zero attack angle are the flutter characteristics under the low-load condition. In
addition, no geometric or aerodynamic torsion from the root to the tip exists, which is because of
the symmetrical airfoil. Therefore, α = 0° and modal parameters are used in the conventional flutter
calculation and linearized finite element analysis, respectively.

The typical displacement vibration history and amplitude spectrum, corresponding to the modal
space in the generalized coordinate system, are shown in Fig. 7. Under the low-load condition, the
Mach number is 0.4, 0.6, or 0.7; flutter dynamic pressure is 61.5, 53.5, or 45.5 kPa; and flutter
frequency is 65.6, 47.8, or 46.4 Hz. Furthermore, the flutter is coupled with the conventional wing
bending-torsion under the low-load condition.

(a) Displacement vibration waveform of the 
generalized coordinate system

(qD = 45 kPa, attenuation)

(b) Displacement vibration waveform of the 
generalized coordinate system

(qD = 46 kPa, divergence)

Figure 7: (Continued)
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(c) Displacement vibration waveform of the 
generalized coordinate system

(qD = 45.5 kPa, constant amplitude)

(d) Displacement amplitude spectrum of the 
generalized coordinate system

(qD = 45.5 kPa, constant amplitude)

Figure 7: Computational results of the wing flutter under low-load conditions (Ma = 0.7)

4.2 Results of the Geometrically Nonlinear Flutter Calculation Method
The new equilibrium position of the wing under external load and the modal parameters at the

above deformation displacement should be calculated to obtain the flutter characteristics of the wing
under geometric nonlinearity. Therefore, the computation of geometrically nonlinear flutter must
be completed in two steps. In the first step, the new equilibrium position and corresponding modal
parameters under the geometric nonlinear condition are obtained based on the coupled iteration of
the constant CFD solver and nonlinear finite element structure solver. In the second step, the obtained
model equilibrium position and corresponding modal parameters are substituted into the nonlinear
flutter solver.

Table 2 and Fig. 8 demonstrate the equilibrium position of the wing and corresponding modal
parameters. It can be seen that the models with attack angles have a large deformation under an
external load, such as Ma = 0.7, qD = 40 kPa, α = −1°, where the wing-tip deformation is −361 mm;
this deformation reaches 20% of the half-wing span. The wing structural characteristics are changed
by the aerodynamic load at the provided attack angle owing to the influence of geometric nonlinearity.
Compared with the original equilibrium position, the modal frequency of the wing has changed,
among which the largest change is the third-order modal (in-plane modal) frequency. For example,
it is decreased by 15.5% and 18.0% at (Ma = 0.7, qD = 40 kPa, α = −1°) and (Ma = 0.7, qD = 20 kPa,
α = −2°), respectively. Consequently, the in-plane modal frequency is negatively correlated with the
external load and deformation. Additionally, the in-plane bending and torsional modes have obviously
torsional and in-plane bending components, respectively.
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Table 2: Modal frequency and wing-tip displacement at the equilibrium position

Ma Attack
angle/deg

Dynamic
pressure/kPa

Modal frequency/Hz Wing-tip
displacement/mm

1 2 3 4 5

- 0 - 7.72 29.96 47.52 71.62 135.66 0
0.4 −1 35 7.77 29.90 43.26 71.49 139.38 −251
0.4 −1 40 7.77 29.88 42.32 71.45 139.83 −283
0.6 −1 30 7.79 29.92 43.24 71.51 139.43 −246
0.6 −1 35 7.78 29.88 42.28 71.44 139.96 −283
0.7 −1 30 7.78 29.89 42.47 71.46 139.87 −278
0.7 −1 33.3 7.86 29.93 41.70 71.44 139.97 −304
0.7 −1 40 7.98 29.98 40.19 71.49 140.43 −361
0.7 −2 19 7.72 29.73 39.41 71.25 139.78 −363
0.7 −2 20 7.75 29.73 38.97 71.21 139.62 −381
0.7 −2 30 8.21 29.86 34.75 71.16 138.02 −557

(a) Vertical bend mode 

(c) Horizontal bend mode (d) Vertical triple-bend mode 

(e) First order torsion mode 

(b) Vertical double-bend mode 

Figure 8: First five mode shapes at the equilibrium point (Ma = 0.7, α = −1°, qD = 33.3 kPa)

Figs. 9 and 10 show the typical calculated results of geometrically nonlinear flutter, critical flutter
pressure, and frequency under different Mach numbers and attack angles. It can be seen that the wing
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deformation increases with the increase of the attack angle, whereas the flutter dynamic pressure and
frequency change adversely. When the Mach number is 0.7, for attack angles of −1 and −2°, the
nonlinear flutter dynamic pressure is 33.3 and 19.0 kPa, respectively. In addition, the corresponding
nonlinear flutter frequencies are 38.3 and 36.2 Hz, which are close to the corresponding in-plane mode
frequencies of 41.7 and 39.41 Hz, respectively. Furthermore, compared with that of the linear flutter at
the zero attack angle, the dynamic pressure decreased by 26.4% and 58.3%, and the flutter frequency
decreased by 17.9% and 22.0%, respectively. This result is attributed to the geometric nonlinear effect,
which makes the in-plane bending mode contain large torsional components, as shown in Fig. 8, and
becomes unstable when the structure experiences a large deformation. Thus, the nonlinear stability
analysis of an extremely flexible wing reveals that the in-plane bend mode is essential in flutter
characteristics.

(a) Displacement vibration waveform of the 

generalized coordinate system

(qD = 33 kPa, attenuation)

(b) Displacement vibration waveform of the 

generalized coordinate system

(qD = 33.5 kPa, divergence)

(c) Displacement vibration waveform of the 

generalized coordinate system

(qD = 33.3 kPa, constant amplitude)

(d) Displacement amplitude spectrum of the 

generalized coordinate system

(qD = 33.3 kPa, constant amplitude)

Figure 9: Numerical simulation of the nonlinear wing flutter (Ma = 0.7, α = −1°)



1754 CMES, 2023, vol.136, no.2

(a) Variation of flutter dynamic pressure in 
terms of attack angle at different values of Ma

(b) Variation of flutter frequency in terms of 
attack angle at different values of Ma

Figure 10: Computational results of flutter

4.3 Wind Tunnel Experiments
The geometrically nonlinear flutter experiments were conducted in 2.4 m transonic wind tunnel.

The Mach number and attack angle were fixed to test with a step variable dynamic pressure. The
bending/torsional strains of the wing at different spanwise positions were measured using a resistance
strain gauge attached to the inside of the wing, and the vibration signals of the model were recorded
in real-time. The selected experimental Mach numbers were 0.4, 0.6, and 0.7, and attack angles were
0 and −1° to obtain the effect of geometric nonlinearity caused by large deformations. Because the
experimental dynamic pressure was far from the flutter dynamic pressure at Ma = 0.4 and 0.6, a reliable
flutter boundary was not obtained. Therefore, this study presents the experimental results at Ma = 0.7.
Figs. 11–14 illustrate the bending moment, torsion, in-plane bending, and vibration response time
history of the critical point of flutter at Ma = 0.7 for α = 0°, −1°. The experiments were not carried
out at higher speeds (higher Mach numbers) because the model was damaged at Ma = 0.7. In future
studies, higher Mach numbers can be used in simulations and experiments.

Figure 11: Typical vibration response time history in the wind tunnel experiments at Ma = 0.7 and
α = 0°
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Figure 12: Time history of the critical point of flutter in the wind tunnel experiments at (Ma = 0.7,
α = 0°, qD = 41.2 kPa)

Figure 13: Typical vibration response time history in the wind tunnel experiments at Ma = 0.7 and
α = −1°

4.4 Comparison of Simulation and Experimental Results
Table 3 lists the calculated and experimental results for different attack angles at Ma = 0.7.

Compared with the experimental results, dynamic pressure errors are controlled within 10%. The
simulation and experimental results show that the geometrical nonlinearity caused by large structural
deformations with attack angle results in the flutter dynamic pressure decreasing significantly. In
particular, the flutter dynamic pressure at α = −1° decreases by approximately 25%.
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Figure 14: Time history of the critical point of flutter in the wind tunnel experiments at Ma = 0.7,
α = −1°, qD = 30.7 kPa

Table 3: Experimental and simulation results of flutter

α/° Ma fcr/Hz
experimental result

fcr/Hz
simulation result

qcr/kPa
experimental
result

qcr/kPa
simulation result

qcr

Error

0 0.7 46.4 42.0 41.2 45.5 9.45%
−1 0.7 38.3 31.4 30.7 33.3 7.80%

5 Conclusions

This study proposed a flutter calculation method based on CFD/CSD considering the large
deformation effect. The numerical simulations and wind tunnel experiments were conducted to
investigate the high-speed geometric nonlinearities based on the high-aspect-ratio wing. The main
conclusions are as follows:

(1) A nonlinear flutter calculation method based on CFD/CSD was proposed, which can be
used to calculate high-speed geometrically nonlinear flutter. The performance of the proposed
method was verified using wind tunnel experiments.

(2) The large deformation of the wing under load conditions changes its structural properties and
reduces the frequency of the in-plane bending vibration.

(3) The geometric nonlinearity of the large deformation of the wing causes the in-plane bending to
become a key factor in flutter characteristics, which substantially reduces the nonlinear flutter
dynamic pressure and frequency compared to those of the linear flutter.
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