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ABSTRACT

The multi-pass turning operation is one of the most commonly used machining methods in manufacturing field.
The main objective of this operation is to minimize the unit production cost. This paper proposes a Gaussian
quantum-behaved bat algorithm (GQBA) to solve the problem of multi-pass turning operation. The proposed
algorithm mainly includes the following two improvements. The first improvement is to incorporate the current
optimal positions of quantum bats and the global best position into the stochastic attractor to facilitate population
diversification. The second improvement is to use a Gaussian distribution instead of the uniform distribution to
update the positions of the quantum-behaved bats, thus performing a more accurate search and avoiding premature
convergence. The performance of the presented GQBA is demonstrated through numerical benchmark functions
and a multi-pass turning operation problem. Thirteen classical benchmark functions are utilized in the comparison
experiments, and the experimental results for accuracy and convergence speed demonstrate that, in most cases,
the GQBA can provide a better search capability than other algorithms. Furthermore, GQBA is applied to an
optimization problem for multi-pass turning, which is designed to minimize the production cost while considering
many practical machining constraints in the machining process. The experimental results indicate that the GQBA
outperforms other comparison algorithms in terms of cost reduction, which proves the effectiveness of the GQBA.
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1 Introduction

In the manufacturing field, the technological challenge of machining operations is to produce
products of the desired quality with high productivity and low cost. To reduce the machining cost
for economical reasons, the optimization of the machining parameters is one of the most important
issues, since these parameters have a strong impact on productivity, cost and quality [1]. Most turning
processes require multi-pass turning, considering economic factors. The optimization problem for
machining parameters in multi-pass turning becomes very complicated when a large number of actual
machining constraints need to be considered [2]. Traditional optimization techniques, namely, dynamic
programming [3] and the sequential unconstrained minimization technique [4], may be helpful in
addressing some specific issues. However, these methods tend to find local optimal results. As a result,
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heuristic algorithms and nature-inspired swarm intelligence (SI) techniques have been introduced
to solve economic machining problems because they have power in global search and robustness
[5–9]. Chen proposed a scatter search to address optimization problems [10]. The genetic algorithm
(GA) has been used extensively by some researchers [11–13] to optimize the process of multi-pass
turning. The researchers applied varying improvements of the genetic operators to improve the
GA performance to obtain better results. To solve optimization problems, ant colony optimization
(ACO) [13–15], particle swarm optimization (PSO) [16–18], cuckoo optimization algorithm (COA)
[9], grasshopper optimization algorithm (GOA) [19], bird swarm algorithm (BSA) [20], and the hybrid
immune algorithm [21] were also developed.

In this paper, the first application of an improved version of the prevailing bat algorithm (BA) in
the optimization of turning operations is presented. The BA is a recently proposed swarm intelligence
optimization technique [22]. By mimicking the foraging behaviours of bats in searching for prey, the
BA has incorporated the advantages of many classical techniques in a reasonable manner, including
PSO, the GA [23] and simulated annealing (SA) [24]. Not only does the BA retain simplicity, it has
also been shown to be more effective than its predecessors, especially in cases of lower dimensions.
In addition, it is convenient to implement using a variety of programming languages. Therefore, the
BA has been used to solve various engineering optimization applications [25]. However, since the
population diversity of the BA is not sufficiently high, the BA may fall into a local optimum when
dealing with applications of high dimensions [26]. To address this defect, many versions of the BA
have been proposed, such as the CLBA [27], IBA [28], DLBA [29], and HSBA [30]. The quantum bat
algorithm (QBA) [31] is a new technique based on the idea of quantum computing, which can increase
the population diversity of the BA. In addition, considering the self-adaptive compensation of the
Doppler effect in sound, the echolocation mechanism of bats can be simulated in the QBA. The QBA
has been proven to outperform the standard BA and some well-known algorithms [31].

However, because the position of the stochastic attractor determines the central position of the
quantum-behaved bat search area in the population and some critical random numbers are produced
in the quantum mutation phase utilizing a uniform distribution, there is still premature convergence in
the QBA to a certain extent. Motivated by these disadvantages, this paper proposes a QBA approach
based on a Gaussian distribution (GQBA) to address the problem of premature convergence. The main
contributions of this paper are as follows:

1. We propose an improved quantum-behaved bat algorithm using Gaussian distribution and
apply it to the multi-pass turning problem.

2. We introduce a new stochastic attractor updating strategy to promote the diversification of
swarms and a new quantum-behaved bat updating strategy to perform a more accurate search
and avoid premature convergence.

3. Experiments on the numerical and multi-pass turning optimization indicate the efficiency
of the GQBA. Comparisons with other comparative algorithms validate that the GQBA is
competitive and is a good alternative approach.

The remainder of this paper is structured as follows: Section 2 briefly introduces related works.
Section 3 gives the details of the GQBA proposed in this article. Section 4 presents the numerical
validation and comparison. Section 5 presents an application of the GQBA to the multi-pass turning
operation problem as well as the experimental results. Finally, the concluding comments and some
future research directions are presented in Section 6.
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2 Related Works
2.1 The Original BA Algorithm

When bats are foraging for food, they use echolocation to find prey and avoid obstacles. Inspired
by the foraging behaviour of real bats, Yang proposed the bat algorithm in 2010 [22]. The original
BA uses a frequency-tuning method to promote the diversification of the population. Additionally, it
utilizes the automatic scaling technique to maintain a balance between exploration and exploitation
during the optimization process by imitating the changes in pulse loudness and emission frequency
during foraging. The procedures of the original BA are given below.

Each virtual bat in the swarm moves towards the global optimal position, which is the reason that
all bats fly towards prey when foraging. The frequency (fi), velocity (vi) and position value (xi) of the
virtual bats change during the search procedure according to the following Eqs. (1)–(3):

fi = fmin + ( fmax − fmin) β (1)

vt
i = vt−1

i + (xt−1
i − gbt−1)fi (2)

xt
i = xt−1

i + vt
i (3)

where β is a stochastic value that is produced uniformly in [0, 1], fmin denotes the lowest frequency, fmax

denotes the highest frequency, and gbt indicates the global optimal position. Utilizing the formulas
above, the BA can carry out the exploration operation.

For the exploitation stage, to generate a new candidate position for every virtual bat when a
position is selected from the current optimal positions, a technique called a local random walk is
adopted, which is given as Eq. (4):

xnew = xold + εA
t−1

, (4)

where ε indicates a uniform stochastic value in [−1, 1] that determines the direction of the new
candidate position. Note that A

t−1
indicates the mean of the loudness values of all virtual bats at the

(t − 1)th iteration.

When foraging, every virtual bat gradually adjusts its loudness value and emission frequency to
locate prey. The equations for updating the value of loudness Ai and the value of emission frequency
ri in every iteration can be given as Eqs. (5) and (6):

At
i = αAt−1

i (5)

rt
i = r0

i [1 − exp(−γ (t − 1))], (6)

where r0
i denotes the initial value of the emission rate of the ith virtual bat, α and γ indicate the loudness

attenuation coefficient and the rate enhancement coefficient of pulse emission, respectively. The value
of α is in the range [0, 1], and the value of γ is positive (γ > 0). Both α and γ are constants. In fact,
similar to the cooling parameter in SA, the parameter α determines the convergence characteristic of
the BA. α = γ is commonly used in the literature.

The pseudo-code of the original BA is shown in Fig. 1.
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Figure 1: Pseudo-code of the original BA [22]

2.2 The QBA Algorithm
The original BA has been used in many applications. However, since the population diversity of the

BA is not sufficiently high, the BA does not perform well in multimodal cases. By analyzing the flight
path of virtual bats, Meng et al. [31] developed the QBA. In the QBA, both the quantum behaviour
and Doppler effect are taken into account, as well as other characteristics of the original BA. The
mutation operator of quantum behaviour contributes to promoting the diversity of the swarm, which
is ultimately beneficial in avoiding premature convergence.

The QBA is generally proposed on the framework of the standard BA. The exploration and
exploitation procedures in the QBA are controlled by the decreasing loudness value A and increasing
emission rate value r, respectively. However, the approach to generating new candidate positions in
the QBA is not the same as that in the standard BA. Two more idealized rules have been introduced
[32]: (1) the virtual bats have two foraging habitats instead of one foraging habitat depending on a
random choice, and (2) the virtual bats self-adaptively compensate for the Doppler effect in sound.
The positions of the virtual bats determined by quantum behaviour in the QBA can be described as
Eq. (7):

xt
id =

⎧⎪⎪⎨
⎪⎪⎩

pt−1
d + δ × |mbestd − xt−1

id | × ln
(

1
u

)
, z < 0.5

pt−1
d − δ × |mbestd − xt−1

id | × ln
(

1
u

)
, z ≥ 0.5

(7)

where

pt−1
d = gbt−1

d (8)

δ = δmax − (δmax − δmin)

tmax

× t (9)
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mbestd = 1
N

N∑
i=1

pbestid (10)

pt−1
d denotes the value in the dth dimension of the best previous position gb at iteration t, called

the stochastic attractor, xt
id indicates the position of the ith virtual bat in the dth dimension at the tth

iteration, and u and z are random values generated uniformly from [0, 1]. δ is a design parameter named
the contraction-expansion parameter [32], which can be utilized to control the convergence rate of the
techniques. δmax and δmin indicate the initial value and final value of δ, respectively. In the QBA, δmax = 1
and δmin = 0.5 are adopted. mbest, called the (Mean Best), represents the global point of the swarm,
which is also the average of the present optimal positions pbest of all virtual bats. N is the population
size, and pbesti,d indicates the value of the present optimal position of the ith bat in dimension d.

Considering the self-adaptive capability of virtual bats to compensate for the Doppler effect, the
equations mentioned in Eqs. (1) and (2) can be changed as Eqs. (11)–(13):

fid = (c + vt
i)

(c − vt−1
g )

× fid ×
[

1 + φi × (gbt
d − xt

id)

|gbt
d − xt

id| + ε

]
(11)

vt
id = (w × vt−1

id ) + (gbt
d − xt

id) × fid (12)

xt
id = xt−1

id + vt
id, (13)

where fid is the frequency value of the ith virtual bat in the dth dimension, vt−1
g indicates the velocity

value of the global optimal position at the (t−1)th iteration, and φi indicates a positive value of the ith
virtual bat in [0, 1]. The inertia weight factor w is used to update the velocity vector, which is similar
to the inertia weight factor in PSO. C (c = 340 m/s) is the speed of sound in the air.

In the exploitation stage, in the QBA, the new candidate position of the virtual bat is produced as
Eqs. (14) and (15):

xt
id = gbt−1

d × χ (14)

σ 2 = |At−1
i − A

t−1| + ε, (15)

where χ = N(0, σ 2) indicates a Gaussian distribution, xt
id denotes the position of the ith virtual bat at

the tth iteration and gbt
d indicates the current global optimal position searched by the virtual bats in

the dth dimension. At−1
i indicates the loudness value of the ith virtual bat at the (t − 1)th iteration. ε is

utilized here to guarantee that σ 2 is positive.

During the search process, if the fitness of the objective function is not promoted in the Kth time
step, then a simple strategy is employed to enhance the algorithm, which is to reassign the loudness
value Ai and reset the temporary emission rate value ri, which is a stochastic value generated uniformly
from [0.85, 0.9].

The pseudo-code of the QBA is given in Fig. 2.
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Figure 2: Pseudo-code of the QBA [31]

3 The Proposed GQBA

As mentioned above, the QBA is an improved BA variant that has good performance. However, by
analyzing Eq. (7), it can be seen that due to the convergence of quantum-behaved bats to the stochastic
attractor pt−1

d , when the stochastic attractor is very close to the global optimal individual, the bats
will be concentrated near the global optimal solution, resulting in a mass aggregation phenomenon.
However, if the stochastic attractor is located at the local optimal solution and is far from the global
optimal solution, the bats will be distributed near the local optimal solution with a higher probability,
which can easily lead to the premature convergence of the algorithm. Thus, the position of the
stochastic attractor pt−1

d determines the central position of the quantum-behaved bats’ search area in
the population.

To address the premature convergence problem of the QBA, this paper makes full use of the
guiding role of the stochastic attractor and proposes a new strategy to update the position of the
stochastic attractor as well as the bats in the population; this leads to the quantum-behaved bat
algorithm based on a Gaussian distribution (the GQBA). In the implementation of the GQBA, some
improved schemes have been substituted into the QBA, which are illustrated in the remainder of this
section.
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The first modification is to update the stochastic attractor with the guidance of the current optimal
position value of the ith bat pbestt−1

id and the global best position gbt−1
d . In fact, the introduction of

pbestt−1
id can increase the diversity of the population and lead the QBA to perform a more thorough

global search. Parameter pt−1
d of Eq. (7) is changed according to the Eq. (16):

pt−1
d = c1pbestt−1

id + c2gbt−1
d

c1 + c2

, (16)

where c1 and c2 are generated randomly within [0, 1].

The second change is to substitute coefficients u into Eq. (7) with the absolute value of the
Gaussian distribution whose σ 2 is 1 and mean is 0, which can be defined as G = abs(N(0, 1)). Many
studies [33–35] have shown that a Gaussian distribution with a long tail can perform a more accurate
search near the last generation of individuals, improve the local search capability, provide a greater
search step and random walking distance, expand the search space, and improve the algorithm’s ability
to jump out of local optimality.

The formula of probability density for G in one dimension can be stated as Eq. (17):

f (x) = 2√
2π

exp
(

−x2

2

)
, x ≥ 0. (17)

Therefore, in the GQBA, the position of the quantum-behaved bats can be described as Eq. (18):

xt
id =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pt
d + δ × |mbestd − xt

id| × ln
(

1
G

)
, rand < 0.5

pt
d − δ × |mbestd − xt

id| × ln
(

1
G

)
, rand ≥ 0.5,

(18)

where G = abs(N(0, 1)). Clearly, in line with Eq. (17), f (0) = 0; hence, G is within the logarithmic
function’s domain range (>0).

In the GQBA, the stochastic attractor in terms of pd instructs the exploration stage to ensure
the convergence rate, while the habitat selection design of two different foraging habitats (a Gaussian
quantum-behaved habitat and a Doppler effect-compensated mechanical habitat) contributes to the
exploitation stage to help the algorithm jump out of the local best positions and avoid premature
convergence.

The procedure of the GQBA is shown in Fig. 3.
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Figure 3: Pseudo-code of the GQBA

4 Numerical Validation and Comparison

In this section, thirteen classical benchmark functions are utilized to verify the efficiency of the
GQBA, which are illustrated in Tables 1 and 2. These benchmark functions have been utilized in many
numerical optimization studies [36–39]. In this paper, the thirteen classical test functions can be divided
into two classes. The first class consists of 7 unimodal benchmark functions with only one global
best solution and effectively validates the meta-heuristic algorithms in terms of the convergence rate
as well as the local search ability. The second class consists of 6 multimodal functions, the quantity
of whose local optima increases exponentially. Multimodal functions are usually utilized to examine
the global search ability of algorithms. All the tests on each benchmark function are repeated 30
times independently. All the tests described in this article were executed using MATLAB 2014a on
a computer equipped with an Intel(R) Core(TM) i5-6500 CPU at 3.20 GHz with 8.0 GB of RAM.

Table 1: Unimodal benchmark test cases F1–F7

Instance D Range fmin

F1 (x) = ∑n

i=1x
2
i 30 [−100, 100] 0

F2 (x) = ∑n

i=1|xi| + ∏n

i=1|xi| 30 [−10, 10] 0

(Continued)
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Table 1 (continued)

Instance D Range fmin

F3 (x) = ∑n

i=1

(∑i

j=1xj

)2
30 [−100, 100] 0

F4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

F5 (x) = ∑n−1

i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)
]2

30 [−30, 30] 0

F6 (x) = ∑n

i=1 ([xi + 0.5])2 30 [−100, 100] 0
F7 (x) = ∑n

i=1ix
4
i + random [0, 1] 30 [−1.28, 1.28] 0

Table 2: Multimodal benchmark test cases F8–F13

Instance D Range fmin

F8 (x) = ∑n
i=1 − xi sin

(√|xi|
)

30 [−500, 500] −418.9829 × D

F9 (x) = ∑n
i=1

[
x2

i − 10 cos (2πxi) + 10
]

30 [−5.12, 5.12] 0

F10 (x) = −20 exp

(
−0.2

√
1
n

∑n
i=1x2

i

)
− exp

(
1
n

∑n
i=1 cos (2πxi)

)
+ 20 + e 30 [−32, 32] 0

F11 (x) = 1
4000

∑n
i=1x2

i − ∏n
i=1 cos

(
xi√

i

)
+ 1 30 [−600, 600] 0

F12 (x) = π

n

{
10 sin (πy1) + ∑n−1

i=1 (yi − 1)2
[
1 + 10 sin2 (

πyi+1
)] + (yn − 1)2

}
+ ∑n

i−1u (xi, 10, 100, 4) + ∑n
i=1u (xi, 10, 100, 4)

30 [−50, 50] 0

yi = 1 + xi + 1
4

u(xi, a, k, m) =
⎧⎨
⎩

k(xi − a)mxi > a
0 − a < xi < a
k(−xi − a)mxi < −a

F13 (x) = 0.1
{

sin2 (3πx1) + ∑n
i=1 (xi − 1)2

[
1 + sin2 (3πxi + 1)

]
+ (xn − 1)2[

1 + sin2 (2πxn)
]}

+ ∑n
i=1u (xx, 5, 100, 4)

30 [−50, 50] 0

Since the heuristic algorithm is a random optimization method, at least 10 independent runs
need to be carried out to generate meaningful statistical results. In addition to the average value
and standard deviation, statistical tests, such as the Wilcoxon rank sum test, are required to test the
significance of the consequences based on each separate run. In this research, nonparametric Wilcoxon
rank sum tests were carried out to examine whether the consequences of the GQBA were conspicuously
different from those of comparative techniques. p < 0.05 indicates that there exists a conspicuous
difference between two techniques, while p ≥ 0.05 indicates that there is no conspicuous difference.

To examine the efficiency of the GQBA and to obtain an exhaustive comparison, the GQBA and
four other techniques, the BA [22], the QBA [31], PSO [40] and the GSA [41], are tested on the sets
of benchmark instances above. In all experiments, the total number of iterations is 10000, and the
number of individuals is 50. Table 3 shows the other specific parameter designs for each technique.
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The simulation results are illustrated in Tables 4 and 5 and Figs. 4–16. The best consequences for each
test function are denoted in bold.

Table 3: The parameter design for the BA, QBA, GQBA, PSO and GSA

Algorithms Parameter design

BA [22] fmin = 0, fmax = 2, α = 0.5, γ = 0.5, A = u(0, 1), r = 0.01
QBA [31] α = 0.5, γ = 0.5, A = u(0, 1), r = 0.01, δmax = 1.0, δmin = 0.5, P = u(0.6, 0.9)

GQBA (Ours) A = u(0, 1), r = 0.01, α = 0.5, γ = 0.5, δmax = 1.0, δmin = 0.5, P = u(0.6, 0.9)

PSO [40] Refer to the original paper
GSA [41] Refer to the original paper
Note: u(m, n) represents a random value generated uniformly from [m, n].

As shown in Table 4, the GQBA outperforms the other techniques in most cases, followed by PSO,
the GSA, the QBA and the BA. To a certain extent, this is evidence that when the dimensionality of
the search scope is high, the local optimal avoidance effect of the BA is insufficient.

As seen from Table 4, concerning accuracy, the GQBA has a better mean than the other techniques
in eight out of 13 instances (F1, F2, F3, F4, F7, F9, F10 and F11). Meanwhile, in terms of stability, the
GQBA performs better than the other techniques in 7 out of 13 instances (F1, F2, F3, F4, F7, F10 and F11).
For local optimum avoidance, with regard to the p values in Table 5, the performance of the GQBA
in three out of 13 test functions is not significantly different (F8, F9 and F11). Taking into account the
accuracy results above, it can be concluded that the GQBA developed in this paper is able to provide
significant results in six out of 13 instances (F1, F2, F3, F4, F7 and F10), which means that the GQBA
has better local optimum avoidance. For the other functions, the performance of the GQBA is ranked
second and third two and three times, respectively. In general, this means that the GQBA performs
well for both types of functions.

Table 4: Numerical comparison of different methods on the test instances

F BA QBA GQBA (Ours) PSO GSA
Mean SD Mean SD Mean SD Mean SD Mean SD

F1 3.81e−05 5.72e−05 2.20e−36 1.12e−35 0 0 9.48e−84 5.19e−83 8.17e−18 1.68e−18
F2 1.96e+04 7.70e+04 2.36e−21 5.49e−21 0 0 1.41e−40 6.08e−40 1.33e−08 1.57e−09
F3 1.57e−04 6.44e−05 1.48e−19 5.41e−19 0 0 6.09e−08 7.02e−08 3.62e−17 9.34e−18
F4 3.99e+01 6.35e+00 1.52e+01 5.63e+00 0 0 1.03e−04 1.07e−04 1.59e−09 1.74e−10
F5 8.61e+00 3.00e+01 2.23e+01 1.97e+00 1.99e+01 1.12e+01 2.78e+01 2.58e+01 1.42e+01 3.04e−01
F6 2.73e−05 7.57e−06 1.43e−01 3.00e−01 2.95e−15 2.25e−15 5.34e−33 7.19e−33 7.51e−18 2.24e−18
F7 1.89e−03 5.94e−04 1.54e−03 9.24e−04 1.29e−05 1.15e−05 4.14e−03 1.28e−03 1.10e−02 2.72e−03
F8 −7.19e+03 8.78e+02 −6.40e+03 8.72e+02 −6.90e+03 8.76e+02 −6.87e+03 8.52e+02 −2.71e+03 5.20e+02
F9 1.89e+02 3.55e+01 1.47e+02 5.79e+01 1.04e+01 1.37e+01 2.25e+01 6.11e+00 1.25e+01 3.22e+00
F10 20.0e+02 1.15e−03 6.28e−01 1.07e+00 1.13e−15 9.01e−16 9.53e−15 3.19e−15 2.24e−09 2.59e−10
F11 1.74e+02 5.06e+01 7.51e−03 1.08e−02 0 0 1.54e−02 1.25e−02 9.04e−04 3.80e−03
F12 2.46e+01 1.21e+01 4.72e+00 5.26e+00 2.97e−01 9.07e−01 1.60e−32 4.51e−34 4.97e−20 1.35e−20
F13 7.28e+01 9.42e+00 9.75e+00 1.28e+01 2.76e−15 2.49e−15 3.66e−04 2.01e−03 7.89e−19 1.75e−19
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Table 5: p-values over all tests

F GQBA BA QBA PSO GSA

F1 N/A 1.2118e − 12 1.2118e − 12 1.2118e − 12 1.2118e − 12
F2 N/A 1.2118e − 12 1.2118e − 12 1.2118e − 12 1.2118e − 12
F3 N/A 1.2118e − 12 1.2118e − 12 1.2118e − 12 1.2118e − 12
F4 N/A 1.2118e − 12 1.2118e − 12 1.2118e − 12 1.2118e − 12
F5 N/A 0.0042 0.0011 0.0011 3.9881e − 04
F6 N/A 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11
F7 N/A 3.0199e − 11 3.0199e − 11 3.0199e − 11 3.0199e − 11
F8 N/A 0.2838 0.0339 0.7958 3.0199e − 11
F9 N/A 1.6179e − 11 4.4870e − 11 0.0045 0.0619
F10 N/A 2.3638e − 12 2.3547e − 12 5.9197e − 13 2.3638e − 12
F11 N/A 1.2118e − 12 2.9343e − 05 6.1501e − 10 0.1608
F12 N/A 4.0772e − 11 9.7555e − 10 2.0535e − 11 3.0199e − 11
F13 N/A 3.0199e − 11 3.0199e − 11 4.6152e − 10 3.0199e − 11
Note: N/A represents ‘Not Applicable’, and p values that are not less than 0.05 are underlined.

Figs. 4–16 show the convergence comparison of the five algorithms for the thirteen benchmark
cases. The values shown in the convergence curves above them indicate the average of the objective
values obtained from 30 separate runs. On the basis of the figures, the original BA and QBA converge
at a faster speed with fewer iterations. However, in many cases, they are more likely to fall into local
optima. It can also be seen from the figures that the convergence rate of the GQBA is similar to that
of the QBA, while the GQBA can prevent premature convergence and can offer higher performance
accuracy on most benchmark instances.

Figure 4: Convergence comparison of five techniques for F1
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Figure 5: Convergence comparison of five techniques for F2

Figure 6: Convergence comparison of five techniques for F3

Figure 7: Convergence comparison of five techniques for F4
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Figure 8: Convergence comparison of five techniques for F5

Figure 9: Convergence comparison of five techniques for F6

Figure 10: Convergence comparison of five techniques for F7
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Figure 11: Convergence comparison of five techniques for F8

Figure 12: Convergence comparison of five techniques for F9

Figure 13: Convergence comparison of five techniques for F10
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Figure 14: Convergence comparison of five techniques for F11

Figure 15: Convergence comparison of five techniques for F12

Figure 16: Convergence comparison of five techniques for F13
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5 GQBA for Optimization of the Multi-Pass Turning Process

In this section, the GQBA with the pruning strategy is developed to address the constrained
manufacturing optimization problem of multi-pass turning optimization. The goal of this problem
is to find the optimal cutting parameters to minimize the unit production cost (UC) [8,9,42].
The minimization process is subject to many machining constraints that describe the states of the
machining procedure. Machining optimization has been investigated by different techniques, such as
ACO [14], PSO [16,43], the GA [5], the artificial bee colony (ABC) [44–46], the COA [9], the firefly
algorithm (FA) [47], the flower pollination algorithm (FPA) [8], and differential evolution (DE) [48].
It is very convenient to compare the proposed GQBA with the methods developed previously.

5.1 Mathematical Model of Multi-Pass Turning
In this article, we adopt the mathematical model presented in [8,9,42] for optimizing the cutting

parameters. The goal of the optimization model is to find the optimal cutting parameters, i.e., the
depth-of-cut, feed rate and cutting speed, for both finishing and rough machining to minimize the
unit production cost. A schematic representation of a turning operation is given in Fig. 17.

5.1.1 The Objective Function: Unit Production Cost (UC)

The UC of the multi-pass turning process is usually indicated by a combination of 4 basic cost
factors:

(1) The cost due to the real cutting time (CM).

(2) The machine idle cost for setup operations and tool idling motion (CI).

(3) The cost of tool replacement (CR).

(4) The tool cost (CT).

Thus, the UC can be expressed as following Eq. (19) [8,9,42]:

UC = CM + CI + CR + CT

=
[

πDL
1000Vrfr

(
dt − ds

dr

)
+ πDL

1000Vsfs

]
k0

+
[

tc + (h1L + h2)

(
dt − ds

dr

+ 1
)]

k0

+
[

πDL
1000Vrfr

(
dt − ds

dr

)
+ πDL

1000Vsfs

]
te

Tp

k0

+
[

πDL
1000Vrfr

(
dt − ds

dr

)
+ πDL

1000Vsfs

]
kt

Tp

(19)
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Figure 17: Schematic representation of a multi-pass turning operation

5.1.2 Machining Condition Constraints

To minimize the UC, practical machining constraints that describe the states of the machining
procedure, i.e., finishing and rough machining, are taken into account. They are described in detail as
follows [8,42]:

Rough Machining

The constraints of rough machining are listed as Eqs. (20)–(27):

Range of cutting speed : VrL ≤ Vr ≤ VrU (20)

Range of feed rate : frL ≤ fr ≤ frU (21)

Range of depth-of-cut : drL ≤ dr ≤ drU (22)

Tool life constraint : TL ≤ Tr ≤ TU (23)

Maximum cutting force : Fr = k1f μ

r dν

r ≤ FU (24)

Power constraint : Pr = k1f μ

r dν

r Vr

6120η
≤ PU (25)

The chip-tool interface temperature constraint is expressed as Eq. (26):

Qr = k2V τ

r f φ

r dδ

r ≤ QU (26)

Stable cutting region constraint : V λ

r frdυ

r ≥ SC (27)
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Finish Machining

The constraints of finish machining are listed as Eqs. (28)–(36):

Range of cutting speed : VsL ≤ Vs ≤ VsU (28)

Range of feed rate : fsL ≤ fs ≤ fsU (29)

Range of depth-of-cut : dsL ≤ ds ≤ dsU (30)

Tool life constraint : TL ≤ Ts ≤ TU (31)

Maximum cutting force : Fs = k1f μ

s dν

s ≤ FU (32)

Power constraint : Ps = k1f μ

s dν

s Vs

6120η
≤ PU (33)

The chip-tool interface temperature constraint is expressed as Eq. (26):

Qs = k2V τ

s f φ

s dδ

s ≤ QU (34)

Stable cutting region constraint : V λ

s fsdυ

s ≥ SC (35)

Surface finishing constraint :
f 2

s

8R
≤ SRU (36)

Parameter Relations

The practical relationship between finish and rough machining can be given by Eqs. (37)–(40):

Vs ≥ k3Vr (37)

fr ≥ k4fs (38)

dr ≥ k5ds (39)

n = dt − ds

dr

, and n ∈ Z+ (40)

where the tool life can be formulated as Eq. (41).

T = C0

V pf qdr
(41)

It is supposed that the same tool is utilized during the whole machining operation procedure for
both finishing and roughing. The wear rate of the cutter tools is commonly different between finishing
and roughing due to changing machining conditions. Therefore, the life of the tool can be calculated
as Eq. (42):

Tp = θTr + (1 − θ)Ts, θ ∈ [0, 1] (42)

where

Tr = C0

V p
r f q

r dr
r

(43)

Ts = C0

V p
s f q

s dr
s

(44)
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In some previous research work, a simplified formula for Tp (Eq. (42)) was adopted by ignoring
the weight factor θ , as given by Eq. (45):

Tp = Tr + Ts. (45)

5.1.3 Pruning Strategies Using the Theoretical Lower Bound of the Subproblem

The machining parameters of multi-pass turning that need to be optimized include a single finish
cut and multiple rough cuts. Therefore, the available quantity of rough cuts should be restricted to
certain ranges by Eq. (46):

nL ≤ n ≤ nU , (46)

where nL = �(dt − dsU)/drU�, nU = �(dt − dsL)/drL	 and n is a fixed integer.

Therefore, the total quantity of available values of n can be given as Eq. (47):

m = (nU − nL + 1), (47)

where m is generally a small integer.

Hence, the issue of optimizing the cutting parameters of multi-pass turns is divided into m
subproblems. Therefore, the search process for the entire optimization problem is equivalent to search
processes of the m subproblems, and the solution corresponding to the optimal fitness value among
the m subproblems is taken as the solution of the entire optimization problem. Inspired by pruning
strategies, we have found that the theoretical lower bound on the unit production cost for each
subproblem can be used to reduce the total running time during the enumerative process, as reported
in our previous work [49]. The theoretical lower bound on the unit production cost can be calculated
according to the different quantities of rough cuts for each subproblem [49], and the theoretical lower
bound on UC for the j-th subproblem is represented by UCjL. The flowchart of the GQBA for multi-
pass turning optimization is given in Fig. 18.

The various notation used above is defined in Fig. 19.
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Figure 18: The flowchart of the GQBA for multi-pass turning optimization
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Figure 19: List of symbols [48]

5.2 Experimental Verification and Comparisons
All the simulations were performed on a PC with the same characteristics as in Section 4. The

numerical validation and comparisons using the machining model data [8,42] are shown in Table 6.
We note that the tool life is usually defined by two different expressions (Eqs. (42) and (45)); thus, the
proposed GQBA was tested using these two definitions. In each case, the GQBA was performed 50
times to obtain the average solution and optimized solution. The total number of iterations and the
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total number of individuals in each test were set to 7500 and 100, respectively. The remaining parameter
design of the GQBA is given in Table 3.

Table 6: Data for the machining model

Parameter Value Parameter Value Parameter Value Parameter Value

D 50 mm L 300 mm dt 6 mm VrL 50 m/min
frL 0.1 mm/rev drL 1 mm VrU 500 m/min frU 0.9 mm/rev
drU 3 mm VsL 50 m/min fsL 0.1 mm/rev dsL 1 mm
VsU 500 m/min fsU 0.9 mm/rev dsU 3 mm p 5
q 1.75 r 0.75 μ 0.75 ν 0.95
η 0.85 λ 2 υ −1 τ 0.4
φ 0.2 δ 0.105 R 1.2 mm C0 6 × 1011

TL 25 min TU 45 min FU 200 Kgf PU 5 kW
SC 140 QU 1000°C SRU 10 μm h1 7 × 10−4

h2 0.3 te 1.5 min/edge tc 0.75 min/piece kt 2.5 $/edge
k0 0.5 $/min k1 108 k2 132 k3 1
k4 2.5 k5 1

Table 7 presents the results of the average unit production costs obtained by the GQBA using
various mathematical models with different tool life expressions and cutting depths. We note that none
of the solutions obtained in the experiment violate the practical machining constraints, suggesting that
they are feasible. Moreover, it can be seen from this table that due to the low standard deviation, the
solution obtained in each instance fluctuates within a small range, which indicates that the GQBA
presented in this paper has good stability.

Table 7: Results obtained by the GQBA

Model Depth-of-cut
(mm)

Average UC
($/piece)

Standard
deviation

Function
evaluations

Execution time
(sec/run)

Tp = Tr + Ts 6 1.9602 0.00113 750, 000 95
Tp = Tr + Ts 8 2.4398 0.00153 750, 000 96
Tp = θTr + (1 − θ)Ts 6 2.0284 0.00050 750, 000 98
Tp = θTr + (1 − θ)Ts 8 2.5514 0.00172 750, 000 99

The optimization problem has been investigated by various approaches. To demonstrate the
effectiveness of the proposed GQBA, we compare the simulation results with those reported in recent
literature [5,8,9]. For a fair comparison, we select the results of other algorithms with consistent com-
mon parameters in these literatures. The detailed comparison results are summarized in Tables 8–11,
where the best results are indicated by underlines.
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Table 8: Comparison of the experimental results among different algorithms (when Tp = Tr + Ts,
dt = 6 mm)

Algorithm Vr(m/min) Vs(m/min) fr(mm/rev) fs(mm/rev) dr(mm) ds(mm) UC($/piece) Constraint violation
GQBA (Ours) 123.3238 169.9843 0.5654 0.2261 3 3 1.9592 0
FPA [8] 123.3431 169.9785 0.5655 0.2262 3 3 1.9591 0
COA [9] 123.1462 169.9876 0.5655 0.2262 3 3 1.959 0
HPSO [43] 123.3424 169.9783 0.5655 0.2262 3 3 1.959 0
GA [5] 122.42 161.08 0.56 0.21 3 3 2.038 0
PSO [16] 106.69 155.89 0.897 0.28 2 2 2.272 0
HRDE [48] – – – – – – 2.0461 –
SA-PS [42] – – – – – – 2.313 –
AIA [48] – – – – – – 2.12 –
DERE [44] – – – – – – 2.046 –
ABC [44] – – – – – – 2.118 –
DE [44] – – – – – – 2.136 –
HABC [45] – – – – – – 2.046 –
HRTLBO [46] – – – – – – 2.046 –
ACO [14] 103.05 162.02 0.9 0.24 – – 1.626 not considering Eq. (40)
FA [47] 98.4102 162.2882 0.82 0.2582 3 3 1.824 Eq. (24)

Note: “–” denotes that the authors do not provide the specific value in their works.

Table 9: Comparison of the experimental results among different algorithms (when Tp = Tr + Ts,
dt = 8 mm)

Algorithm Vr(m/min) Vs(m/min) fr(mm/rev) fs(mm/rev) dr(mm) ds(mm) UC($/piece) Constraint violation
GQBA (Ours) 119.1607 164.2276 0.6562 0.2624 2.6673 2.6652 2.4385 0
HRDE [48] – – – – – – 2.4791 –
DERE [44] – – – – – – 2.4793 –
HABC [45] – – – – – – 2.4790 –
AIA [48] – – – – – – 2.51 –
ABC [44] – – – – – – 2.503 –
DE [44] – – – – – – 2.512 –
SS [10] – – – – – – 2.5417 –
SA-PS [42] – – – – – – 2.7411 –

Note: “–” denotes that the authors do not provide the specific value in their works.

From Table 8, it can be clearly seen that the GQBA presented in this paper outperforms many
algorithms, and its performance is comparable with that of some previously best approaches such as
the COA [9], hybrid particle swarm optimization (HPSO) [43] and the FPA [8]. All four methods can
produce an optimal result of ∼1.959. In contrast, the performance of the remaining methods is much
worse than that of the GQBA; the corresponding production costs are larger than 2.0 or the resulting
solutions are infeasible. In Table 9, the GQBA can obtain the minimum production cost among all the
algorithms when the depth-of-cut is 8 mm. The proposed GQBA can further reduce the production
cost obtained by hybrid robust differential evolution (HRDE) [48], the differential evolution algorithm
with receptor editing (DERE) [44] and the hybrid ABC (HABC) [45], and it can obtain much better
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solutions than the other five comparative methods. In general, the GQBA can reduce costs by 2% to
12% compared to previously reported methods.

Table 10: Comparison of the experimental results among different algorithms (when Tp = θTr + (1 −
θ)Ts, dt = 6 mm)

Algorithm Vr(m/min) Vs(m/min) fr(mm/rev) fs(mm/rev) dr(mm) ds(mm) UC($/piece) Constraint violation
GQBA (Ours) 109.6672 169.9682 0.5655 0.2261 3 3 2.0279 0
FPA [8] 109.6631 169.9785 0.5655 0.2262 3 3 2.0351 0
HPSO [7] 109.6655 169.9796 0.5655 0.2262 3 3 2.0351 0
COA [9] 117.9322 123.1993 0.5655 0.2262 3 3 2.2390 0

Table 11: Optimal result obtained by the GQBA (when Tp = θTr + (1 − θ)Ts, dt = 8 mm)

Algorithm Vr(m/min) Vs(m/min) fr(mm/rev) fs(mm/rev) dr(mm) ds(mm) UC($/piece) Constraint violation
GQBA (Ours) 106. 0599 164.2371 0.6563 0.2624 2.6671 2.6656 2.5494 0

As mentioned previously, different definitions have been proposed for the tool life expression
in previous studies [5,8,9], i.e., Tp = θTr + (1 − θ)Ts. Because the formulation of tool life plays an
important role in computing the production cost, the application effect of the GQBA in this case is
also considered, as shown in Tables 10 and 11. From Table 10, it is obvious that the GQBA can obtain
a minimum production cost of 2.0279, which outperforms all other methods. The optimal results and
machining parameters are summarized in Table 11 with a depth-of-cut of 8 mm, which, as far as we
know, has not been stated in previously published literature. In addition, this is the first study to use a
BA variant to reduce the unit production cost for multi-pass turning operations, and our results show
that the proposed GQBA can address the optimization problem efficiently and achieve better results
than other methods.

5.3 Discussion
The GQBA can find better results than the other algorithms to further cut down the unit

production cost. The main reasons come from the following two aspects.

Firstly, we improve the original BA algorithm to form the novel GQBA. The first improvement
is to incorporate the current optimal positions of quantum bats and the global best position into
the stochastic attractor to facilitate population diversification. The second improvement is to use a
Gaussian distribution instead of the uniform distribution to update the positions of the quantum-
behaved bats, thus performing a more accurate search and avoiding premature convergence. All these
are verified by the numerical simulation experiments in Section 4.

Secondly, to overcome the complicated optimization problems in various fields, we need to
carefully consider the characteristics of the specific problem and use the specific domain knowledge to
design the optimization algorithm. In this paper, for the optimization problem of multi-pass turning,
because the machining process can be divided into different numbers of roughing cuts, we decompose
the whole optimization problem into several simple sub-problems according to the different numbers
of roughing cuts. Each sub-problem can be conquered individually, which greatly reduces the space of
the problem solution.
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Therefore, the performance of the combination of traditional divide-and-conquer strategy and
swarm intelligence algorithm is better than other algorithms that only use traditional mathematical
methods or swarm intelligence algorithms. However. the proposed GQBA may be suitable to solve the
optimization problem of multi-pass turning, but it is not general as other algorithms, that is, they can
also be applied to the optimization problems in other manufacturing fields. Therefore, the generality
of our algorithm is insufficient, and we hope to improve it further in the future.

6 Conclusions

In this research, the GQBA is developed to promote the efficiency of the BA and QBA with respect
to accuracy and stability. In the GQBA, the combination of the QBA and a Gaussian distribution
can expand the search space and prevent premature convergence. The modification of the stochastic
attractor can contribute to promoting swarm diversity. The GQBA also inherits the characteristics
of the QBA, such as simplicity and feasibility. To conclude, the experimental results of numerical
functions verify the effectiveness of the GQBA. In addition, the results of multi-pass turning operation
optimization show that the GQBA is a good alternative method.

For future research directions, the proposed GQBA can be utilized with the angle modulation
technique [50–52] to solve binary optimization problems. Moreover, the GQBA can be applied to
other real-world problems, including artificial neural networks, task scheduling, feature selection and
image segmentation.
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