
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.026043

ARTICLE

A Simple and Efficient Structural Topology Optimization Implementation
Using Open-Source Software for All Steps of the Algorithm: Modeling,
Sensitivity Analysis and Optimization

Rafael Marin Ferro1,2,* and Renato Pavanello2

1Coordination of Mechanical Engineering, Federal Institute of Science and Technology of ES - IFES, Aracruz-ES, 29192-733, Brazil
2Department of Computational Mechanics, Faculty of Mechanical Engineering, Unicamp, Campinas-SP, 13083-860, Brazil

*Corresponding Author: Rafael Marin Ferro. Email: rafael.ferro@ifes.edu.br

Received: 11 August 2022 Accepted: 09 October 2022

ABSTRACT

This work analyzes the implementation of a continuous method of structural topology optimization (STO) using
open-source software for all stages of the topology optimization problem: modeling, sensitivity analysis and
optimization. Its implementation involves three main components: numerical analysis using the Finite Element
Method (FEM), sensitivity analysis using an Adjoint method and an optimization solver. In order to allow the
automated numerical solution of Partial Differential Equations (PDEs) and perform a sensitivity analysis, FEniCS
and Dolfin Adjoint software are used as tools, which are open-source code. For the optimization process, Ipopt
(Interior Point OPTimizer) is used, which is a software package for nonlinear optimization scale designed to find
(local) solutions of mathematical optimization problems. The topological optimization method used is based on
the SIMP-Solid Isotropic Material with Penalization interpolation. The considered problem is the minimization of
compliance/maximization of stiffness, considering the examples of recurrent structures in the literature in 2D and
3D. A density filtering algorithm based on Helmholtz formulation is used. The complete code involves 51 lines of
programming and is presented and commented in detail in this article.
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1 Introduction

Structural topology optimization aims to find the best distribution of a given material within a
structural domain in order to maximize/minimize some objective function. Among the most explored
objective functions, the following stand out: stiffness, stress, natural frequency, thermal capacity,
buckling, or a combination of these [1]. In recent years, structural optimization has had a great
impact on the industry, where several effective approaches have been developed and consolidated.
In a general way, structural topology optimization can be classified into two types: one considering
discrete elements and the other considering continuous elements. In the discrete elements approach,
according to [2], one of the precursors of this approach, the optimal structures are obtained through
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an extensive search in a predefined set of discrete elements, such as for example beams and trusses
discretized in a given domain of analysis, as illustrated in Fig. 1, by [3].

Figure 1: Discrete element and its optimization

In this approach, global optimization methods can be used such as genetic algorithms [4], PSO-
Particle Swarm Optimization [5], ACO algorithms-Ant Colony Optimization [6]. On the other hand,
discrete methods based on objective function gradients, can be based such as BESO-Bidirectional
Evolutionary Structural Optimization [7] or TOBS-Topology Optimization of Binary Structures [8].

In the continuous elements approach, the optimal structures can be found considering an
interpolation of the material [9], for each location within a design domain, as illustrated in Fig. 2.

Figure 2: Continuous element and its optimization

Some works have extensive analyzes of the discrete element approach [10,11,12]. The simultaneous
optimization of shape and size using a similar approach is done by [13–16]. The continuous element
approach has also been applied to numerous optimization problems, such as stiffness problems [17],
eigenfrequency problems [18–20], resistance automotive shock [21] and mechanical reliability analysis
optimization problems [22,23]. Thus, structural topology optimization is increasingly expanding its
space in practical applications in the mechanical, aerospace and civil industries. Currently, researchers
in the area tend to use ready-made open-source software components that facilitate the implemen-
tation of topology optimization programs. In this context, the reuse of software components for the
development of open codes gains relevance and, therefore, has been much explored recently.

Thus, the present work presents a new simple and numerically efficient code for structural
topology optimization with only 51 lines of code using open-source software for all stages of the
topology optimization problem: modeling, sensitivity analysis and optimization. The elastostatic
mechanical problem is discretized by the finite element method using internal FEniCS tools. Sensitivity
analysis is performed using the Dolfin Adjoint program. Optimization problem, formulated using
SIMP interpolation, are solved using Ipopt optimizer functions. The proposed approach allows
users to concentrate on the abstract mathematical formulation of the optimization problem, without
spending a lot of effort on computational implementation. Thus, all the code is done in a completely
open way, without the need for commercial tools or even without the need to install additional
modules. The problem being considered is the minimization of the compliance of 2D and 3D structures.
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1.1 Open Programs on STO
Regarding open programs on structural topology optimization, one of the first open programs

was published by [24], a 99 line topology optimization code written in Matlab. As in the present
work, Sigmund [24] used the topology optimization approach with the SIMP method-Solid Isotropic
Material with Penalization. Open structural topology optimization programs were developed using
other approaches such as: ESO-structural evolutionary optimization and BESO - bidirectional evolu-
tionary structural optimization methods [7,25–31], LSM-Level Set Method [32–34], TOBS-topology
optimization of binary structures [8], MMC method-moving morphable components [35,36], among
others. Table 1 presents a survey with open-source examples on structural topology optimization,
describing the name of the code and authors, the programming language used, and the optimization
method used.

Table 1: Open programs for structural topology optimization

Names and references Environment Method

99-line [23] MATLAB SIMP
SOFT-KILL [25,26] MATLAB BESO
dLSM [37] MATLAB LSM
88-line [38] MATLAB SIMP
PolyTop [39] MATLAB SIMP
169-line 3D [40] MATLAB SIMP
115-line [41] MATLAB SIMP
PYTHON 3D [42] Python, Abaqus ESO
topX [43] MATLAB BESO
MMC188 [44] MATLAB MMC
SERA [45] MATLAB ESO
88-line [46] MATLAB LSM
esoL esoX [47] MATLAB BESO
185-line [48] FEniCS LSM
213-line [49] MATLAB, ANSYS SIMP
AC# 3D [50] SAP2000 SIMP
128-line [51] MATLAB CDT
108-line [52] FreeFEM LSM
62-line [53] MATLAB LSM
top99neo [54] MATLAB SIMP
top3D125 [54] MATLAB SIMP
55-line [55] FEniCS SIMP
tobs101 [8] MATLAB TOBS
89-line [56] FreeFEM SIMP

In the work published by [57], a comprehensive review of educational articles on structural and
multidisciplinary optimization, an extensive survey is carried out on works with educational or open
codes made by the structural and multidisciplinary optimization (SMO) community, showing mainly
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the growth of this type of publication in recent years, the number of downloads and even the number of
citations. Also in [57], a detailed description of the main characteristics of each work is made, such as
topology, dimensioning, optimization, and others. It also provides comparisons and evaluations on the
codes of several important aspects, including techniques, efficiency, usability, readability, environment
and compatibility, demonstrating the importance and practicality of the value of an educational or
open publication in a pedagogical way in dictionary format with specific directions for each theme.

The use of commercial software versus the use of open-source software has very particular
characteristics, where the financial factor ends up being predominant. Thus, the objective of this article
is to develop computational tools that allow a solid analysis of the finite element method, and that do
all the calculations necessary for the topology optimization process and that are free. According to
[58], FEniCS [59,60] is a research project that aims to create mathematical methods and software for
automated computational mathematical modeling. This means creating easy, intuitive, efficient and
flexible software to solve partial differential equations using finite element methods.

In the research carried out by [55], a 55-line code for large-scale parallel topology optimization in
2D and 3D, an open-source code is made using FEniCS, as in the present work, based on the SIMP
approach, however, with a different code approach. In their work [55], they opted for the process of
replicating the code of works 99-line [24], and 88-line [38], using tools available only in FEniCS, not
using the Adjoint method available in Dolfin Adjoint software [61,62,63]. Thus, the use of Euclidean
distance matrices is made to vectorize the calculation of distance matrices for the filter and also making
use of the optimization algorithm with the standard method of optimality criterion satisfying KKT
conditions (Karush–Kuhn–Tucker) with the insertion of a Lagrangian Multiplier being applied to
satisfy the sensitivity of its objective function by the bisection method. This type of approach made
in [55] has great results. However, it still requires, in addition to the standard FEniCS tools, the use
of other programming packages to assemble all of them for finite elements and optimization. Its
language is very close to software like Matlab and ends up “losing” a little functionality and high
code abstraction available in the FEniCS and Dolfin Adjoint package.

With FEniCS, it is possible to calculate the sensitivities using the adjoint method, which automat-
ically derives the adjoint and tangent discrete linear models from a direct model written in the Python
interface, through the Dolfin Adjoint. Thus, the SIMP method can be implemented using a sensitivity
analysis based on the adjoint method. In this work, the relative density of each finite element is used
as a design variable for the optimization problem. The material interpolation follows a power law,
penalizing elements of intermediate density and leading the topology to an optimized binary state of
solid and empty material [24,64,65]. Sensitivity analysis, in terms of robustness and efficiency, is one of
the great challenges in the field of high-performance scientific computing [66]. Thus, Dolfin Adjoint
aims to solve this problem for the case where the model is implemented in the Python interface for
FEniCS, where given a differentiable model, employing Dolfin Adjoint involves few changes in the
computational code. The linear adjoint, and tangent models exhibit optimal theoretical efficiency
where if each direct variable is stored, the adjoint takes from 0.2 to 1.0 times the execution time of the
direct model, depending on the structure of the characteristics of the direct problem. If the model direct
is performed in parallel, sensitivity calculations are also performed in parallel without modification
in Dolfin Adjoint [66].

Finally, when comparing the works listed in Table 1, including those done in FEniCS, most are
replications or improvements of the original codes using SIMP or BESO. Thus, in the present work,
we use both FEniCS and Dolfin Adjoint in an integrated implementation. The proposed code has
the simplest and most objective language, follows the writing of mathematical formulations in a very
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clear and readable way, simplifying the abstract formulation of the FEM. The Dolfin Adjoint code
makes the whole process of differentiating the sensitivities in a simple and direct way with a small
number of code lines. Following the similar procedure, the optimization problem is solved using the
Ipopt module. Another differential of our code is for 2D and 3D cases, being able to solve relatively
large 3D problems, allowing to solve real engineering problems.

Also, considering the programming language used as base, Python, there is no need to install
any other numerical/mathematical module. For simulations considering multiplus parallelization
processes, due to the programming method and the relationship between the FEniCS and Dolfin
Adjoint programs, there is no need to change the code. And finally, so far, it is the code with the
fewest lines ever made.

1.2 Finite Element Method Using FEniCS
The implementation of the finite element method was done using the FEniCS platform. The

problem must be formulated using functional analysis [67]. FEniCS is a tool capable of solving PDEs
by the finite element method, and was designed to make implementations more compact, which is
attractive because it uses the abstract formulation of the method [67]. Over the last few decades, much
work has been done on the finite element method and in a general way, it is considered that among
most of these works there is a format division of the method approach into two categories, the first
is an abstract mathematical version of the method and the second is the formulation of engineering
“structural analysis” [58]. Thus, the FEniCS software is based on applying the concepts of the first
approach, the abstract mathematics of the finite element method. Other works that follow this same
approach in the development of the finite element method are done by [68,69].

The formulation can be written using the weighted residuals method of the GALERKIN type,
where the solution of a PDE can be obtained considering a nodal polynomial approximation by
subdomains. For this, the test functions that are used in FEniCS programs are defined. Test functions
belong to certain function spaces that specify the properties of the adopted numerical approximations,
[58].

2 Structural Topology Optimization (STO)

Thus, in order to perform structural topology optimization, the problem of minimizing structural
compliance (mean sensibility) is defined through an objective function over a domain, according to
Eq. (1):

L (v) =
∫

�

f .v d� +
∫

∂�N

T .v d� (1)

Being in Eq. (1): L (v) the work of external volume forces f and surface forces T , v represents
the test functions, � is the domain and ∂�N is the portion of the boundary where surface forces are
applied.

The equilibrium conditions are considered as constraints of the problem and are given by:

− ∇.σ = f in � (2)

σ .n = T on �N (3)
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Being in Eqs. (2) and (3): σ the Cauchy stress tensor, n represents the external normal direction at
�N and ∇. σ is the stress divergence, as follows:
∂σxx

∂x
+ ∂σxy

∂y
= −fx (4)

∂σxy

∂x
− ∂σyy

∂y
= −fy (5)

σxxnx + σxyny = Tx (6)

σxynx − σyyny = Ty (7)

And the following additional restrictions:∫
�

ρ (x) dx ≤ V (8)

0 ≤ ρ (x) ≤ 1, ∀x ∈ �

Since the parameter ρ (x) is the design variable (ρ (x) = 1 means presence of material and ρ (x) =
0 means absence of material), V , in Eq. (8), it is the volume of the structural domain. The strain
displacement relations considering the small elastic deformations of a body � can be written as:

ε (v) = 1
2

(∇v + (∇v)T
)

(9)

The constitutive equations can be written as:

σ (u) = λtr (ε) I + 2με (10)

And the linear integral form of the equilibrium conditions can be written as:

a (u, v) =
∫

�

σ (u) : ε (v) dx (11)

Being in Eqs. (9)–(11): u the displacement field, ε (v) the linear part of the Green strain tensor, tr
is the tensor trace and I is the identity tensor. The Lamé constants are λ and μ according to:

λ = Ev
(1 + υ) (1 − 2υ)

, μ = E
2 (1 + υ)

(12)

Being in Eq. (12): E the Young’s modulus and υ a Poisson coefficient.

With this, the variational formulation is summarized in how to find u so that u ∈ V , where:

a (u, v) = L (v) ∀v ∈ V̂ (13)

Being in Eq. (13): V a discrete function space and V̂ the Hilbert subspace of v admissible functions.
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Isotropic elastic material behavior is assumed in the examples of this work. The material distribu-
tion ρ (x) is done by updating the material stiffness through compliance minimization, which can be
written as follows [9]:

min. L (v)

s.a.: a (u, v) = L (v) ∀v ∈ V̂ (14)

∫
�
ρ (x) dx ≤ V with 0 ≤ ρ (x) ≤ 1, ∀x ∈ �

Thus, a continuous SIMP relaxation is performed, proposed by [9] according to:

E = Emin + (Emax − Emin) ρ (x)
p (15)

where E is the modulus of elasticity updated for each element, where Emax is the elasticity of the material
used and Emin is a very small “value” attributed to empty regions, in order to prevent the stiffness
matrix from becoming singular [38]. The penalty constant p, is adopted equal to 3 [1], for cases of
linear elasticity.

3 Density Filter

Due to the choice of a power law for the interpolation of the material, according to Eq. (15),
problems of alternating solutions with p = 0 and p = 1 may arise, which generates a numerical problem
of the “checker board” type [70,71,72]. Thus, to alleviate this problem, a density filter is added, which
can be implicitly represented by the solution of a partial differential equation of the Helmholtz type
with homogeneous Neumann boundary conditions according to [73] and described in Eq. (16).

− R2
min∇2ψ̃ + ψ̃ = ψ (16)

where ψ is the continuous representation of the unfiltered design variable and ψ̃ is the filtered design
variable. The parameter Rmin plays a similar role to the rmin used in classical filtering approaches that
use the SIMP method. In [73] an approximate relationship between the length scales for the classical

filter and the Helmholtz approach as Rmin = rmin

2
√

3
is described.

The solution of Eq. (16) can be written in the form of an integral convolution which is equivalent
to the classical filter. In terms of the variational formulation, it is as follows:

− R2
min

∫
�

∇ρ̃(x).∇wd� +
∫

�

∇ρ̃(x)wd� =
∫

�

ρ (x) wd� ∀w ∈ Ŵ (17)

where Ŵ is the Hilbert subspace of w admissible functions.

As observed in the article of [38], the traditional density filter approach accelerates the filtering
process if the search procedure is performed only once as a pre-processing step, however, the compu-
tational complexity and memory usage are proportional to R2

min in two dimensions and R3
min in three

dimensions, respectively. The Helmholtz filter approach uses the same mesh used to solve equilibrium
equations and does not require any additional information, which avoids excessive memory usage.
Considering also that the computational cost depends linearly on the length parameter Rmin, for a
large filtering radius, mainly in three-dimensional domains, the filtering approach using differential
equations should be the preferred choice.
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4 Numerical Implementation

Equilibrium equations, Eq. (13), are solved using the finite element method approach using the
FEniCS framework, which converts the models described by variational forms into efficient finite
element code. The optimization problem described in Eq. (14) is solved using the optimization routines
from the Ipopt library [74], which is a software package for large-scale nonlinear optimization that
implements an “interior-point” and a “line-search”. The analysis and optimization methods used are
suitable for large problems with up to millions of variables and constraints. Sensitivities are calculated
by the adjoint method using the Dolfin Adjoint package, which automatically derives the adjoint
discrete linear models and tangents of a direct model written in the Python interface for FEniCS.

In Fig. 3 a general scheme of the numerical implementation is shown.

Figure 3: Numerical implementation routine

The code base is presented based on the classic example of a cantilever beam as shown in Fig. 4.

According to Code 1, first the FEniCS modules, Dolfin Adjoint and Ipopt are imported, lines 1
to 3 of the code.

Figure 4: Cantilever beam

Code 1: Modules, constants and mesh

1 from fenics import ∗
2 from dolfin_adjoint import ∗
3 import ipopt
4 E, nu = 1e5, 0.3 # Structure material properties

(Continued)
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Code 1 (continued)

5 L, H = 3.0, 1.0 # Geometry of the design domain
6 F = 2000 # Load (T)
7 p, eps = Constant(3.0), Constant(1.0e-3) # penalisation and SIMP constants
8 rho_0, Vol = Constant(0.5) , Constant(0.5∗L∗H) # Top. Opt. constants: Initial guess

and Volume constraint
9 # Mesh constants
10 nx, ny = 300, 100
11 mesh = RectangleMesh(MPI.comm_world, Point(0, 0), Point(L, H), nx, ny)

Then the material properties, geometry, loads, and topology optimization constants are defined
on lines 4 to 8 of the code. And it follows defining the mesh declaration, lines 9 to 11. A rectangular
mesh with width L and height H is declared with nx and ny divisions in the mesh in the horizontal and
vertical directions, respectively. The last term of line 11 refers to the type of mesh, being optional; it
indicates the direction of the diagonals and can be defined as “left”, “right”, “right/left”, “left/right”
or “crossed”. See two mesh examples in Fig. 5 using linear triangles elements, by default.

Figure 5: Example of mesh

Continuing, according to Code 2, it is necessary to define the function spaces for the problem.
For this, it is necessary to declare the mesh, the family of functions and the degree of the functions. It
is used for the displacement, of the vector function space V, and the discretization made by functions
of Continuous Galerkin, or “CG”, of degree 2. The degree is applied according to the number of
divisions of each element. For the densities, the function space W is used and discretized by Galerkin
Continuous functions of degree 1, lines 12 and 13 of the code.

Code 2: Function spaces, boundary condition and loading

12 # Define function space and base functions
13 V, W = VectorFunctionSpace(mesh, “CG”, 2), FunctionSpace(mesh, “CG”, 1)
14 # Boundary Condition

(Continued)
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Code 2 (continued)

15 left = CompiledSubDomain(“near(x [0], 0.0, tol) && on_boundary”, tol=1e-14)
16 bc = [DirichletBC(V, Constant((0.0, 0.0)), left)]
17 # Load
18 boundaries = MeshFunction(“size_t”, mesh, mesh.topology().dim()-1)
19 CompiledSubDomain(“x [0]==l && x [1]>=(h-0.1)/2 && x [1]<=(h+0.1)/2”, l=L,

h=H).mark(boundaries, 1)
20 ds = Measure(“ds”)(subdomain_data=boundaries)
21 t = Constant((0.0, -F))

See Fig. 6 for examples of linear Lagrange triangle element type for filtering and displacement,
respectively.

Figure 6: The linear Lagrange triangle: Filtering (“CG” 1) and Displacement (“CG” 2)

The next step is to define the boundary conditions and load case. This procedure is normally
done by FEniCS through subdomains (SubDomain) and with that, a function call from C++ code
to Python is required for each node in the mesh, which increases the computational cost. Thus, as a
way of improving performance, the CompiledSubDomain command is used directly, which assumes
a condition in C++ syntax, and converts the expression into an efficient compiled C++ function,
significantly improving compilation time. For a cantilever beam fixed at the left end, the support is
defined according to lines 14 to 16. The Dirichlet boundary condition, lines 17 to 21, is defined by
assigning a zero value to the components of the displacement vector over the vector function space
V. A concentrated load is inserted in the middle of the right side edge, which is also done using a
CompiledSubDomain. In this case, it is necessary to use the discrete function, MeshFunction, which
can be evaluated on the entities of a mesh. And according to the UFL (Unified Form Language)
notation, ds denote the differential element for integration over the domain boundary. And used later,
dx denotes the differential element for integration over the domain.

Now the solution to the Forward problem is defined and as a result obtaining the displacement
variable, see Code 3, line 32. First, the functions trial and test are defined at line 24. Then, the SIMP
interpolation of the modulus of elasticity seen in Eq. (15) is calculated in line 25, and its value is used
to calculate the Lamé parameters and . Thus, the definition of the static equilibrium in the elastic
variational form according to Eq. (13) is inserted in lines 28 and 29. Finally, all the parameters of the
FEM are assembled, such as the matrix assemblies and the solution of the linear system through the
solve function in line 31.
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Code 3: Definition of the forward function

22 # Forward Function
23 def forward(rho):
24 u, v = TrialFunction(V), TestFunction(V)
25 E_rho = eps + (E-eps)∗(rho∗∗p)
26 lmbda = nu∗E_rho/((1+nu)∗(1-2∗nu))
27 mu = E_rho/(2∗(1+nu))
28 a = 2∗mu∗inner(sym(grad(u)), sym(grad(v)))∗dx + lmbda∗div(u)∗div(v)∗dx
29 L = inner(t, v)∗ds(1)
30 u = Function(V, name=“Displacement”)
31 solve(a == L, u, bc, annotate=True)
32 return u

Thus, the code for the solution of the optimization problem, Code 4, is made. To solve the Forward
problem, first the declaration of the initial density estimate is made through an interpolation, line 35,
then in line 36, the Forward problem is called of Code 3 for this first estimate, and with that, FEniCS
will solve the Forward problem at each iteration performing in the assembly process according to line
37. Continuing, Dolfin Adjoint continues the functional assembly process using the internal function
ReducedFunctional, line 39, which solves the Forward problem using Dolfin Adjoint each time the
functional is to be evaluated, and thus derives and solves the adjoint equation each time the functional
gradient is to be evaluated, thereby generating the negative output of the displacement, that is, the
maximization of the output displacement.

Code 4: Solution of the optimization problem

33 # Main Code
34 if __name__ == “__main__”:
35 rho = interpolate(Constant(float(Vol)), W)
36 u = forward(rho)
37 J = assemble(inner(t, u)∗ds(1))
38 m = Control(rho)
39 Jhat = ReducedFunctional(J, m)
40 volume_constraint = UFLInequalityConstraint((Vol - rho)∗dx, m) # Volume Constraint
41 lb, ub = 0.0, 1.0
42 problem = MinimizationProblem(Jhat, bounds=(lb, ub), constraints=volume_constraint)
43 parameters = {“acceptable_tol”: 1.0e-3, “maximum_iterations”: 100}
44 solver = IPOPTSolver(problem, parameters=parameters)
45 rho_opt = solver.solve()
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Next, the volume constraint must be defined according to Eq. (8). According to [75], the volume
constraint must be calculated through the Jacobian according to Eqs. (18), (19). The constraint is
implemented by the Dolfin Adjoint subclass UFLinequalityConstraint, according to line 40. In the
present work, the volume constraint is 50% in relation to the original domain.

g (ρ) = V ∗ −
∫

�

ρ (x) d� = V ∗ −
∫

�

ρiφi (x) d� (18)

∂g

∂ρ

= −
∫

�
φ1 (x) d�

...∫
�
φM (x) d�

(19)

Finally, the optimization problem is solved with the Minimization Problem function, line 42. The
density constraint limits are inserted at line 41. The acceptance parameters and number of iterations,
line 43, and with that they are released to the Ipopt solver, lines 44 and 45, ending the solution.

To visualize the solution, a Code 5 is generated, lines 46 to 51, used in the export to Paraview [76],
which is an open-source cross-platform data visualization and analysis application.

The complete code is shown in Appendix A. The code produces the result shown in Fig. 7.

Code 5: Export to paraview

46 #ParaView Results:
47 file_results = XDMFFile(“solution_cantilever.xdmf”)
48 file_results.parameters[“flush_output”] = True
49 file_results.parameters[“functions_share_mesh”] = True
50 file_results.write(rho_opt, 0.)
51 file_results.write(u, 0.)

Figure 7: Optimization of a cantilever beam

4.1 Density Filter Implementation
To improve the results as described in item 3 and according to Eq. (16), a mesh-dependent filter

or density filter is inserted that can be implicitly represented by the solution of a partial differential
equation of the Helmholtz type with Neumann homogeneous boundary conditions. Code 6 shows the
application of the filter, and in Code 7 the solution call is reviewed, where it is necessary to perform
the filter call within the main code, thus increasing the code by 11 lines only.
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Code 6: Helmholtz filter

22 # Helmholtz filter
23 r_min = 0.02
24 def helmholtz_filter(rho_n, r_min):
25 rho, w = TrialFunction(W), TestFunction(W)
26 a = (r_min∗∗2)∗inner(grad(rho), grad(w))∗dx + rho∗w∗dx
27 L = rho_n∗w∗dx
28 bc = []
29 rho = Function(W, name=“Filtered”)
30 solve(a == L, rho, bc, annotate=True)
31 return rho

Running the code with the filter produces the result shown in Fig. 8.

Code 7: Solving the optimization problem with the helmholtz filter

43 # Main Code
44 if __name__ == “__main__”:
45 rho_n = interpolate(Constant(float(Vol)), W)
46 rho = helmholtz_filter(rho_n, r_min)
47 u = forward(rho)
48 J = assemble(inner(t, u)∗ds(1))
49 m = Control(rho)
50 Jhat = ReducedFunctional(J, m)
51 volume_constraint = UFLInequalityConstraint((Vol - rho)∗dx, m) # Volume Constraint
52 lb, ub = 0.0, 1.0
53 problem = MinimizationProblem(Jhat, bounds=(lb, ub),

constraints=volume_constraint)
54 parameters = {“acceptable_tol”: 1.0e-3, “maximum_iterations”: 100}
55 solver = IPOPTSolver(problem, parameters=parameters)
56 rho_n_opt = solver.solve()

Figure 8: Optimization of a Cantilever beam with the application of the density filter

The difference in the final result is clear when compared to the optimization of the same domain
under different filtering conditions. The final distribution seen in Fig. 8 is structurally superior when
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compared to the final distribution seen in Fig. 7, where the final compliance for the unfiltered example
is 3.21, and for the filtered example is 2.87. This shows the relevance of applying this type of filter.
Finally, and perhaps most importantly, having both models with the same number of degrees of
freedom at 241,602, the processing time for the unfiltered model was 393 seconds and the time for the
filtered model was 334 seconds, or that is, demonstrating the prediction of improvement in processing
time with the application of a Helmholtz-type density filter. For processing, a personal computer with
a 3.6 GHz processor, Intel Core I9, 10-Core and 128 GB of memory was used.

5 Numerical Examples
5.1 MBB Beam (Messerschmitt-Bolkow-Blohm Beam)

The MBB beam is a classic problem in topology optimization. The design domain, the boundary
conditions, and the external load for the MBB beam are shown in Fig. 9. Basically, what changes
are the boundary conditions considering the support at the lower right end and the central region
considering the symmetry of the domain and also the point of application of the load. This procedure
is done through two subdomains, where the first subdomain is defined as class SimDB1(SubDomain)
and the second subdomain is defined as class SimDB2 (SubDomain) completing the symmetry
procedure. Code 8 shows the application of MMB beam.

Figure 9: MBB beam

Code 8: Boundary condition for the MBB beam

14 # Boundary Condition
15 class SimDB1(SubDomain):
16 def inside(self, x, on_boundary):
17 return near(x [0],.0)
18 class SimDB2(SubDomain):
19 def inside(self, x, on_boundary):
20 return abs(x [0]-L) < tol and abs(x [1]) < tol
21 boundaries = MeshFunction(“size_t”, mesh, mesh.topology().dim() - 1)
22 boundaries.set_all(0)
23 SimDB1().mark(boundaries, 1)
24 SimDB2().mark(boundaries, 2)
25 bcd = [DirichletBC(V.sub(0), 0.0, boundaries, 1),\
26 DirichletBC(V.sub(1), 0.0, SimDB2(), method=‘pointwise’)]
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A concentrated load is applied to the upper left end, is considered, according to the same procedure
as for the cantilever beam, inserting a subdomain defined as class LoadSurface (SubDomain).
Running the code for the MBB beam example produces the result shown in Fig. 10.

Figure 10: Optimization of an MBB beam

5.2 Multiple Loads
Extending the code base of a cantilever beam or any other model for any case considering multiple

applied loads is also relatively simple. As shown in Fig. 11, an example where two loads are applied at
the right end, both on the top edge and on the bottom edge.

Figure 11: Cantilever beam with multiple loads

For this process, changing the load conditions for multiple loads is according to Code 9.

Code 9: Multiple loads

17 # Load
18 boundaries = MeshFunction(“size_t”, mesh, mesh.topology().dim()-1)
19 CompiledSubDomain(“x [0]==l && x [1]<=0.1”, l=L).mark(boundaries, 1)
20 CompiledSubDomain(“x [0]==l && x [1]>=h-0.1”, l=L, h=H).mark(boundaries, 2)
21 ds = Measure(“ds”)(subdomain_data=boundaries)
22 t1, t2 = Constant((0.0, -F)), Constant((0.0, F)) #T=F

The difference now is that according to the equilibrium equations, the system is solved for each
load. Thus, the functional becomes the sum of two Forward functions as seen in lines 46 and 47 of the
revised main code as per Code 10.
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The optimized final result follows in Fig. 12.

Code 10: Main CODE FOR MULTIPLE loads

42 # Main Code
43 if __name__ == “__main__”:
44 rho_n = interpolate(rho_0, W)
45 rho = helmholtz_filter(rho_n, r_min)
46 u1 = forward(rho, t1, 1)
47 u2 = forward(rho, t2, 2)
48 J = assemble(inner(t1, u1)∗ds(1)) + assemble(inner(t2, u2)∗ds(2))
49 m = Control(rho_n)
50 Jhat = ReducedFunctional(J, m)
51 volume_constraint = UFLInequalityConstraint((Vol - rho)∗dx, m) # Volume

Constraint
52 lb, ub = 0.0, 1.0
53 problem = MinimizationProblem(Jhat, bounds=(lb, ub),

constraints=VolumeConstraint(Vol))
54 parameters = {“acceptable_tol”: 1.0e-3, “maximum_iterations”: 100}
55 solver = IPOPTSolver(problem, parameters=parameters)
56 rho_n_opt = solver.solve()

Figure 12: Optimization of a cantilever beam with multiple loads

According to Fig. 12, the result shows the similarity in the article by [3] of the “reinforcement” in
the region of loads.

5.3 3D Cantilever
Making the switch from analyzing two-dimensional, or 2D, models to three-dimensional, or 3D

models, is relatively easy using FEniCS. A change in the generation of the mesh and another in the
application of the load, according to Code 11, are enough to solve the problem. In the 3D case, the
geometric modification is for the length with L = 3.0, the height with H = 1 and the width with B =
0.2. The mesh divisions are 300, 100 and 20 in length, height and width, respectively. The other data
and characteristics follow the same as the 2D model.
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Code 11: Parameters for generating 3D models

8 # Mesh constants
9 L, H, B = 3.0, 1.0, 0.2 # Geometry of the design domain
10 nx, ny, nz = 300, 100, 20
11 mesh = BoxMesh(Point(0, 0, 0), Point(L, H, B), nx, ny, nz)

FEniCS developers have not updated the mesh generator for some time, which directly impacts
optimization models that use the Dolfin Adjoint software, especially where mesh refinement or
complex meshes are used. The justification is due to the existence of excellent external mesh generators
that are compatible with FEniCS, which is the case of Gmsh [77], an open-source 3D finite element
mesh generator with an integrated CAD engine and post-processor. The use of a structured and specific
mesh generates an extra computational gain and is used in the 3D model in the present work. After
generating the model in the Gmsh environment, a model conversion is first necessary so that FEniCS
can process the model. This is done using the conversion package, meshio [78], and is done according
to Code 12, which is independent of the solutions code.

Code 12: Conversion from .msh to .xdmf

1 import meshio
2 def create_mesh(mesh, cell_type, prune_z=False):
3 cells = mesh.get_cells_type(cell_type)
4 cell_data = mesh.get_cell_data(“gmsh:physical”, cell_type)
5 out_mesh = meshio.Mesh(points=mesh.points, cells={cell_type: cells},

cell_data={“name_to_read”: [cell_data]})
6 if prune_z:
7 out_mesh.prune_z_0()
8 return out_mesh
9 msh = meshio.read(“modelname.msh”)
10 facet_mesh = create_mesh(msh, “triangle”, prune_z=True)
11 meshio.write(“modelname_facet.xdmf”, facet_mesh)
12 triangle_mesh = create_mesh(msh, “tetra”, prune_z=True)
13 meshio.write(“modelname_mesh.xdmf”, triangle_mesh)

After the conversion is done, it is necessary to call the 3D model by inserting Code 13 into the
main code. The code is increased according to the project’s needs and how the boundary and loading
conditions will be used, and can be changed by some physical entity such as a line, face or volume.
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Code 13: Definition of 3D Geometry

12 # Define 3D geometry
13 mesh = Mesh()
14 with XDMFFile(“cantilever3D_mesh.xdmf”) as infile:
15 infile.read(mesh)
16 mvc2 = MeshValueCollection(“size_t”, mesh, 2)
23 with XDMFFile(“cantilever3D_facet.xdmf”) as infile:
24 infile.read(mvc2, “name_to_read”)
25 mf = cpp.mesh.MeshFunctionSizet(mesh, mvc2)
26 mvc3 = MeshValueCollection(“size_t”, mesh, 3)
27 with XDMFFile(“cantilever3D_mesh.xdmf”) as infile:
28 infile.read(mvc3, “name_to_read”)
29 cf = cpp.mesh.MeshFunctionSizet(mesh, mvc3)

The optimized final result follows in Fig. 13. The 3D model of a cantilever beam was made with
a mesh of 333,453 elements and 1,454,448 degrees of freedom. Run time was approximately 7 h.

Figure 13: Optimization of a 3D cantilever beam. (a) showing the entire domain. (b) showing minimal
topology

6 Parallelization with FEniCS and Dolfin Adjoint

Equations with the growing demand for new structural elements and the availability of advanced
technological resources, numerical parallelization is increasingly evident. However, applying algorith-
mic differentiation to some codes that make use of parallelism is still a great challenge. Numerical
algorithmic differentiation tools must be modified to meet the procedures of languages such as MPI
(Message Passing Interface) and OpenMP and translate them into their parallel equivalents. So, for
software like FEniCS and Dolfin Adjoint that makes use of high-level abstraction, the problem of
parallelism disappears. With that, there is no specific code in Dolfin Adjoint to handle parallelism,
deriving the adjoint at the right level of abstraction, the problem no longer exists. If the forward
model runs in parallel, the adjoint model also runs in parallel, without modification. According to
[79], Dolfin Adjoint handles parallel communication patterns automatically, even in the adjoint case.
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The high-level input in Dolfin Adjoint does not contain parallel communication calls, thus deriving
the correct communication patterns at runtime.

The parallel communication patterns required for the adjoint equations are therefore automati-
cally derived in exactly the same way as the parallel communication patterns for the forward equations,
for both MPI and OpenMP cases. Direct implementation of the parallel adjoint model is a big
advantage of adopting the combination of a high-level finite element system and a high-level approach
to deriving its adjoint. So, to run all the examples of this work, the call in the terminal follows the
following showing in Code 14.

Code 14: Definition of 3D geometry

mpiexec -n 10 python3 file_name.py

7 Topology Evaluation by Iteration

An interesting aspect seen in many works on structural topology optimization is the visualization
of the topology geometric evolution of the considered models, where it is possible to visualize the
density of the model in each iteration, until the final convergence. Another important feature is the
evaluation of the objective function, or in this case, Compliance as a function of the iteration compared
to the reduction of the structure volume. These two evaluations are performed with a few lines of code
by Dolfin Adjoint, according to Code 15. For this, Dolfin Adjoint creates a “tape” of the Forward
model and sends it to the optimization process, repeatedly solving the Forward model and the adjoint
model. With this it is possible to create a Callback for each iteration, where each Callback will produce
a visualization format, VTK, possible to see in Paraview.

Code 15: Code for generating the evaluation by iteration

1 # Evaluation
2 controls = File(“cantilever_2D/control_iterations.pvd”)
3 rho_viz = Function(W, name=“ControlVisualisation”)
4 total_obj_list = []
5 total_vol_j1=[]
6 def eval_cb(j, rho_n):
7 rho_viz.assign(rho_n)
8 controls << rho_viz
9 total_obj_list.append(j)
10 j1 = assemble((rho_n/Vol_ini∗dx))
11 j1_control = Control(j1)
12 total_vol_j1.append(j1_control.tape_value())

An evaluation of the evolution of Compliance and Volume Reduction by iteration is shown in
Fig. 14.



1390 CMES, 2023, vol.136, no.2

Figure 14: Compliance/Volume Fraction curve versus iteration

Below, in Fig. 15, are examples of iterations 01, 07, 13, 21, 31 and 45 of the cantilever model with
density filter seen in Fig. 8.

Figure 15: (a) Iteration 01, (b) Iteration 07, (c) Iteration 13, (d) Iteration 21, (e) Iteration 31 and (f)
Iteration 45

8 Conclusions

This work demonstrated the application of a new open-source code for structural topology
optimization with only 51 lines of code using open-source software for all stages of the topology
optimization problem: modeling, sensitivity analysis, and optimization solver, totally open source and
no other commercial software is required. It was shown that the application of the finite element
method within its variational form with the use of its more abstract form follows an easy and intuitive
pattern within the high-level possibilities treated by both FEniCS and Dolfin Adjoint.
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Through the process of penalization by isotropic solid material, SIMP, it was possible to use the
adjoint method to calculate the sensitivities considering the derivation of the functionals and later
the optimization of the results by maximizing the displacements, or minimizing the compliance, using
the package Ipopt which is also open-source and interacts with Dolfin Adjoint. The mesh generation
is done for the most basic models within FEniCS itself or for more advanced projects with more
geometric details, mainly models in three dimensions, done by the Gmsh software. The results of model
visualization and image generation are done by the Paraview software, and thus, closing an entire
process developed with open tools.

When comparing the results made here with already renowned works such as those seen in [3]
that use the commercial MATLAB package or even more recent works, such as the one that also
uses FEniCS itself in [25], we see that the results are very close, showing the viability of the codes
generated here. The structural topology optimization of classic examples such as a cantilever beam
with 60,000 elements made in a few minutes shows the high-performance capability of the open-source
package. And even though they are free, FEniCS and Dolfin Adjoint have a very active community and
researchers from numerous institutions using and enabling the exchange of information and support
for research.

Thus, the present work shows that it is possible to use open tools in structural topology
optimization projects, being possible to replicate by the academic community in general without the
need for software acquisition costs for their projects.
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Appendix A

1 from fenics import ∗
2 from dolfin_adjoint import ∗
3 import ipopt
4 E, nu = 1e5, 0.3 # Structure material properties
5 L, H = 3.0, 1.0 # Geometry of the design domain
6 F = 2000 # Load(T)
7 p, eps = Constant(3.0), Constant(1.0e-3) # penalisation and SIMP constants
8 rho_0, Vol = Constant(0.5) , Constant(0.5∗L∗H) # Top. Opt. constants: Initial guess

and Volume constraint
9 # Mesh constants
10 nx, ny = 300, 100
11 mesh = RectangleMesh(MPI.comm_world, Point(0, 0), Point(L, H), nx, ny)
12 # Define function space and base functions
13 V, W = VectorFunctionSpace(mesh, “CG”, 2), FunctionSpace(mesh, “CG”, 1)
14 # Boundary Condition
15 left = CompiledSubDomain(“near(x [0], 0.0, tol) && on_boundary”, tol=1e-14)
16 bc = [DirichletBC(V, Constant((0.0, 0.0)), left)]
17 # Load
18 boundaries = MeshFunction(“size_t”, mesh, mesh.topology().dim()-1)
19 CompiledSubDomain(“x [0]==l && x [1]>=(h-0.1)/2 && x [1]<=(h+0.1)/2”, l=L,

h=H).mark(boundaries, 1)
20 ds = Measure(“ds”)(subdomain_data=boundaries)
21 t = Constant((0.0, -F))
22 # Forward Function
23 def forward(rho):
24 u, v = TrialFunction(V), TestFunction(V)
25 E_rho = eps + (E-eps)∗(rho∗∗p)
26 lmbda = nu∗E_rho/((1+nu)∗(1-2∗nu))
27 mu = E_rho/(2∗(1+nu))
28 a = 2∗mu∗inner(sym(grad(u)), sym(grad(v)))∗dx + lmbda∗div(u)∗div(v)∗dx
29 L = inner(t, v)∗ds(1)
30 u = Function(V, name=“Displacement”)
31 solve(a == L, u, bc, annotate=True)
32 return u
33 # Main Code
34 if __name__ == “__main__”:
35 rho = interpolate(Constant(float(Vol)), W)
36 u = forward(rho)
37 J = assemble(inner(t, u)∗ds(1))
38 m = Control(rho)
39 Jhat = ReducedFunctional(J, m)
40 volume_constraint = UFLInequalityConstraint((Vol - rho)∗dx, m) # Volume

Constraint

(Continued)
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(continued)

41 lb, ub = 0.0, 1.0
42 problem = MinimizationProblem(Jhat, bounds=(lb, ub),

constraints=volume_constraint)
43 parameters = {“acceptable_tol”: 1.0e-3, “maximum_iterations”: 100}
44 solver = IPOPTSolver(problem, parameters=parameters)
45 rho_opt = solver.solve()
46 #ParaView Results:
47 file_results = XDMFFile(“solution_cantilever.xdmf”)
48 file_results.parameters[“flush_output”] = True
49 file_results.parameters[“functions_share_mesh”] = True
50 file_results.write(rho_opt, 0.)
51 file_results.write(u, 0.)
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