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ABSTRACT

The mushroom growth of IoT has been accompanied by the generation of massive amounts of data. Subject to the
limited storage and computing capabilities of most IoT devices, a growing number of institutions and organizations
outsource their data computing tasks to cloud servers to obtain efficient and accurate computation while avoiding
the cost of local data computing. One of the most important challenges facing outsourcing computing is how
to ensure the correctness of computation results. Linearly homomorphic proxy signature (LHPS) is a desirable
solution to ensure the reliability of outsourcing computing in the case of authorized signing right. Blockchain has
the characteristics of tamper-proof and traceability, and is a new technology to solve data security. However, as
far as we know, constructions of LHPS have been few and far between. In addition, the existing LHPS scheme
does not focus on homomorphic unforgeability and does not use blockchain technology. Herein, we improve the
security model of the LHPS scheme, and the usual existential forgery and homomorphic existential forgery of
two types of adversaries are considered. Under the new model, we present a blockchain-based LHPS scheme. The
security analysis shows that under the adaptive chosen message attack, the unforgeability of the proposed scheme
can be reduced to the CDH hard assumption, while achieving the usual and homomorphic existential unforgeability.
Moreover, compared with the previous LHPS scheme, the performance analysis shows that our scheme has the same
key size and comparable computational overhead, but has higher security.
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1 Introduction

In the past decade, the way of data collection and dissemination have inspired the rapid develop-
ment of the Internet of Things (IoT) [1,2]. The IoT has opened up new avenues for technical support
and business upgrades in the fields of industry, healthcare, transportation, military target tracking,
smart homes and food traceability, among which mobile healthcare systems (MHSs) and the industrial
Internet of Things (IIoT) are the most successful applications.
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The IIoT continuously integrates all kinds of acquisition, sensors or controllers with sensing
abilities, as well as mobile communication technology, into all aspects of industrial production,
to improve production efficiency, reduce costs, and ultimately realize the conversion of traditional
industry to smart industry [3]. MHSs provide services and applications [4,5], including mobile
telemedicine and electronic monitoring systems based on wireless sensors. In this system, sensors
(wearable or implanted) are connected to the bodies of remote patients to collect medical data,
including body temperature, blood pressure, pH-value etc., and transmit these data through nodes
to a medical server, which distributes the relevant data to professional medical personnel.

The rapid development of IIoT and MHSs, along with the generation of massive medical and
industrial data, has led to increasing computing overhead and resource consumption, which makes
traditional local computing model (most IoT devices have limited processing and computing power
and are not economical to calculate) unable to meet the application requirements. Fortunately, due to
the convenience and rapidity of cloud computing, many users migrate local data to cloud servers to
meet the above challenge. Fig. 1 shows a typical cloud-based network architecture. Outsourcing data
to cloud servers to obtain and accurate computation or analysis results have become preferential.

Figure 1: A typical architecture of cloud-based network

However, as an unsecure third party, cloud servers may return incomplete or wrong calculation
results due to software and hardware errors and commercial interest inducement. Homomorphic
signature (HS) provides a natural method for verifying outsourced computing, which can effectively
solve the above problems. HS can enable untrusted servers to run calculations on outsourced data and
generate a short signature to ensure the integrity and correctness of the calculation results. In recent
years, HS has been extensively studied and developed [6–10].

Furthermore, consider such an application scenario: a hospital authorizes a sensor to sign data
and communicate with the cloud server. The cloud server first confirms the authenticity of the sender
(i.e., the sensor connected to the bodies of remote patients) and then sends the data calculation result
and the derived signature to the hospital or research institution to verify its correctness. In an IIoT
environment, an executive officer issues instructions to subordinates (such as the plant manager) to
perform communication tasks. Thus, the data signature was often carried out by the subordinate on
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behalf of the superior organization. To realize this kind of authentication mechanism, it is necessary to
authorize the signing right. In order to implement such kind of authentication mechanism, signature
rights need to be authorized. Mambo et al. [11] realized this delegation authorization relationship with
the concept of proxy signature (PS). In the PS scheme, the original signer (all represented by Alice)
delegates its signing power to the proxy signer (all represented by Bob). Bob can generate valid proxy
signatures in the name of Alice, and the verifier accepts the authorization protocol.

Naturally, to ensure the reliability of outsourced computing in the case of authorized signing
rights, constructing a PS scheme with the homomorphism is interesting, which combines the delegation
characteristics and homomorphism in the authentication method. In this type of scheme, Alice can
authorize Bob, and Bob can create a proxy signature with homomorphic properties. However, as far
as we know, constructions of linearly homomorphic proxy signature (LHPS) have been few and far
between; in addition, the existing LHPS scheme [12] is only proven to be usually existential unforgeable
(EUF) against adaptive chosen-message attacks (CMA). This security concept only guarantees that
an adversary cannot forge a signature of any new message under the unqueried data identifier; it does
not ensures that the adversary generates a valid signature for the data sets that have been queried
for signatures (i.e., homomorphic existential forgery). In detail, for the security of a signature with
homomorphic properties, there are two meanings of existential unforgeability, a verifiable forgery
(f , y′, σ ′) where f is an admissible function on messages x and y′ �= y(y = f (x)) characterizes two facts:
First, if f (x) = πi(x) = xi is a special projection function, then σ ′ is a usual existential forgery (UEF),
corresponding to the general concept of signature forgery. Another is that if f is a generally admissible
function, then σ ′ is a homomorphic existential forgery (HEF), that is, forgery σ ′ authenticates y as f (x),
which is not the case. Homomorphic unforgeability is an important property of the LHPS scheme,
which can prevent untrusted cloud servers from authenticating the wrong computing or analysis
results and returning them to the receiver. Unfortunately, for the two types of adversaries, the existing
homomorphic proxy signature security model does not consider the situation in which adversaries
output homomorphic existential forgeries; thus, the proposed scheme does not satisfy homomorphic
unforgeability in the sense of provable security.

To overcome this security flaw, we improve the security definition for LHPS and construct a new
LHPS scheme for IoT environments, and makes the following main contributions in this paper:

1. The security model for LHPS is improved. For the two types of adversaries, considering the
situation of an adversary’s output of a homomorphic existential forgery, the types of forgeries
are more comprehensive, so the model security standard is higher.

2. We construct a blockchain-based LHPS scheme and prove that this scheme is secure against
existentially forgery (including the usual existential forgery and homomorphic existential
forgery) on adaptive CMA based on the CDH assumption under two types of adversaries.

3. The performance of the new LHPS is analyzed in detail. The discussion shows that our scheme
has the same key size and comparable computational overhead as Lin et al.’s LHPS scheme
[12], but it has higher security. Therefore, it is feasible to deploy and implement our LHPS
scheme in cloud-based IoT environments.

2 Related Works

The concept of HS scheme was first proposed by Goldwasser et al. [13] in 2000. Johnson et al. [14]
first introduced the formal definition and overall framework of HS. Until 2009, Boneh et al. [15]
proposed the first secure and practical LHS scheme, which can be regarded as a milestone of LHS
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scheme. Utilizing the k-SIS hardness assumption, reference [9] proposed the first scheme that can
against quantum attacks. In order to be independent of certificate management, scholars proposed
identity-based LHS schemes [16–19]. Although certificate management is simplified, key escrow issues
are introduced. In response to this problem, researchers have successively proposed certificateless
LHS [20,21]. Recently, multi-key HS has attracted attention [22–29]. For datasets involving inputs
authenticated by different clients, multiple-key support is required, Chen et al. [27,28] successively
proposed two multi-key LHS schemes, supporting three-layer and multi-layer routing networks
respectively. Lai et al. [29] proposed an unforgeable multi-key HS under internal corruption based
on adaptive zero-knowledge non-interactive knowledge demonstration. The public verifiability of HS
makes them studied in other application scenarios. For example, the verifiable encryption HS scheme
proposed by Seo et al. [30] has been successfully applied to cumulative optimistic fair exchange, and
the homomorphic signcryption scheme proposed by Fan et al. [31] has been successfully applied to
electronic voting, for voters, the use of homomorphic signcryption can complete the encryption and
signature of votes in one step. In 2021, Li et al. [32] proposed a homomorphic signcryption scheme
with verifiable public plaintext results, allowing the evaluation of arbitrary functions on signcrypted
data, and allowing anyone to publicly test whether a given ciphertext is a signcrypted file for a message
under a key.

Since Mambo et al. [11] proposed the concept of PS in 1996, many variants of PS have been
proposed by other researchers successively, including proxy multi-signatur, multi-PS, proxy blind
signature, certificate-based proxy signature and designated verifier proxy signature [33–38]. In 2003,
Lee et al. [39] believed that proxy signature does not necessarily require a secure channel. In terms
of the security model, Cao et al. [40] and Wang et al. [41] presented the model of a multi-proxy
signature scheme. However, as Schuldt et al. [42] pointed out, the structure of the model is complex
and incomplete. In 2012, Boldyreva et al. [43] improved its early security model by clearly defining the
security attributes of proxy signatures and formalizing the definition of adversary behavior.

Blockchain is a new type of decentralized protocol that can securely store Bitcoin transactions
or other data. The information cannot be forged or tampered with, and smart contracts can be
automatically executed without the audit of any centralized organization [44,45]. Transactions can
be digital currencies such as Bitcoin or digital assets such as debt, equity, copyright, etc. Blockchain
technology solves the Byzantine general problem, greatly reduces the cost of trust and accounting
in the real economy, and redefines the property right system in the Internet era. The introduction of
blockchain technology in the proxy signature mechanism can realize the delegation of digital signature
rights under the premise of safety and reliability, and support traceability and tamper-proof modifica-
tion [46]. Additionally, blockchain-based proxy signatures enable anonymity of authentication while
ensuring traceability of misconduct [47].

3 Architecture of Sign Delegation and Authentication Computing in a Cloud-Based IoT Environment

In the architecture of a cloud-based IoT environment using delegation and authentication
computing, five entities are involved: CA, data owner, cloud server, end user and blockchain, as
shown in Fig. 2. The specific functions are as follows (In this paper, Alice/Bob always represents the
original/proxy signer):

• CA: It generates system parameters and generates certificates for users according to the identity
and public key provided by each user.

• Data owner: It is composed of industry officials (e.g., system administrators, executive officers,
etc.) and intelligent devices (embedded sensors). In our LHPS scheme, the superior is the Alice,
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and the subordinate is the Bob. For smart machines, the deployment agency/supervisor acts as
the Alice, and the sensor will act as the Bob. Therefore, the superior (or supervisor) delegates
its signature right to the subordinate (or smart machine).

• Cloud server: The cloud server can use the homomorphic signature to perform various cal-
culations on the authentication data, and then sends the calculation results and the derived
signatures to the end user, which can be done with minimal interaction and communication.

• End user: The end user may be a hospital, a research institution, or an intelligent machine
(depending on the scenario). It receives the calculation result and the corresponding signature
and uses the public key of the two signers for verification.

• Blockchain: The blockchain mainly stores the warrant from the original signer to the proxy
signer so that other entities can download and verify the validity of the warrant.

Figure 2: Architecture for IoT environment based on LHPS, blockchain and cloud computing

4 Definitions and Security Model
4.1 Linearly Homomorphic Proxy Signature

A LHPS scheme proposed in this paper includes seven polynomial-time algorithms (Setup,
UserKGen, Delegation, DeleVerify, LHP-Sign, LHP-Combine, LHP-Verify):

• Setup: On input a security parameter λ and a integers l (the maximum data-size) as input, it
outputs the system parameters params.

• UserKGen: On input params, it output a public/private key pair (pku, sku) for a user.

• Delegation: Given params, the private key skA of Alice, the warrant wB of Bob (it records the
identity information of the Alice and Bob, the type of authorization message, and the validity
period of the proxy signer), it output delegation information SwB

.
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• DeleVerify: For the input params, public key of Alice, delegation and warrant, it outputs 0 or 1
according to reject or accept.

• LHP-Sign: Bob greats a proxy signature σ on a message vector v, after using params, the private
key skB of Bob, a warrant wB, delegation information SwB

and a file identifier τ ∈ {0, 1}λ.

• LHP-Combine: Takes a file identifier τ , public keys of both signer, a warrant wB, and a set
of tuples {(ci, σ i)}l

i=1, where ci ∈ Fq, σ i ← LHP-Sign (params, τ , skB, SwB
, vi), and outputs a

signature σ on v =
∑
i∈[l]

civi.

• LHP-Verify: Takes as input public keys of both signer, wB, a file identifier τ , and message/sig-
nature pair, outputs either 1 or 0.

Correctness. The requirement is that for any output (pkA, skA), (pkB, skB) of the algorithm
UserKGen, the following conditions are true:

(1) For any τ ∈ {0, 1}λ and message vector v, if σ ← LHP-Sign (skB, wB, SwB
, τ , v), then LHP-Verify

(τ , pkA, pkB, wB, v, σ) = 1.

(2) For all τ and sets of tuples {(ci, σi, vi)}l
i=1, if LHP-Verify (τ , pkA, pkB, wB, vi, σi) = 1, then LHP-

Verify (τ , pkA, pkB, wB,
∑l

i=1civi, LHP-Combine {τ , pkA, pkB, wB, (ci, σi)}l
i=1) = 1.

4.2 Security Models
We consider two type of adversaries, and denoted by AI, AII, respectively.

Type-I adversary (AI): AI consists of system parameters, Alice’s public-private key pair, and Bob’s
public key. In fact, AI is a malicious original signer.

Type II adversary (AII): AII consists of system parameters, Bob’s public-private key pair, and
Alice’s public key. In fact, AII is a malicious proxy signer.

We use the following game between challenger C and AI, AII to describe the security of the LHPS
scheme.

Game 1. (Security against adversary AI) AI attempts to outputs a forged proxy signature while
having no private key of the Bob. The following formalized security models are designed for AI

and C.

• Setup: C performs Setup and UserKGen oracles, and obtain the system parameters params, the
key pair (pkA, skA) of Alice as well as key pair (pkB∗ , skB∗) of the targeted proxy signer. C then
gives params and (pkA, skA, pkB∗) to AI.

• Queries: Adversary AI can performs the following polynomial number of oracle queries.
– Key Registration Queries: Given a key pair (pki, ski), C first checks whether (pki, ski) is valid.

If so, C stores it in a list. Otherwise, C rejects.

– Signing Queries: Given a tuple (τ , pkA, pkB∗ , wB∗ , v), C outputs a signature σ on v.

• Output: AI outputs a forgery tuple (pkA, pkB∗ , wB∗ , τ ∗, v∗, σ ∗). The adversary wins if LHP-Verify
(τ ∗, pkA, pkB∗ , wB∗ , v∗, σ ∗) = 1, the message vector v∗ does not appear in signing queries, and one
of the following conditions is satisfied:
(1) For any τi appearing in the signing queries, τ ∗ �= τi holds (usual existential-forgery–Type 1

forgery).
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(2) For a τi appearing in the signing queries, there is τ ∗ = τi, but v∗ /∈ Vi, where Vi represents
the subspace spanned by the vectors {vi}i∈[l] that have been queried by the identifier τi

(homomorphic existential-forgery–Type 2 forgery).

Game 2. (Security against adversary AII) AII attempts to output a forged proxy signature while
having no private key of Alice. Now, the following formal model with respect to AII and challenger C
is designed.

• Setup: C performs Setup and UserKGen oracles, and obtains the parameters params, the
public/private key pair (pkA, skA) of Alice. C then gives params and pkA to AII.

• Queries: Adversary AII can performs the following polynomial number of oracle queries.
– Key Registration Queries: Given a key pair (pki, ski), C first checks whether (pki, ski) is valid.

If so, C stores it in a list. Otherwise, C rejects.

– Delegate Queries: Given public key pkA and registered pki, C returns a warrant wi and a
delegation Swi .

– Signing Queries: Given public key pkA and registered public key pki, wi, τ , and a vector v, C
returns a signature σ on the message v.

• Output: AII outputs a forgery tuple (τ ∗, pkA, pki∗ , wBi∗ , v∗, σ ∗). AII wins if LHP-Verify
(τ ∗, pkA, pk∗

i , w∗
i , v∗, σ ∗) = 1, and public key pki∗ and message vector v∗ do not appear in delegate

queries and signing queries, respectively, and one of the following conditions is satisfied:
(1) For any τi appearing in the signing queries, τ ∗ �= τi holds (usual existential-forgery–Type 1

forgery).

(2) For a τi appearing in the signing queries, there is τ ∗ = τi, but v∗ /∈ Vi, where Vi represents
the subspace spanned by the vectors {vi}i∈[l] that have been queried by the identifier τi

(homomorphic existential-forgery–Type 2 forgery).

The advantage of adversary AI (AII) is the probability of winning Game 1 (Game 2), which is
recorded as AdvLHPS

AI
(λ) (AdvLHPS

AII
(λ)).

Definition 4.1. Our proposed LHPS scheme is said to be unforgeable against the adversaries AI

and AII in the above games, if AdvLHPS
Ai

(λ)(i = I , II) is negligible.

5 Proposed LHPS Scheme

Our proposed LHPS scheme is described in detail as follows:

• Setup: Takes a security parameter λ and two positive integers l, n as inputs, CA generates params
as follows:
(1) Choose two groups G1, G2 of the same prime order q, with g as the generator of G1, and

select a bilinear pairing e : G1 × G1 → G2.

(2) Selects different hash functions H, H1, H2, each of which maps {0, 1}∗ to G1.

• UserKGen: Each user chooses xu ∈ Z
∗
q at random as his private key and computes pku = gxu as

public key. Then, the public/private key pair of original signer Alice and proxy signer Bob are
(pkA = gxA , xA) and (pkB = gxB , xB), respectively. Subsequently, each user provides its identity
and public key to the CA to obtain the corresponding certificate.

• Delegation: Alice generates a warrant wB related to Bob, and computes delegation SwB
=

H(wB)
xA , then returns SwB

to Bob. After that, Alice uploads wB to the blockchain so that other
users can query and verify the validity of wB.
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• DeleVerify: Bob checks e(SwB
, g) = e(H(wB), pkA) and accepts delegation. Then, Bob sets proxy

signing key as Sp = (SwB
, xB).

• LHP-Sign: Suppose that this algorithm has stored an initially empty list L containing informa-
tion about all identifiers τ that have been used. Given a tuple (Sp, wB, τ ∈ {0, 1}λ, v), here the
message vector v = (v1, . . . , vn) ∈ Z

n
q, it performs the following steps:

(1) Retrieve the relevant (U , r) from L, if τ appears in the list L.

(2) Otherwise, it chooses a random number r ∈ Z
∗
q, lets U = gr, then stores (U , r) into L.

(3) Calculate hash values Qi = H1(pkA, wB, τ , U , i), i ∈ [n], Q = H2(pkB, wB).

(4) Choose a random number s ∈ Z
∗
q, and computes

W = (
SwB

)
∑
i∈[n]

vi
(

H (wB)
s ·

∏
i∈[n]

Qvi
i

)r
⎛
⎜⎝Q

∑
i∈[n]

vi

⎞
⎟⎠

xB

.

(5) Output σ = (U , W , s) as signature.

• LHP-Combine: On input pkA, pkB, τ , wB, and a set of tuple {(ci, σi)}l
i=1 with ci ∈ Zq, where

σi = (U , Wi, si) (note that the data signatures under the same identifier have the same U), this
algorithm computes W =

∏
i∈[l]

W ci
i , s =

∑
i∈[l]

cisi. Then, it outputs (U , W , s).

• LHP-Verify: Given a tuple (τ , pkA, pkB, wB, v, σ), where vector v = (v1, . . . , vn) ∈ Z
n
q, σ =

(U , W , s), the algorithm considers the proxy signature to be valid by verifying the following
equation:

e (W , g) = e
( ⎛

⎜⎝H (wB)

∑
i∈[n]

vi

, pkA

⎞
⎟⎠ · e

(
H (wB)

s ·
∏
i∈[n]

Qvi
i , U

)
· e

⎛
⎜⎝Q

∑
i∈[n]

vi

, pkB

⎞
⎟⎠ .

Correctness

(1) Given a tuple (τ , pkA, pkB, v = (v1, . . . , vn) ∈ Z
n
q, σ), if σ ← LHP-Sign (Sp, wB, τ , v), then the

correctness of proxy signature verification can be obtained by the following derivation:

e (W , g) = e

⎛
⎜⎝(

SwB

)
∑
i∈[n]

vi

, g

⎞
⎟⎠ · e

(
H (wB)

s ·
∏
i∈[n]

Qvi
i

)r

, g
)

· e

⎛
⎜⎜⎝

⎛
⎜⎝Q

∑
i∈[n]

vi

⎞
⎟⎠

xB

, g

⎞
⎟⎟⎠

= e
( ⎛

⎜⎝H (wB)

∑
i∈[n]

vi

, pkA

⎞
⎟⎠ · e

( (
H (wB)

s
∏
i∈[n]

Qvi
i , U

)
· e

⎛
⎜⎝Q

∑
i∈[n]

vi

, pkB

⎞
⎟⎠ .

(2) Given a tuple (τ , wB, {(ci, σi, vi)}l
i=1), where σi = (U , Wi, si) and vi = (vi1, . . . , vin), if σi ← LHP-

Sign (Sp, wB, τ , vi), we have to prove that σ =
(

U , W =
∏
i∈[l]

W ci
i , s =

∑
i∈[l]

cisi

)
is a signature on
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y =
∑
i∈[l]

civi = (y1, . . . , yn). Since for each i ∈ [l], σi is the correct signature of vi, we have

e (Wi, g) = e

⎛
⎜⎝H (wB)

∑
j∈[n]

vij

, pkA

⎞
⎟⎠ · e

(
H (wB)

si
∏
j∈[n]

Q
vij
j , U

)
· e

⎛
⎜⎝Q

∑
j∈[n]

vij

, pkB

⎞
⎟⎠ ,

and further we have

e (W , g) =
∏
i∈[l]

e (Wi, g)
ci

= e

⎛
⎜⎝H (wB)

∑
i∈[l]

∑
j∈[n]

civij

, pkA

⎞
⎟⎠ · e

⎛
⎜⎜⎝H (wB)

∑
i∈[l]

cisi ∏
j∈[n]

Q

∑
i∈[l]

civij

j , U

⎞
⎟⎟⎠ · e

⎛
⎜⎝Q

∑
i∈[l]

∑
j∈[n]

civij

, pkB

⎞
⎟⎠

= e

⎛
⎜⎝H (wB)

∑
j∈[n]

yj

, pkA

⎞
⎟⎠ · e

(
H (wB)

s ·
∏
j∈[n]

Q
yj
j , U

)
· e

⎛
⎜⎝Q

∑
j∈[n]

yj

, pkB

⎞
⎟⎠ .

Therefore, for the LHP-Combine algorithm, the LHP-Verify algorithm is correct.

6 Security Analysis

This section presents the security analysis of our LHPS scheme. In this section, (g, ga, gb) always
represents a random instance of the CDH problem.

Theorem 6.1. If there is an adversary AI that can forge a valid message/signature pair with an
advantage ε within time t, then there is an algorithm C that can solve the CDH problem with probability
ε′ within time t′. Among them, qH refers to the number of querying H oracle, qHi(i = 1, 2) refers to the
number of querying Hi oracles, qS refers to the number of querying signing oracle.

Proof. For any PPT adversary AI, we construct a simulator C, which can call AI to solve the CDH
problem. Since AI finally outputs one of the two forgery types, it is obvious that the probability of C
guessing the forgery type outputed eventually by AI is

1
2

.

Case 1 (usual existential-forgery.) C guesses that adversary AI will output a Type 1 forgery. C is
invoked on (g, ga, gb), and C’ goal is to compute gab. C interacts with AI in this way.

• Setup: C randomly selects xA ∈ Z
∗
q, computes Alice’s public key as pkA = gxA , and sets Bob’s

public key as pkB∗ = ga (note that in the proof of Theorem 1, Bob represents the target proxy
signer). C sets the system parameter params = (G1,G2, e, g, H, H1, H2, q). Then, C sends params
and (xA, pkA, pkB∗) to AI.

• Queries: AI can issue queries to the following oracles simulated by C. C maintains an initially
empty list for each type of query, recording all responses to AI.
– Key Registration Queries: When AI requests to register a new user i by outputting a key pair

(pki, xi), C verifies if it is valid, and then adds (pki, xi) to the list LK .

– H Queries: On a requested wi, C selects a random zi ∈ Z
∗
q and sets H(wi) = gzi . Then, C

updates list LH ← LH∪ < wi, gzi , zi > and responds gzi to AI.
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– H1 Queries: For a requested (PkA, wB, τ , U , i), C first searches LH1
and if an required entry

is found, C returns it. Otherwise, C selects a random ti ∈ Z
∗
q and computes Qi = gti , then

updates LH1
← LH1

∪ < (pkA, wB, τ , U , i), Qi, ti > and sends Qi to AI as response.

– H2 Queries: On a requested (wB, pkB), C checks the list LH2
to determine whether there is

a corresponding hash value, and if so, C returns it to AI; otherwise, C chooses a random
number t ∈ Z

∗
q and sets Q = (gb)t, then updates list LH2

← LH2
∪ < (wB, pkB), Q, t > and

sends Q to AI as response.

– Signing Queries: Given τ , pkA, pkB∗ , a warrant wB∗ , and a vector v = (v1, . . . , vn) ∈ Z
n
q, C

generates the signature as follows:
(1) Randomly choose numbers s, r, ui ∈ Z

∗
q(i ∈ [n]), and set U = pkr

B∗ = (ga)r.

(2) Define the hash values of H1(pkA, wB∗ , τ , U , i) as Qi =
(

gui

Q

)r−1

∈ G1, where Q =
H2(wB∗ , pkB∗) = (gb)t∗ . If for some i ∈ [n], (pkA, wB∗ , τ , U , i) has already been queried
in the H1 queries phase, then C terminates and gives up.

(3) Recover H(wB∗) = gzB∗ from LH .

(4) Finally, C computes

W = (H (wB∗))

xA

∑
i∈[n]

vi

· (pkB∗)

∑
i∈[n]

uivi + srzB∗

.

C returns the signature σ = (U , W , s) to AI. From the following derivation process, it can be
known that σ is a valid signature.

e

⎛
⎜⎝H (wB∗)

∑
i∈[n]

vi

, pkA

⎞
⎟⎠ · e

(
H (wB∗)s ·

∏
i∈[n]

Qvi
i , U

)
· e

⎛
⎜⎝Q

∑
i∈[n]

vi

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝H (wB∗)

xA

∑
i∈[n]

vi

, g

⎞
⎟⎠ · e

(
H (wB∗)s ·

∏
i∈[n]

(
gui

Q

)r−1vi

, pkr
B∗

)
· e

⎛
⎜⎝Q

∑
i∈[n]

vi

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝H (wB∗)

xA

∑
i∈[n]

vi

, g

⎞
⎟⎠ · e

(
H (wB∗)s , pkr

B∗
) · e

⎛
⎜⎝g

∑
i∈[n]

uivi

, pkB∗

⎞
⎟⎠ · e

⎛
⎜⎝Q

−
∑
i∈[n]

vi

, pkB∗

⎞
⎟⎠

· e

⎛
⎜⎝Q

∑
i∈[n]

vi

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝H (wB∗)

xA

∑
i∈[n]

vi

, g

⎞
⎟⎠ · e

(
H (wB∗)s , pkr

B∗
) · e

⎛
⎜⎝g

∑
i∈[n]

uivi

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝H (wB∗)

xA

∑
i∈[n]

vi

· (pkB∗)

∑
i∈[n]

uivi + srzB∗

, g

⎞
⎟⎠

= e(W , g).
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• Output: Finally, AI outputs (pkA, pkB∗ , wB∗ , τ ∗, v∗, σ ∗), where v∗ = (v∗
1, . . . , v∗

n),
∑

i∈[n]
v∗

i �= 0 and

σ ∗ = (U∗, W ∗, s∗). C retrieves the items H(wB∗) from LH , the items Qi from LH1
, and the item Q

from LH2
; Note that H(wB∗) = gzB∗ , Qi = gt∗i , Q = (gb)t∗ . If the AI successfully outputs a Type 1

forgery, then τ ∗ �= τi, i.e., none of the message vectors identified by τ ∗ have been queried during
the Signing Queries phase, and there is a verification equation.

e(W ∗, g)

= e

⎛
⎜⎝H (wB∗)

∑
i∈[n]

v∗
i

, pkA

⎞
⎟⎠ · e

(
H (wB∗)s∗ ∏

i∈[n]

(Qi)
v∗i , U∗

)
· e

⎛
⎜⎝(Q)

∑
i∈[n]

v∗
i

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝H (wB∗)

xA

∑
i∈[n]

v∗
i

· (U∗)

s∗zB∗+
∑
i∈[n]

t∗
i v

∗
i

· (
gab

)
∑
i∈[n]

t∗v∗
i

, g

⎞
⎟⎠ .

Therefore, we have

W ∗ = H (wB∗)

xA

∑
i∈[n]

v∗
i

· (U∗)

s∗zB∗ +
∑
i∈[n]

t∗
i v

∗
i

· (
gab

)
∑
i∈[n]

t∗v∗
i

.

The CDH problem can be solved by calculating the following equation:

gab =

⎛
⎜⎜⎜⎝ W ∗

H (wB∗)

xA

∑
i∈[n]

v∗
i

· (U∗)

s∗zB∗+
∑
i∈[n]

t∗
i v

∗
i

⎞
⎟⎟⎟⎠

1∑
i∈[n]

t∗v∗
i

.

Next we calculate the probability of C success.

We only need to analyze the probability of C aborting the simulation during the signing query
phase. When the hash value conflicts on H1, that is, the same hash object appears in H1 hash query
and signing query, C aborts. Since the entry in LH1

is not more than qH1
+ qS, it is easy to know that

the probability of C aborting in signing query is at most
qS(qH1

+ qS)

2λ
. Therefore, if the advantage of

AI forging a signature in Game 1 is ε, C can solve the CDH problem with a probability of at least

ε′ = 1
2
ε − (qS)

2 + qH1
qS

2λ
, within time t′ = t + O(qH + qH1

+ qH2
+ qS) × texp + qS × Tmul, where Tmul and

texp represent the multiplication and exponential operation time of group elements, respectively.

Case 2 (homomorphic existential-forgery): C guesses that adversaryAI will output a Type 2 forgery.
C is invoked on a tuple (g, ga, gb), and is asked to compute value of gab by using AI as a subroutine.

• Setup: C randomly selects xA ∈ Z
∗
q and lets pkA = gxA , and runs AI on input pkB∗ = ga as the

public key of Bob. C sets the system parameter params = (G1,G2, e, g, H, H1, H2, q). Then, C
sends params and (xA, pkA, pkB∗) to AI, and responds to AI as follows.

• Queries: C maintains a corresponding list in both the key registration queries and the hash
queries, recording all responses to the AI.



1868 CMES, 2023, vol.136, no.2

– Key Registration Queries: When AI outputs the key pair (pki, xi) and requests to register a new
user i, if C verifies that it is a valid key pair, it will add (pki, xi) to the list LK ; otherwise, (pki, xi)

can be refused by AI.

– H Queries: On a requested wi = wB∗ , C sets H(wB∗) = gb; otherwise, wi �= wB∗ . C chooses
a number zi ∈ Z

∗
q randomly, and lets H(wi) = gzi . Then, C updates list LH ← LH∪

< wi, gb, ⊥ > or LH ← LH∪ < wi, gzi , zi >, and responds H(wi) to AI.

– H1 Queries: For a requested (pkA, wB, τ , U , i), C first searches LH1
and if an entry is found, C

returns it. Otherwise, C chooses randomly αi, βi ∈ Z
∗
q and sets Qi = (gb)αi gβi , then updates list

LH1
← LH1

∪ < (pkA, wB, τ , U , i), Qi, αi, βi >, and returns Qi to AI.

– H2 Queries: AI submits (wi, pki), if wi = wB∗ , C sets Q = (gb)t∗ with random t∗ ∈ Z
∗
q. Otherwise,

C selects a number t ∈ Z
∗
q randomly and lets Q = (gb)t, then updates list LH2

← LH2
∪ <

(wB∗ , pkB∗), Q, t∗ > or LH2
← LH2

∪ < (wi, pki), Q, t >, and sends Q to AI as response.

– Signing Queries: Given τ , pkA, pkB∗ , a warrant wB∗ , and a vector v = (v1, . . . , vn) ∈ Z
n
q, C

generates the signature as follows:

(1) If list L does not contain τ , C choose numbers r ∈ Z
∗
q randomly, set U = pkr

B∗ = (ga)r, and
stores (wB∗ , τ , U , r) in L. Otherwise, it recovers the required items from L.

(2) C computes

W = (
gb

)xA

∑
i∈[n]

vi

· (ga)

r

∑
i∈[n]

βivi

, s = −
∑
i∈[n]

(
t∗

r
+ αi

)
vi.

and returns the signature σ = (U , W , s) to AI. The following analysis shows that σ is valid since

s = −
∑
i∈[n]

(
t∗

r
+ αi

)
vi, so rs + r

∑
i∈[n]

αivi + t∗
∑
i∈[n]

vi = 0. Hence,

(
SwB∗

)
∑
i∈[n]

vi

·
(

H (wB∗)s ·
∏
i∈[n]

Qvi
i

)ra

·
⎛
⎜⎝Q

∑
i∈[n]

vi

⎞
⎟⎠

xB∗

= (
gb

)xA

∑
i∈[n]

vi

·
⎛
⎜⎝gbs · g

b

∑
i∈[n]

αivi

· g

∑
i∈[n]

βivi

⎞
⎟⎠

ra

· (
gab

)t∗
∑
i∈[n]

vi

= (
gb

)xA

∑
i∈[n]

vi

· g

ab

⎛
⎜⎜⎜⎝rs+r

∑
i∈[n]

αivi + t∗
∑
i∈[n]

vi

⎞
⎟⎟⎟⎠

· g

ra

∑
i∈[n]

βivi

= (
gb

)xA

∑
i∈[n]

vi

· (ga)

r

∑
i∈[n]

βivi

= W .

• Output: Finally, AI outputs (pkA, pkB∗ , wB∗ , τ ∗, v∗, σ ∗), where v∗ = (v∗
1, . . . , v∗

n),
∑

i∈[n]v
∗
i �= 0 and

σ ∗ = (U∗, W ∗, s∗). C retrieves the items H(wB∗), Ti and T from LH , LH1
, and LH2

, respectively.
Note that H(wB∗) = gb, Qi = (gb)αi gβi , Q = (gb)t∗ . If AI successfully outputs a Type 2 forgery, it
is not hard to see that U∗ = pkr

B∗ = (ga)r, and the following equation holds:
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e(W ∗, g)

= e

⎛
⎜⎝H

(
wB∗

)
∑
i∈[n]

v∗
i

, pkA

⎞
⎟⎠ · e

(
H

(
wB∗

)s∗ ∏
i∈[n]

(Q∗
i )

v∗i , U∗

)
· e

⎛
⎜⎝(Q∗)

∑
i∈[n]

v∗
i

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝(

gb
)xA

∑
i∈[n]

v∗
i

, g

⎞
⎟⎠ · e

⎛
⎜⎝g

bs∗+b

∑
i∈[n]

αiv∗
i

· g

∑
i∈[n]

βiv∗
i

, gar

⎞
⎟⎠ · e

⎛
⎜⎝g

bt∗
∑
i∈[n]

v∗
i

, ga

⎞
⎟⎠

= e

⎛
⎜⎜⎜⎝g

bxA

∑
i∈[n]

v∗
i

· g

ab

⎛
⎜⎜⎜⎝rs∗+r

∑
i∈[n]

αiv∗
i + t∗

∑
i∈[n]

v∗
i

⎞
⎟⎟⎟⎠

· g

ar

∑
i∈[n]

βiv∗
i

, g

⎞
⎟⎟⎟⎠ .

Therefore, we have

W ∗ = (
gb

)xA

∑
i∈[n]

v∗
i

· (
gab

)rs∗+
∑
i∈[n]

(t∗ + rαi) v∗
i

· g

ar

∑
i∈[n]

βiv∗
i

.

If s �= −
∑
i∈[n]

(
t∗

r
+ αi

)
v∗

i , then it holds that rs∗ +
∑
i∈[n]

(t∗ + rαi) v∗
i �= 0. So C can compute

gab =

⎛
⎜⎜⎜⎝ W ∗

g

bxA

∑
i∈[n]

v∗
i

· g

ar

∑
i∈[n]

βiv∗
i

⎞
⎟⎟⎟⎠

1

rs∗+
∑
i∈[n]

(t∗ + rαi) v∗
i

.

Now, we show that s = −
∑
i∈[n]

(
t∗

r
+ αi

)
v∗

i with probability 1
q
. Since for each τ , AI queries

signatures on independent vectors, and all signed messages are n-dimensional vectors, we can assume
without loss of generality that AI performs at most signing queries for the file identifier τ ∗ and obtains
σi = (U∗, Wi, si) for vi = (vi1, . . . , vin), i ∈ [n − 1]. C recovers the corresponding r, t∗ from L and LH2

respectively. From the above simulation process, we can see that the n−1 value si satisfies the equation

si = −
∑
j∈[n]

(
t∗

r
+ αj

)
vij for i ∈ [n − 1]. So we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−s1 =
(

t∗

r
+ α1

)
v11 + · · · +

(
t∗

r
+ αn

)
v1n,

...

−sn−1 =
(

t∗

r
+ α1

)
vn−1,1 + · · · +

(
t∗

r
+ αn

)
vn−1,n.

Moreover, according to the definition of type 2 forgery, v∗ /∈ Span(v1, . . . , vn−1). Therefore, the
vectors v1, . . . , vn−1, v∗ identified by τ ∗ are linearly independent vectors.
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AssumeAI outputs a forgery σ ∗ = (U∗, W ∗, s∗) with respect to v∗ such that s∗ = −
∑
i∈[n]

(
t∗

r
+ αi

)
v∗

i ,

then combined with the above equations, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−s1 =
(

t∗

r
+ α1

)
v11 + · · · +

(
t∗

r
+ αn

)
v1n,

...

−sn−1 =
(

t∗

r
+ α1

)
vn−1,1 + · · · +

(
t∗

r
+ αn

)
vn−1,n,

−s∗ =
(

t∗

r
+ α1

)
v∗

1 + · · · +
(

t∗

r
+ αn

)
v∗

n.

Note that v1, . . . , vn−1, v∗ are linearly independent vectors, so∣∣∣∣∣∣∣∣
v11 · · · v1n

...
vn−1,1 · · · vn−1,n

v∗
1 · · · v∗

n

∣∣∣∣∣∣∣∣
�= 0.

From Gramer criterion, AI can obtain
{

t∗

r
+ αi

}
i∈[n]

and further obtain the random num-

bers {αi}i∈[n]. However, as {αi}i∈[n] are independent of AI’s view, it can be concluded that s =
−

∑
i∈[n]

(
t∗

r
+ αi

)
v∗

i holds randomly with a probability of
1
q

. Therefore, if the advantage of AI forging

a signature in Game 1 is ε, C can solve the CDH problem with a probability of at least
1
2
ε

(
1 − 1

q

)
within time t′ = t + O(qH + qH1

+ qH2
+ qS) × texp + 2qS × Tmul.

Theorem 6.2. If there is an adversary AII that can forge a valid message/signature pair with an
advantage ε within time t, then there is an algorithm C that can solve the CDH problem with probability
ε′ within time t′. Among them, qH refers to the number of querying H oracle, qHi(i = 1, 2) refers to the
number of querying Hi oracles, qD refers to the number of querying delegation oracle, qS refers to the
number of querying signing oracle.

Proof. For any PPT adversary AII, which represents a malicious proxy signer, we construct a
simulator C, which can call AII to solve the CDH problem. As in Theorem 1, the probability of C
guessing the forgery type outputed eventually by AII is 1

2
.

Case 1 (usual existential-forgery): C is invoked on a triple (g, ga, gb) of the CDH problem, and C’
goal is to compute gab.

• Setup: C set Alice’s public key pkA = ga, and returns pkA and systems params = (G1,G2, e, g, H,
H1, H2, q) to AII, then responds to AII as follows:

• Queries: C maintains an initially empty list for each type of query, recording all responses to
AII.
– Key Registration Queries: As in the query/response in the proof of case 1 in Theorem 1, it is

omitted here.

Suppose that AII gets the warrants wi(i ∈ [qH ]) from C before this queries. C randomly
selects k ∈ {1, . . . , qH}, and guesses that the k-th warrant wk submitted by AII is the targeted
warrant. On a requested wi, if i = k, C outputs the value H(wk) = gb and adds < wk, gb, ⊥ >



CMES, 2023, vol.136, no.2 1871

to list LH . Otherwise, C randomly chooses zi ∈ Z
∗
q and returns the value H(wi) = gzi , and

adds < wi, gzi , zi > to LH .

– H1 Queries: For a requested (PkA, wB, τ , U , i), C first searches LH1
and if an entry is found, C

returns it. Otherwise, C selects a random ti ∈ Z
∗
q and lets Qi = gti , then updates list LH1

←
LH1

∪ < (pkA, wB, τ , U , i), Qi, ti > and sends Qi to AII as response.

– H2 Queries: On a requested (wB, pkB), C checks the list LH2
to determine whether there is

a corresponding hash value, if so, return it to AI; Otherwise, C chooses a random number
t ∈ Z

∗
q and sets Q = gt, then updates list LH2

← LH2
∪ < (wB, pkB), Q, t > and sends Q to AII

as response.

– Delegation Queries: Given a warrant wi, if wi �= wk, C recovers the tuple < wi, gzi , zi > from
LH , and returns the delegation Swi = (pkA)

zi toAII and adds < wi, Swi > to list LD. Otherwise,
C aborts.

– Signing Queries: Given τ , pkA, pki, a warrant wi, and a vector v = (v1, . . . , vn) ∈ Z
n
q, C checks

the lists defined above and responses as follows:
(1) If wi �= wk, C chooses random numbers s, r ∈ Z

n
q, sets U = gr, and computes the

signature

W = (
Swi

)
∑
i∈[n]

vi
(

H (wi)
s ·

∏
i∈[n]

Qvi
i

)r
⎛
⎜⎝Q

∑
i∈[n]

vi

⎞
⎟⎠

xi

= (pkA)

zi

∑
i∈[n]

vi

·
⎛
⎜⎝gzis · g

∑
i∈[n]

tivi

⎞
⎟⎠

r

· g

txi

∑
i∈[n]

vi

.

(2) Otherwise, C aborts.

• Output: AII outputs a tuple (pkA, pkB∗ , wB∗ , τ ∗, v∗, σ ∗), where v∗ = (v∗
1, . . . , v∗

n),
∑

i∈[n]v
∗
i �= 0 and

σ ∗ = (U∗, W ∗, s∗). If wB∗ �= wk, C aborts. Otherwise, C retrieves the required hash values H(wB∗),
Qi and Q from the lists LH , LH1

and LH2
, respectively, note that H(wB∗) = gb, Q∗

i = gt∗i , Q∗ = gt∗ .
If the AII successfully outputs a Type 1 forgery, then τ ∗ �= τi, i.e., none of the message vectors
identified by τ ∗ have been queried during the Signing Queries phase, and there is a verification
equation.

e(W ∗, g)

= e

⎛
⎜⎝H

(
wB∗

)
∑
i∈[n]

v∗
i

, pkA

⎞
⎟⎠ · e

(
H

(
wB∗

)s∗ ∏
i∈[n]

(Q∗
i )

v∗i , U∗

)
· e

⎛
⎜⎝(Q∗)

∑
i∈[n]

v∗
i

, pkB∗

⎞
⎟⎠

= e
(
gab, g

)
∑
i∈[n]

v∗
i

· e

⎛
⎜⎝(

gb
)rs∗ · (U∗)

∑
i∈[n]

t∗
i v

∗
i

, g

⎞
⎟⎠ · e

⎛
⎜⎜⎝pk

t∗
∑
i∈[n]

v∗
i

B∗ , g

⎞
⎟⎟⎠ .

Further, we have

W ∗ = (
gab

)
∑
i∈[n]

v∗
i

· (
gb

)rs∗ · (U∗)

∑
i∈[n]

t∗
i v

∗
i

· (pkB∗)

t∗
∑
i∈[n]

v∗
i

.
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Next, C solves the CDH problem by calculating the following equation:

gab =

⎛
⎜⎜⎜⎝ W ∗

(gb)
rs∗ · (U∗)

∑
i∈[n]

t∗
i v

∗
i

· (pkB∗)

t∗
∑
i∈[n]

v∗
i

⎞
⎟⎟⎟⎠

1∑
i∈[n]

v∗
i

.

Then the CDH problem has been solved.

It is not difficult to see that the probability of not aborting in delegation queries, signing queries

and forgery stage is at least 1 − qD

qH

, 1 − qS

qH

, and
1

qH

. Thus, if the advantage of AII forging a signature

is ε, C can solve the CDH problem with a probability of at least
1
2

(
1 − qD

qH

)
·
(

1 − qS

qH

)
· 1

qH

ε within

time t′ = t + O(qH + qH1 + qH2 + qD + qS) × texp + qS × Tmul.

Case 2 (homomorphic existential-forgery): C guesses that adversary AII will output a Type 2
forgery. C is invoked on a triple (g, ga, gb), and is asked to compute value of gab by using AII as a
subroutine.

• Setup: C invokes AII on input pkA = ga as the public key of Alice, and returns pkA and systems
params = (G1,G2, e, g, H, H1, H2, q) to AII. Then, C responds to AII as follows:

• Queries: C maintains an initially empty list for each type of query, recording all responses to
AII.
– Key Registration Queries, H (H2) Queries: As in the query/response in the proof of case 1 in

Theorem 2, it is omitted here.

– H1 Queries: AII submits (pkA, wB, τ , U , i). C checks LH1
to find out whether the required hash

value exists, If so, C sends it toAII; otherwise, C selects randomly αi, βi ∈ Z
∗
q, let Qi = (gb)αi gβi ,

then updates list LH1
← LH1

∪ < (pkA, wB, τ , U , i), Qi, αi, βi >, and sends Qi to AII.

– Delegation Queries: Given a warrant wi, if wi �= wk, C recovers the tuple < wi, gzi , zi > from
LH , and returns the delegation Swi = (pkA)

zi = (ga)zi to AII and adds < wi, Swi > to LD.
Otherwise, C aborts.

– Signing Queries: Given pkA, pkB, τ , a warrant wB, and a vector v = (v1, . . . , vn) ∈ Z
n
q. Assuming

w.l.o.g AII has inquired the corresponding hash queries and delegation queries, and retrieve
the required items by searching the list LH , LH1

, LH2
, LD, then C performs the following steps:

(1) If wB �= wk, C can sign the message vector in the same way as the real LHP-Sign
algorithm, which is omitted here.

(2) If wB = wk, C first checks whether there is a record (wB, τ , U , r) in list L, if it exists, C
restores (U , R), otherwise, it selects r ∈ Z

∗
q randomly, sets U = (pkA)

r = (ga)r, and stores
(wB, τ , U , r) in L. Then, C compute

W = (ga)

r

∑
i∈[n]

βivi

· g

txk

∑
i∈[n]

vi

, s = −
∑
i∈[n]

(
1
r

+ αi

)
vi.
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C returns the signature σ = (U , W , s) to AII. The following analysis shows that σ is valid since

s = −
∑
i∈[n]

(
1
r

+ αi

)
vi, so rs +

∑
i∈[n]

vi + r
∑
i∈[n]

αivi = rs +
∑
i∈[n]

(1 + rαi) vi = 0. Hence,

(
Swk

)
∑
i∈[n]

vi

·
(

H (wk)
s ·

∏
i∈[n]

Qvi
i

)ar

·
⎛
⎜⎝Q

∑
i∈[n]

vi

⎞
⎟⎠

xk

= (
gab

)
∑
i∈[n]

vi

·
⎛
⎜⎝gbs · g

b

∑
i∈[n]

αivi

· g

∑
i∈[n]

βivi

⎞
⎟⎠

ar

·
⎛
⎜⎝g

t

∑
i∈[n]

vi

⎞
⎟⎠

xk

= (
gab

)
⎛
⎜⎜⎜⎝rs+

∑
i∈[n]

vi + r
∑
i∈[n]

αivi

⎞
⎟⎟⎟⎠

· g

ar

∑
i∈[n]

βivi

· g

txk

∑
i∈[n]

vi

= (ga)

r

∑
i∈[n]

βivi

· g

txk

∑
i∈[n]

vi

= W .

• Output: Finally, AII outputs (pkA, pkB∗ , wB∗ , τ ∗, v∗, σ ∗), where v∗ = (v∗
1, . . . , v∗

n),
∑

i∈[n]
v∗

i �= 0 and

σ ∗ = (U∗, W ∗, s∗). If wB∗ �= wk, C aborts. Otherwise, it retrieves the items H(wB∗), Qi and Q from
LH , LH1

, and LH2
, respectively. Note that H(wB∗) = gb, Qi = (gb)

αi gβi , Q = gt∗ . If AII outputs
Type 2 forgery signatures successlly, it is not hard to see that U∗ = pkr

A = (ga)
r, and there are

the following series of equations:

e(W ∗, g)

= e

⎛
⎜⎝H

(
wB∗

)
∑
i∈[n]

v∗
i

, pkA

⎞
⎟⎠ · e

(
H

(
wB∗

)s∗ ·
∏
i∈[n]

(Qi)
v∗i , U∗

)
· e

⎛
⎜⎝Q

∑
i∈[n]

v∗
i

, pkB∗

⎞
⎟⎠

= e

⎛
⎜⎝(

gab
)
∑
i∈[n]

v∗
i

, g

⎞
⎟⎠ · e

⎛
⎜⎝g

bs∗+b

∑
i∈[n]

αiv∗
i

· g

∑
i∈[n]

βiv∗
i

, gar

⎞
⎟⎠ · e

⎛
⎜⎝(

pkB∗
)t∗

∑
i∈[n]

v∗
i

, g

⎞
⎟⎠

= e

⎛
⎜⎜⎜⎝g

ab

⎛
⎜⎜⎜⎝rs∗+

∑
i∈[n]

(1 + rαi) v∗
i

⎞
⎟⎟⎟⎠

· (U∗)

∑
i∈[n]

βiv∗
i

· (
pkB∗

)t∗
∑
i∈[n]

v∗
i

, g

⎞
⎟⎟⎟⎠ .

Therefore, we have

W ∗ = g

ab

⎛
⎜⎜⎜⎝rs∗+

∑
i∈[n]

(1 + rαi) v∗
i

⎞
⎟⎟⎟⎠

· (U∗)

∑
i∈[n]

βiv∗
i

· (
pkB∗

)t∗
∑
i∈[n]

v∗
i

.
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If s∗ �= −
∑
i∈[n]

(
1
r

+ αi

)
v∗

i , then it holds that rs∗ +
∑
i∈[n]

(1 + rαi) v∗
i �= 0. So C can compute the value

of gab as follows:

gab =

⎛
⎜⎜⎜⎜⎝

W ∗

(U∗)

∑
i∈[n]

βiv∗
i

· (
pkB∗

)t∗
∑
i∈[n]

v∗
i

⎞
⎟⎟⎟⎟⎠

1

rs∗+
∑
i∈[n]

(1 + rαi) v∗
i

.

Now, we need to show that s∗ = −
∑
i∈[n]

(
1
r

+ αi

)
v∗

i with probability
1
q

, the proof method is the

same as in case 2 of Theorem 1, so it is omitted here. Therefore, if the advantage of AII forging a

signature is ε, C can solve the CDH problem with a probability of at least
1
2
ε

(
1 − 1

q

)
· 1

qH

within time

t′ = t + O(qH + qH1 + qH2 + qS) × texp + 2qS × Tmul.

7 Analysis of Security and Efficiency

We compare our scheme with the only LHPS scheme proposed by Lin et al. [12]. For convenience,
we abbreviate this scheme as Lin-LHPS. Specifically, Tables 1 and 2 compare the proposed LHPS
scheme with the Lin-LHPS scheme in terms of security, communication overhead and delegation
overhead. Two main operations are listed: “E” represents the exponential operation on G1, and “P”
represents bilinear pairing operation. |G1| and |q| represent the bit length of the elements in a group
G1 and a field Fq, respectively.

Table 1: Comparison of security

Type-1 adversary Type-2 adversary

Scheme U-EUF H-EUF U-EUF H-EUF

Lin-LHPS [12] √ × √ ×
Proposed scheme √ √ √ √
Note: U-EUF: Usual Existential-Unforgeability; H-EUF: Homomorphic Existential-
Unforgeability.

Table 2: Comparison of communication overheads and computational complexity

Communication overhead Delegation overhead

Scheme DeleSize SigSize DeleGen DeleVer

Lin-LHPS [12] G1 G1 E 2P
Proposed scheme G1 2G1 + |q| E 2P
Note: DeleSize: the size of delegation; SigSize: the size of the proxy signature; DeleGen: the computational
cost of generating the delegation signature; DeleVer: the computational cost of delegation verification.
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As seen in Table 1, our scheme satisfies both the usual and homomorphic existential unforgeabil-
ity, while the Lin-LHPS scheme only satisfies the usual existential unforgeability. In the outsourced
computation of authentication data, homomorphic existential unforgeability can prevent untrusted
cloud servers from authenticating the wrong computing or analysis results and returning them to the
receiver. In Table 2, DeleSize and SigSize represent the size of the delegation and the proxy signature,
respectively. The two columns, DeleGen and DeleVer, show the computational cost of generating the
delegation signature and delegation verification, respectively. Table 2 shows that the signature size of
the proposed scheme is larger than that of the Lin-LHPS scheme; whereas the size of delegation, the
computational cost of generating the delegation signature and delegation verification in our scheme
are the same as those in the Lin-LHPS scheme. However, our scheme provides stronger security. We
implement our LHPS scheme and Lin-LHPS in the experiments. The experiment was run on a laptop
equipped with a 3.10-GHz Intel i5 CPU, 128 GB memory, and the Ubuntu Linux operating system.

As shown in Figs. 3 and 4, the computational cost of signature generation and signature verifi-
cation in our scheme is slightly higher than that in the Lin-LHPS. It is a natural result because our
scheme provides provably secure homomorphic existential unforgeability.

Figure 3: A comparison of the signature generation cost

Figure 4: A comparison of the signature verification cost

8 Conclusions

In this paper, we improve the security model of the LHPS for the two types of adversaries,
considering the situation in which adversaries output homomorphic existential forgeries. Under the
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new model, we present a blockchain-based LHPS scheme and prove that this scheme is secure against
existential forgery (including the usual existential forgery and homomorphic existential forgery) under
adaptive CMA based on the CDH assumption. The tamper-proof modification of the blockchain
ensures the validity of the original signer’s warrant, which prevents problems such as the abuse of proxy
signing rights. Moreover, the performance analysis shows that this new scheme has the same key size
and comparable computing cost as Lin et al.’s LHPS scheme [12], and it has higher security. Therefore,
our LHPS scheme is suitable for deployment and implementation in cloud-based IoT environments.
However, the proposed scheme cannot resist quantum computing attacks. The next task is to design a
secure and efficient LHPS scheme on lattice.
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