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ABSTRACT

There are two types of methods for image segmentation. One is traditional image processing methods, which
are sensitive to details and boundaries, yet fail to recognize semantic information. The other is deep learning
methods, which can locate and identify different objects, but boundary identifications are not accurate enough.
Both of them cannot generate entire segmentation information. In order to obtain accurate edge detection
and semantic information, an Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is
proposed. This method can precisely semantic segment individual objects in large-size aerial images with limited
GPU performances. It includes adaptively dividing and modifying the aerial images with the proposed principles
and methods, using the deep learning method to semantic segment and preprocess the small divided pieces, using
three traditional methods to segment and preprocess original-size aerial images, adaptively selecting traditional
results to modify the boundaries of individual objects in deep learning results, and combining the results of different
objects. Individual object semantic segmentation experiments are conducted by using the AeroScapes dataset, and
their results are analyzed qualitatively and quantitatively. The experimental results demonstrate that the proposed
method can achieve more promising object boundaries than the original deep learning method. This work also
demonstrates the advantages of the proposed method in applications of point cloud semantic segmentation and
image inpainting.
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1 Introduction

Image semantic segmentation is to classify each pixel in the image according to different semantic
meanings and has become a leading research interest in image understanding. It plays an important
role in many fields related to computer vision, such as three-dimensional (3D) reconstruction [1–3] and
smart city monitoring [4,5]. In these fields, unmanned aerial vehicles (UAVs) [6,7] are usually adopted
to collect aerial images because of their flexibility. Moreover, in some applications [8,9], independent
detection and operation are required for individual objects that usually have obviously independent
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and discrete characteristics and are different from the surrounding background in aerial images.
However, most remote sensing semantic segmentation methods are aimed at aerial images taken by
satellites and are not applicable to UAVs [10,11]. Therefore, studying the semantic segmentation for
individual objects in aerial images taken by UAVs is essential.

For example, image semantic segmentation is one of the crucial processes in 3D semantic
reconstruction based on oblique photography [2,3]. In the process of reconstruction, different kinds
of objects, such as buildings and cars are reconstructed separately. Specifically, by semantically
segmenting top-view aerial images, a point cloud of buildings can be segmented, and buildings can
be reconstructed independently. As for unnecessary vehicles during the modeling process, an image
inpainting method can be adopted to remove them. However, due to high shooting height and wide
scene coverage of aerial images, semantic segmentation with deep learning methods is not well handled
on the edges of objects, which may lead to undesirable reconstruction results. Therefore, it is necessary
to find an improved semantic segmentation method for individual objects in aerial images.

Nowadays, image segmentation methods have developed from non-semantic segmentation meth-
ods based on traditional image processing to semantic segmentation methods based on deep learning.
Both kinds have their own advantages and disadvantages.

Shape, color, and texture are three prominent and common cues for recognizing objects in images
[12,13], and traditional methods adopt this feature information as the basis for segmentation. These
traditional methods mainly include the following: thresholding or contour-based segmentation [14,15],
clustering-based segmentation [16], and graph partitioning [17,18], which respectively correspond
to different feature information of images. Additionally, these methods can be used on a personal
computer without a high-performance graphics processing unit (GPU) and can be used directly on
large-size aerial images.

However, these methods cannot identify semantic information and may divide the objects into
many small pieces. Moreover, due to the different complexity of the scene, the image feature informa-
tion that plays a decisive role will be different for different images. The way to select the appropriate
traditional method for image segmentation needs further research.

On the contrary, deep learning semantic segmentation methods can achieve satisfying semantic
classification results on many datasets through continuous learning of semantic features and clas-
sification information. Deep learning networks, including U-Net [19–21], SegNet [22,23], PSPNet
[24], DeepLab V1-V3+ [25–28], HRNet and its variants [29–32], and PFSegNets [33] are commonly
adopted in semantic segmentation of datasets with large scenes and have achieved promising results
in aerial image semantic segmentation.

However, constrained by GPUs and datasets, these methods are usually only applicable to images
within a small size, and the results of object edges are not ideal for some applications, such as image
inpainting and point cloud semantic segmentation. Therefore, deep learning methods for large-size
aerial image semantic segmentation and optimizing the boundary effect of deep learning results need
further research.

For large-size images, some researchers cut them into different small pieces, segment each piece by
deep learning methods, and then merge them together [34,35]. However, this method requires a single
target to occupy a small proportion of the image, which is unsuitable for low-altitude aerial images.
Moreover, since each small piece is segmented independently, a direct combination will make mistakes
at adjacent junctions. Wang et al. [36] first down-sample images and adopted a deep learning method to
segment them, and then they adopted joint bilateral up-sampling to resize low-size results to original-
size ones. However, this method relies on the edge shape of deep learning results and can only solve the
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jagging effect in the resizing process and cannot make other corrections to the boundary of objects.
For the boundary effects, considering that aerial image segmentation methods usually suffer from
edge information loss and poor robustness, some researchers adopt edge detection methods to guide
the semantic segmentation [37] or emphasize boundaries by special structure or attention mechanism
[38]. However, all of the above methods belong to modifications of the networks, which are also limited
by the image size.

In the process of semantic segmentation of aerial images, the required method not only needs to
be able to identify the specific semantics of different parts of the image like deep learning methods
but also needs to use appropriate image feature information to obtain good boundary effects like
traditional image methods without being affected by GPUs and other computing resources. Therefore,
in this work, a composite semantic segmentation post-processing method for individual objects in
aerial images is proposed. It is mainly applicable to individual objects in large-size aerial images taken
by UAVs that need precise semantic segmentation and can be used in 3D semantic segmentation. Our
main contributions include the following points:

1) An Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is proposed.
It includes adaptively dividing and modifying the aerial images with the proposed principles
and methods, using the deep learning method to semantic segment and preprocess the small
divided pieces, using three traditional methods to segment and preprocess original-size aerial
images, adaptively selecting traditional results to modify the boundaries of individual objects in
deep learning results, and combining the results of different objects. It provides a new solution
for the semantic segmentation of individual objects in large-size aerial images.

2) A merging and post-processing method is proposed, in which the problem of connection
inconsistency and poor boundary effect in the results of the deep learning method can be
modified by using the traditional results. This work also proposes a way to adaptively select the
most appropriate traditional results from the results of three traditional methods according to
the individual object situation.

3) Through experimental comparison on the common aerial images dataset AeroScapes, the
ABSCS method shows advantages in both qualitative and quantitative results. Moreover, it
can deal with some applications with specific needs. For example, completing point cloud
segmentation and image inpainting when limited computing resources cannot handle deep
learning models of a large size, but this size is needed to achieve a given performance.

The following part of this work is divided into the following parts: the entire process of the
ABSCS method, an introduction to the choice of deep learning and traditional methods and their
preprocessing, the steps of merging and post-processing deep learning results by traditional methods,
as well as our experiments, applications, and conclusions.

2 Methods

Image semantic segmentation contains not only object recognition but also image segmentation.
Deep learning methods have the advantages of object recognition, classification, and localization,
while traditional methods can obtain good boundary division based on image feature information and
can be directly applied to large-size aerial images. For a series of applications with high requirements
for semantic segmentation of large aerial images, the advantages of both two kinds of methods
are indispensable. Therefore, this work proposes an adaptive boundary and semantic composite
segmentation method based on these two different mechanisms for individual objects in large-size
aerial images.
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2.1 Method Background and Pipeline
In this work, aerial images refer to photos taken by cameras attached to a UAV or high-altitude

overhead view images similar to UAV photos, which can be used in some related applications such
as 3D reconstruction. This method is applicable to both urban scene images and rural scenes, and
it can process large-size aerial images with limited GPU performances and get good results. The
individual objects in this work refer to objects that usually have obviously independent and discrete
characteristics. These objects usually have clear boundary features or obvious color information and
are different from the surrounding background. To explain and verify the method, this work adopt
the common aerial images dataset AeroScapes [39], which has several individual object classes for
semantic segmentation, subsequent processing, and method validation.

This work chooses one deep learning method and three traditional image processing ones as the
basis of the ABSCS method. The chosen deep learning method is DeepLab V3+ [28], which has
been tested on many datasets, including large street scene datasets, and has achieved good results.
The chosen traditional methods are three common, basic, and typical methods, including contour
finding, K-means, and grab-cut. The three traditional methods are representative of thresholding and
edge-based methods, clustering-based ones, and graph partitioning-based ones, which are respectively
based on shape, color, and texture feature information. These three image feature information are
usually used to effectively retrieve objects in the image [12,13]. Then, the proposed ABSCS method
mainly performs semantic segmentation through the following four parts.

Step 1: Dividing or modifying aerial images to the specific-size images adaptively, semantically
segmenting them with a deep learning method, and preprocessing the results to obtain multiple labels
with only one kind of objects in each label.

Step 2: Segmenting original-size aerial images with different traditional processing methods and
preprocessing the results to obtain multiple traditional labels including only one kind of traditional
information in each label.

Step 3: Selecting an appropriate traditional label in Step 2 for each deep learning label in Step 1.
Then, merging and modifying the labels to get the final result of each kind of objects.

Step 4: Combining the final results of different kinds of objects into a unified label.

The whole pipeline of the ABSCS method is shown as Fig. 1.

Figure 1: The whole pipeline of the ABSCS method
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2.2 Selected Datasets
Considering that our method is suitable for individual objects in aerial images, this work adopts

the common aerial images dataset AeroScapes [39] to explain and verify the composite method.
AeroScapes is a collection of 3269 aerial images from 141 video sequences and their associated
semantic segmentation labels. The images are captured by a fleet of UAVs operating at an altitude
of 5 to 50 m, and their size is 1280 × 720.

In AeroScapes, the labels are labeled with both stuff classes such as vegetation and roads and
thing classes such as people and cars. In this work, individual objects mainly refer to the thing classes.
However, the class distribution in AeroScapes is imbalanced, and the cumulative weights of some
things are very low. Therefore, to ensure adequate training and validation data, this work only chooses
the top four high-weight thing classes as the basis of our quantitative analysis–obstacle, person, car,
and animal. Some aerial images and their semantic segmentation labels of AeroScapes are shown in
Fig. 2.

Figure 2: Examlples of AeroScapes: (a) aerial images and (b) segmentation labels

2.3 Deep Learning Image Semantic Segmentation
Deep learning semantic segmentation is one of the basic elements of our method. It mainly

provides semantic information and locations of objects, which is convenient to be combined with the
results of traditional methods for subsequent post-processing and optimization.

Considering the advantages and disadvantages of deep learning methods and the actual appli-
cations, the main work in this part is as follows. First, the appropriate deep-learning method is
chosen for UAV aerial images covering street scenes. Second, in order to process large-size images
with limited GPU performances, the aerial images are divided or modified by the proposed principles
with maximum utility according to the characteristics of the deep learning method. Finally, the deep
learning method is adopted to semantically segment small-size images, and a preprocessing method is
proposed for the segmented results to make them suitable for subsequent merging steps.
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2.3.1 Deep Learning Method

Considering that the post-processing method in this work is processed on the basis of deep
learning results, the accuracy of deep learning results directly influences the final accuracy. A good
deep-learning network can provide accurate semantic recognition and good preliminary boundary
segmentation. Many semantic segmentation deep learning networks that are suitable for large street
scene aerial images can be used in this section. By comparing the results of different networks on large
scene datasets, in order to achieve good final experimental results, DeepLab V3+ [28] is chosen to
segment the images.

DeepLab V3+ is an improved version of DeepLab V3 [27]. DeepLab V3+ combines the spatial
pyramid pooling module and the encode-decoder structure, which not only can encode multi-scale
contextual information but also can recover spatial information gradually. It adopts DeepLab V3 as
the encoder to design a simple and efficient decoder. It also adopts Xception [40] model and applies
the depthwise separable convolution to Atrous Spatial Pyramid Pooling (ASPP) and decoder. Then,
a strong encoder-decoder structure can be constructed. By using DeepLab V3+, different kinds of
objects are semantically segmented in different colors. Thus the boundaries and the categories of
objects can be distinguished by label colors.

In DeepLab V3+, Chen et al. used two kinds of network backbone, Xception and ResNet-101, to
compare the model variants in terms of both accuracy and speed [28]. Moreover, different backbone
models can be chosen for DeepLab V3+. For example, Deep Residual Network (DRN) model [41]
can be the backbone network as well. Zhang et al. [42] adopted four neural network architectures
(U-net, DeepLab V3+ with ResNet, DRN, and MobileNet as the backbones) to identify glaciological
features such as calving fronts from multi-sensor remote sensing images, and the result using DRN-
DeepLab V3+ achieves the lowest test error. The advantage of DRN is that it can keep the receptive
field of the original network without losing the resolution of images. For aerial images, some individual
objects usually occupy only small areas in the whole image scene. If the image size is reduced further,
these objects will probably resize to a single pixel or even disappear, which may lead to missing details.
Therefore, it is very important to keep enough image size for semantic segmentation of individual
objects. From the perspective of semantic segmentation accuracy and visual effects, this work chooses
DeepLab V3+ network with DRN as the backbone model to semantic segment the images.

2.3.2 Aerial Image Adaptive Division and Modification

Some aerial images captured by UAVs usually have large image sizes. However, limited by
computing resources such as GPUs and the design of the network, one deep learning method can only
deal with images with one specific small image size, and both large-size and small-size images need to
be adjusted to this specific size at first. In order to avoid the reduction of detailed information, this
work chooses to divide the large-size images into small pieces instead of down-sampling the images.
Combined with the situation of DeepLab V3+, the input images are processed to the size of 512 × 512.
Considering that the size of aerial images from different sources is different, methods with strong
applicability are needed for image division and modification. Therefore, an adaptive division and
modification method is proposed in this work.

The first principle of division is to ensure that the objects are not distorted, such as being stretched
or widened. The second principle of division is to keep the size of objects as constant as possible. The
third principle of division is that there should be as few small-size images as possible to save the time of
deep learning semantic segmentation. Therefore, for the aerial image with a size lower than 512 × 512
and that with a size higher but close to 512 × 512, the image is cut into a square according to its short
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edge and then resized to 512 × 512. For the aerial image with a size much higher than 512 × 512, there
are two kinds of division methods used in this work. The first method is to cut the aerial image from
the top left corner until the 512 × 512 image can no longer be cut. The large image is divided into
non-overlapping small images, and the right edge pixels are discarded. If the image resolution is m×n,
then the number i of small images can be calculated as follows:

i = �m/512� × �n/512� . (1)

The second method is to ensure all pixels in large images are cut into small ones. This method
makes the image overlap when the image resolution is not divisible by 512. The number i of small
images is

i = �m/512� × �n/512� . (2)

When m/512 are not integers, the number of overlapping pixels is

x =
⌈�m/512� × 512 − m

�m/512�
⌉

. (3)

When n/512 are not integers, the number of overlapping pixels is

y =
⌈�n/512� × 512 − n

�n/512�
⌉

. (4)

An example of division is shown as Fig. 3, where a large image with the size of 4439 × 5137 [43]
is divided by both the first and the second methods. Fig. 3a shows the original large-size image. In
Fig. 3b, 8 × 10 pieces of images with the size of 512 × 512 are obtained. In Fig. 3c, 9 × 11 pieces of
images with the size of 512 × 512 are obtained.

Figure 3: Division of a large-size image. (a) Image; (b) First method result; (c) Second method result

2.3.3 Segmentation and Preprocessing of Small Images

The semantic segmentation of a specific size image is carried out by using the selected DeepLab
V3+ network with DRN. After that, a preliminary segmentation label can be obtained, and each
pixel color of the label represents one kind of object. For example, blue represents cars and green
represents people. Meanwhile, the label image needs to be further processed to make it more suitable
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for the subsequent label merging. The preprocessing of deep learning results is mainly divided into the
following three steps.

Step 1: To process different kinds of objects individually, this work separates the objects in the
label image according to their label color. For example, if there are both cars and people in a label
image, the cars and people can be separated into two different labels according to the colors. Each
label is a black and white one, in which white is the foreground and black is the background.

Step 2: To facilitate subsequent merging, this work modifies the foreground label pixel value to
α for each label image, in which α is a constant less than 255. For illustration purposes, α is set to 60
here. Then new label images are obtained.

Step 3: To prepare for selecting the most appropriate traditional method for each label area in
the label image, this work counts and records the connected components in the label image with the
seed fill algorithm. In the seed fill algorithm, label areas with different pixel values represent different
connected components for intuitive display.

2.3.4 Example of Deep Learning Image Semantic Segmentation

In this paper, an image is taken as an example. This is an image with people and cars, and its size
is 1280 × 720 [39], which is higher but close to 512 × 512. Therefore, the image is cut into a square
according to its short edge and is resized to 512 × 512. Then, the deep learning semantic segmentation
and preprocessing are performed according to Section 2.3.3. The result is shown in Fig. 4.

Figure 4: Schematic diagram of Section 2.3

2.4 Traditional Image Segmentation
The principles of traditional image segmentation methods are varied. They mainly provide seg-

mentation based on image feature information, and their results are consistent with visual perception.
Moreover, they can directly process large-size images without the limitation of GPUs, so there is no
problem of incoherent boundaries caused by image cutting and splicing. Therefore, before optimizing
the object boundaries obtained by deep learning, the traditional image segmentation results need to
be obtained and preprocessed.

The main work in this part is as follows. First, the appropriate traditional methods according to
the actual demand are analyzed. This work mainly adopts three traditional image processing methods,
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including contour finding, K-means, and grab-cut, from which this work can obtain different typical
features of images. Then, different traditional methods are adopted to process aerial images, and a
preprocessing method for the traditional results is proposed to make them suitable for subsequent
merging steps.

2.4.1 Traditional Segmentation Methods

Thresholding and edge-based methods, clustering-based ones, and region-based ones are three
kinds of common, basic, and typical traditional image segmentation methods, and there are many
other methods similar to them and based on their improvements. They are respectively based on
shape, color, and texture feature information, which are usually used in image retrieval. Among them,
thresholding and edge-based methods adopt the gradient of image pixels and regard the gradient
reaching a certain threshold as a boundary. Clustering-based methods adopt distances between pixels
or pixel color similarity to segment images and can group the pixels with similar properties. Region-
based methods treat image segmentation as a graph partitioning problem, and they adopt graph theory
to segment the images from a geometric perspective.

Considering that aerial images cover a wide range of scenes and the individual objects have
different characteristics, to make the results of the traditional methods as general as possible, this work
chooses three methods on behalf of thresholding and edge-based methods, clustering-based ones, and
region-based ones, and adopts an adaptive one to carry out label merging and modification in the
subsequent merging steps. The chosen three methods are contour finding, K-means, and grab-cut, in
which contour finding can provide contours of objects, K-means can provide color-clustering groups,
and grab-cut can provide foreground things. The above three kinds of information not only represent
most of the obvious categories of object features but also correspond to human visual perception.

The contour finding method adopts the changes of pixel values between two different objects to
achieve segmentation, which is suitable for individual object extraction. It can outline the boundary
of the objects. The boundary is a closed curve, so the inner and outer parts of the curve can be
distinguished. Usually, the inner and outer parts represent different things.

The K-means method is a clustering-based unsupervised segmentation method, and it is sensitive
to colors. Its basic steps are as follows. First, the number of clusters needs to be given according to the
requirement and set k centroids in random places. Then, each point is assigned to the nearest centroid,
and the centroid is moved to the center of a new cluster after that. Finally, the previous process is
repeated until the stop criterion is reached. However, objects in aerial images are usually not simple
solid color objects. When the value of k is large, the image will be divided into too many parts, and
some aerial images with noise may cause dense miscellaneous points after segmentation. When the
value of k is small, the segmentation boundary of different objects will be unclear, which will affect
our subsequent steps. After experimental comparison and considering three primary colors, k is set to
3 in this work.

The grab-cut method is an iterative interaction method based on graph theory and adopts texture
and boundary information in the images. The iteration times and the approximate position of the
objects (the bounding box of the objects) need to be set before processing the images. The pixels
in the bounding box contain the main object and the background. The circumscribed rectangles of
the connected components obtained by the preliminary deep learning semantic segmentation results
can be used as the bounding boxes, and an appropriate number of iterations can be set to 20. This
work iterates the segmentation on different connected components that are recorded in the Step 3 of
Section 2.3.3 and gets the grab-cut results of each connected component after iterative graph partition.
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In the example of Section 2.3.4, there are two connected components of cars and two connected
components of people in the image. Since te grab-cut method needs to be given a bounding box, the
connected component of one car is taken as an example to explain the procedure. This work adopts
the contour finding method to find the edges of the object, the K-means method to perform color
clustering, and the grab-cut method to perform a segmentation result with one bounding box. Fig. 5
shows the visual effects of different traditional methods.

Figure 5: Car result of different traditional methods

2.4.2 Segmentation and Preprocessing Based on Traditional Results

As shown in Fig. 5, after using traditional methods, the preliminary results that show boundary
information, color information, and foreground information can be obtained. However, these images
are not labeled images and need to be further processed to make them suitable for subsequent label
merging steps. This work adopts different preprocessing methods for each traditional result because
the output results of different traditional methods vary a lot.

The result of contour finding needs the following preprocess:

Step 1: Calculate the length of each contour in the image and delete some very short ones.

Step 2: Fill the inside of the new contour image to make white inside the contour and make black
outside the contour. Then, fill the outside of the new contour image to make white outside the contour
and make black inside the contour.

Step 3: Modify the white pixel value to β for each image obtained by Step 2, in which β is a constant
less than 255, and α in Section 2.3.3 plus β should be less than or equal to 255. For illustration purposes,
β is set to 120 here. Then, new label images are obtained.

Step 4: Count and record the connected components in the label images with the seed fill algo-
rithm, resulting in label areas with different pixel values representing different connected components
for intuitive display.

Fig. 6 shows the results of the steps with the above-mentioned contour method.

The result of K-means needs the following preprocess:

Step 1: Separate different colors’ labels, make the foreground white and make the background
black in each new label. Then, three images with objects containing different colors are obtained.

Step 2: Modify the white pixel value to β for each image obtained by Step 1, in which β is a constant
less than 255, and α in Section 2.3.3 plus β should be less than or equal to 255. For illustration purposes,
β is set to 120 here. Then, new label images are obtained.

Step 3: Count and record the connected components in the label images with the seed fill algo-
rithm, resulting in label areas with different pixel values representing different connected components
for intuitive display.
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Figure 6: Segmentation and preprocessing based on contour result

Fig. 7 shows the results of the steps using above-mentioned K-means.

The result of grab-cut needs the following preprocess:

Step 1: Take the pixels that are not black as the foreground, make the foreground white and make
the background black in the label.

Step 2: Modify the white pixel value to β for each image obtained by Step 1, in which β is a constant
less than 255, and α in Section 2.3.3 plus β should be less than or equal to 255. For illustration purposes,
β is set to 120 here. Then, new label images are obtained.

Step 3: Count and record the connected components in the label images with the seed fill algo-
rithm, resulting in label areas with different pixel values representing different connected components
for intuitive display.

Figure 7: Segmentation and preprocessing based on K-means result

Fig. 8 shows the results of the steps using the above-mentioned grab-cut.
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Figure 8: Segmentation and preprocessing based on grab-cut result

2.5 Label Merging and Modification
For different individual objects, in order to carry out label modification and boundary optimiza-

tion in combination with their own characteristics, an adaptive method for selecting appropriate
traditional labels to merge with deep learning labels is proposed. By finally merging different
individuals and different kinds of objects, a modified image label is obtained, which not only has
clear and coherent boundaries but also contains semantic information about the object. The whole
process of the merging algorithm is introduced here.

2.5.1 Adaptive Selection of Traditional Labels

Different objects have different characteristics. For example, the independent characteristic of cars
is obvious, and the color characteristic of trees is obvious. Moreover, for different individual objects of
the same class, differences also exist due to their colors and structures. The connected components are
the basis for distinguishing between individual objects of the same class. Therefore, this work proposes
an adaptive selection of traditional labels to merge and modify each connected component in each deep
learning label.

According to the segmentation and preprocessing of the above-mentioned traditional methods,
for each connected component in the deep learning label, two corresponding contour labels, three
corresponding K-means ones, and one corresponding grab-cut one can be obtained. The adaptive
selection consists of two parts. In the first part, the most appropriate contour label and the most
appropriate K-means one are selected respectively for each connected component in the deep learning
label. In the second part, the most appropriate traditional label is selected from the above contour
label, the above K-means one, and the grab-cut one.

To be specific, in the first step, two contour labels and three K-means labels are added to the deep
learning label, respectively, to obtain the merged labels. Each pixel value in each merged label can be
computed as:

DTVij = DVij + TVij, (5)

where i and j represent the x-coordinate and the y-coordinate of each pixel in the image, DVij is the
value of (i, j) pixel in the deep learning label, TVij is the value of (i, j) pixel in the traditional label,
DTVij is the value of (i, j) pixel in the merged label. In this way, the preliminary five merged labels
can be obtained. On each merged label, there are four kinds of pixel values (0, α, β, α + β), in which
α and β are the deep learning label value and the traditional label value mentioned in Sections 2.3.3
and 2.4.2, respectively. Therefore, the pixel value of 0 indicates the background, the pixel value of α

+ β indicates the common objects, and the pixel value of α or β indicates that further determination
is needed. Then, the numbers of pixels valued α + β in the merged labels are counted, respectively.
The merged label with the largest number is the most appropriate label. Thus, the most appropriate
contour and K-means labels are obtained.
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In the second step, similarly, the grab-cut label is added to the deep learning one, and the number
of pixels valued α + β is counted in the merged one. After comparing the numbers of pixels valued α +
β in the merged labels obtained by the grab-cut label, the above contour label, and the above K-means
label, the merged label with the largest number is considered to be the most appropriate traditional
label.

For the car example in Fig. 5, the most appropriate labels of different methods and their merged
labels are shown in Fig. 9.

Figure 9: The most appropriate labels of different methods and their merged labels: (a) the contour
label, (b) the K-means label, (c) the grab-cut label, (d) the traditional label, (e) the contour merged
label, (f) the K-means merged label, (g) the grab-cut merged label, and (h) the traditional merged label

2.5.2 Merging of Traditional and Deep Learning Labels

In Section 2.5.1, by superimposing traditional labels and deep learning ones, four preliminary
most appropriate merged labels are obtained for each deep learning connected component. In this
section, this work proposes a merging method to further select and process these preliminary merged
labels to obtain the final label. The merging method includes three steps.

Step 1: If the traditional label is similar enough to the deep learning one, retain the traditional
label.

In Sections 2.4.2 and 2.4.3, the connected components in the traditional labels of contour, K-
means, and grab-cut are counted and recorded. To judge whether each connected component in
traditional labels is similar enough to the objects in the deep learning label, this work takes the
connected components in the traditional label as the bases and adopts the traditional label-based
overlap ratio (TOR) of each connected component as the indicator, and the indicator value V TOR is
calculated by the following equation:

VTOR = CNDT/CNT , (6)

where CNT is the number of pixels valued β in this region of the traditional label, CNDT is the number
of pixels valued α + β in the same region of the merged one. Higher V TOR means higher similarity of
the connected component between two labels.
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A threshold TTOR is set for V TOR, which ranges from 0 to 1 and can be changed according to
different situations. When V TOR < TTOR, it is considered that there is something else in this connected
component of the traditional label, and nothing should be done about this region. Otherwise, it is
considered that this connected component in the traditional label is sufficiently similar to the same
region in the deep learning label, and the same pixels in the most appropriate traditional merged label
are adjusted to α + β.

Therefore, in practice, the operations of Step 1 are as follows. Firstly, this work calculates the V TOR

of each connected component in the most appropriate contour label and retains the component whose
V TOR >= TTOR. For those connected components whose V TOR >= TTOR, this work calculates the total
number of pixels whose value is α + β in the same region of the merged label. Secondly, this work
conducts the same operation for the most appropriate K-means and the grab-cut labels. Thirdly, by
comparing the total number of pixels in three merged labels, the traditional label whose total number
is the largest can be obtained, which is considered to be the most similar label to the deep learning label
and can be used to modify the merged label. Finally, for the most similar traditional label, if V TOR >=
TTOR, this work changes the pixels in the same region of the most appropriate traditional merged label
to the value of α + β.

In the example, the V TORs of both two cars in the image are higher than TTOR, so the traditional
label parts are directly put into the merged label. After this step, the most appropriate traditional
merged labels of the two cars are shown in Fig. 10.

Figure 10: The most appropriate traditional merged labels after Step 1: (a) the first car, (b) the second
car

Step 2: If there is a big gap between the deep learning label and the traditional one, retain the deep
learning label.

This work takes the connected components in the deep learning label as the bases to judge whether
the objects are not well detected by the most appropriate traditional merged label that has been already
modified by Step 1. The deep learning label-based overlap ratio (DOR) is adopted as the indicator,
and the indicator value V DOR is calculated by the following equation:

VDOR = CNDT/CND, (7)

where CND is the number of pixels valued α in this connected component of the deep learning label,
and CNDT is the number of pixels valued α + β in the same region of the modified most appropriate
merged label.

This work separates each connected component in its deep learning label and calculates the V DOR

value of each connected component. A threshold TDOR is set for V DOR. TDOR ranges from 0 to 1 and
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can be changed according to different situations. If V DOR >= TDOR, it is considered that the big gap
between the two labels does not exist, and nothing should be done about this region. Otherwise, it is
considered that this region is not well detected by the most appropriate traditional label. Therefore,
the original region in the deep learning label is regarded as the final result directly, and the pixels in
the same region of the most appropriate traditional merged label are adjusted to the value of α + β.

As shown in Fig. 11a, V DOR of the first car is lower than TDOR, and therefore, the deep learning
label part is directly put into the merged one. However, as shown in Fig. 11b, V DOR of the second car
is higher than TDOR, and therefore, nothing should be done about the merged label.

Figure 11: The most appropriate traditional merged labels after step 2: (a) the first car, (b) the second
car

Step 3: Fill in the missing parts of the merged label.

To avoid small parts of objects being detected by the deep learning method but not detected by
traditional methods, the missing parts should be further filled in the modified most appropriate merged
label. As shown in Fig. 12, the regions in the red boxes are the regions that need to be filled for the
second car.

Figure 12: Schematic diagram of label filling regions
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The filling parts mainly consider the following situations:

1) The region exists continuously in the deep learning label but not in the traditional label;

2) The region with a large boundary gap between the merged label and the deep learning label;

3) The large region is present in the deep learning label but not in the merged label.

The judgment and the corresponding filling methods of different situations are introduced in
detail.

• Situation 1

Situation 1 refers to the regions whose pixel values are not α + β in the most appropriate traditional
merged label, but the regions themselves and their surrounding pixels are all valued α in the deep
learning label. For this kind of regions, their pixels in the modified most appropriate traditional merged
label are adjusted to the value of α + β.

• Situation 2

For situation 2, the most modified appropriate traditional merged label is detected and processed.

Firstly, a small square (this work takes a small square with a side length of 1/50 of the original
image side length) is looped along the boundaries of the regions where their pixel valued α + β. If there
is no background (pixel valued 0) in this square, this square is considered to be a missing region, and
the value of the pixels in this square is set to α + β. Secondly, the square is looped along the boundaries
of the newly added α + β regions until no newer α + β regions appear. Thirdly, the side length of the
square is gradually reduced, which depends on the following equation:

1 =
∑n→∞

n=1

(
1
2n

)
. (8)

The side length of the square is reduced by half, and the new square is continued to loop along
the boundaries of newly added α + β regions found in the above steps. This work loops through the
above process and reduces the side length of the square until its side length is one pixel.

After the end of the loop, in the newest merged label, it is judged whether the surrounding pixel
values of each connected component whose pixel value is α are all 0 or newly added α + β. If its
surrounding pixel values are all 0 or newly added α + β, the pixel values of this connected component
are adjusted to α + β.

The flow chart is shown in Fig. 13.

• Situation 3

The pixels whose values are α are marked in the merged label processed after situation 2. A small
square (this work takes a small square with a side length of 1/50 of the original image side length) is
looped along the marked pixels. If the square is full of marked pixels, this central pixel is considered
to be a missing one and the pixel value is set to α + β. After the end of the loop, in the modified
merged label, it is judged whether the surrounding pixel values of each connected component whose
pixel value is α are all 0 or newly added α + β. If its surrounding pixel values are all 0 or newly added
α + β, the pixel values of this connected component are adjusted to α + β.
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Figure 13: The flow chart of situation 2

The modified merged result for the second car is shown as Fig. 14. In Fig. 14, the pixel valued α

+ β means the label result of the second car after the filling method, and the pixel valued α means the
discarded deep learning result.
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Figure 14: The modified merged result for the second car

2.5.3 Combination of Same Objects

In Sections 2.5.1 and 2.5.2, this work finds the corresponding appropriate traditional label for
each connected component in each deep learning label and merges the traditional label and the deep
learning label. Considering that the same kind of objects end up with the same color in the final label,
for the modified merged label corresponding to each connected component in one deep learning label,
it is necessary to set the pixel values at the same position on the final label of this category to 255 and
other pixel values to 0. The final label for cars is shown as Fig. 15.

Figure 15: The final label for cars
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2.6 Combination of Different Objects
When labels of different kinds of objects are combined and label pixels are overlapped, it

is necessary to set priorities for labels of different kinds of objects and make the final semantic
segmentation label according to the priorities. The label with high priority is the category in which
the overlapping pixels are classified. For example, if a person is holding a dog and the modified person
label overlaps the modified dog one. And if the person label has high priority, the final label of the
overlapping pixels is the person instead of the dog. To reasonably determine priorities, this work
considers the object labels that are similar to the ground truth results to be given high priority. Since
the ground truth in practical applications cannot be known, the result of deep learning is used as a
substitute.

In Section 2.5.2, this work takes the connected components in the deep learning label of one
kind of objects as the bases and calculates the indicator value V DOR of each connected component.
Therefore, for each kind of objects, the average V DOR of different connected components can be
calculated. High V DOR means that the big gap between the deep learning label and the original most
appropriate traditional one does not exist. Therefore, objects with a high value of average V DOR have
a high priority. Finally, the results of different objects can be merged according to their priorities, and
the colors are adjusted to the original colors in the deep learning label.

The deep learning results and the final results for the image are shown in Fig. 16, in which the blue
labels mean cars and the green labels mean people. It can be seen that the final result is more detailed
and overlaps more with the original image than the deep learning result.

Figure 16: The deep learning results and the final results for the image: (a) the deep learning label,
(b) the deep learning visualization results, (c) the final label, and (d) the final visualization results

3 Results and Applications

To verify the effectiveness of the ABSCS method, this work conducts qualitative and quantitative
experiments in this section on a PC with an NVIDIA GTX 1080 Ti GPU. Constrained by the GPU, the
input images of the deep learning method are processed to the size of 512 × 512. In combination with
the AeroScapes dataset, two metrics are selected for subsequent quantitative analysis. As for qualitative
and quantitative experiments, this work first adopts aerial image examples to make qualitative analysis
according to the steps in Section 2. Then, the selected metrics are adopted to carry out the statistical
calculation on the datasets for quantitative analysis. Finally, to verify the effectiveness of the ABSCS
method in the application of 3D semantic reconstruction, the effects on 3D point cloud segmentation
and image inpainting are tested.
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3.1 Selection of Metrics
This work adopts two metrics to assess labeling performance. The first metric is a global

performance one that is commonly known as the intersection-over-union metric (IoU) [44]. IoU value
V IoU can be calculated as the following equation:

VIoU = TP/ (TP + FP + FN) , (9)

where TP is the number of true positive pixels, FP is the number of false positive pixels, and FN is the
number of false negative pixels. V IoU of each kind of objects represents the global accuracy of semantic
segmentation, and it is determined over the whole test dataset. V IoU is distributed in the range of
0 ∼ 100%. High V IoU means a good segmentation effect.

The second metric describes the edge performance, which is a measure of pixel distance named
median absolute deviation (MAD) [45]. The set of boundary points of the result obtained by our
segmentation method is set as B = {bi: i = 1, . . . , K} (K is the total number of boundary points), the
set of boundary points of the original ground truth result is set as T = {tn: n = 1, . . . , N} (N is the
total number of boundary points), and the distance from the point to the boundary is set as d (B, tn) =
min |bi – tn|. Based on the original ground truth result, MAD value V MAD is calculated as the following
equation:

VMAD = 1
T

∑N

i=1
d (B, tn) . (10)

MAD represents the pixel difference of the segmentation boundaries before and after merging.
V MAD of each kind of objects represents the edge accuracy of semantic segmentation, and it is
determined over the whole test dataset. Low V MAD means close boundaries and a good segmentation
effect.

3.2 Qualitative Analysis
To qualitatively and quantitatively analyze the ABSCS method, this work carries out experiments

on the AeroScapes images. In Section 2, two thresholds TTOR and TDOR need to be set before
experiments. After an experimental comparison of visual and data effects of different values of TTOR

and TDOR, the TTOR value is set to 0.85 and the TDOR value is set to 0.8.

This work selects one image for each class chosen in Section 2.2, including obstacle, person, car,
and animal. Qualitative results are shown in Fig. 17. For each image, the standard label, the deep
learning one, the most appropriate traditional one and the final one are shown.

From the above experimental results, it can be seen that the deep learning method can obtain true
semantic information in the images. Although the most appropriate traditional labels are also selected
based on the deep learning labels, the traditional labels are not semantic and also have some other
wrong identifications. For example, the missing part in the center of the obstacle and the animal, and
the extra part of the stair beside the person. On the contrary, in terms of boundary effect, the results
of the most appropriate traditional labels are better than those of the deep learning labels. This is also
related to the working principle of the traditional processing methods, which is based on the feature
information of the images. Since the proposed method adopts the traditional labels to carry out post-
processing on the deep learning labels, the final result has a high similarity with the deep learning
result. This feature is reflected in both qualitative and quantitative analysis. However, it is observed
that the final labels after post-processing are modified by the traditional labels and are closer to the
real boundaries of objects than the deep learning labels. These include the upper part of the sign, the
cyclist’s arm, the front and rear edges of the car and its rearview mirrors, and the back of the panda.
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For some objects with obvious individual characteristics, our method can obviously solve the problems
that the boundary locations are not ideal and the boundary edges are smooth in deep learning results.
Qualitative experiment results show that the ABSCS method is helpful in optimizing the semantic
segmentation results of individual objects in aerial images.

Figure 17: Visual results of different kinds of objects in AeroScapes: (a) standard label of obstacle,
(b) deep leaning label of obstacle, (c) most appropriate traditional label of obstacle, (d) final label of
obstacle, (e) standard label of person, (f) deep leaning label of person, (g) most appropriate traditional
label of person, (h) final label of person, (i) standard label of car, (j) deep leaning label of car, (k) most
appropriate traditional label of car, (l) final label of car, (m) standard label of animal, (n) deep leaning
label of animal, (o) most appropriate traditional label of animal, and (p) final label of animal
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3.3 Quantitative Analysis
This work conducts deep learning and post-processing experiments for the four kinds of objects

in the test sets of the AeroScapes dataset. Considering that the final results are based on deep learning
results and only when they are well identified that our method can well modify the results, this work
especially calculates V IoU and V MAD for the well-identified objects whose V IoU is over 60%. In order to
demonstrate the advances of the proposed method, this work also compares the ABSCS results with
the results of the HRNet [29,30] + OCR [46] method and the PFSegNets [33] method. The HRNet +
OCR method is widely recognized in the field of high-resolution image semantic segmentation, and the
PFSegNets method is a state-of-the-art one that is specially designed for aerial image segmentation.
Their quantitative results are shown in Tables 1 and 2, which show V IoU and V MAD of different kinds
of well-identified objects.

Table 1: V IoU of different kinds of well-identified objects in AeroScapes

Class HRNet + OCR
V IoU (%)

PFSegNets V IoU

(%)
DeepLab V3+ V IoU

(%)
ABSCS V IoU

(%)

Obstacle 73.74 69.42 73.50 74.28
Person 74.22 74.08 68.10 69.04
Car 84.16 85.42 87.20 87.98
Animal 69.28 69.95 69.49 70.89

Table 2: V MAD of different kinds of well-identified objects in AeroScapes

Class HRNet + OCR
V MAD (pixel)

PFSegNets V MAD

(pixel)
DeepLab V3+
V MAD (pixel)

ABSCS V MAD

(pixel)

Obstacle 4.06 2.41 3.20 3.08
Person 3.01 2.36 2.11 2.01
Car 1.61 2.66 2.87 2.64
Animal 5.70 3.87 10.91 10.14

High V IoU and low V MAD indicate the high accuracy of the results. As shown in the above
experiments, in terms of V IoU, the ABSCS method gets better performance in obstacle, car, and animal
than the deep learning methods. The PFSegNets method and the HRNet + OCR method get the top
two performances in person. However, as for V MAD, the ABSCS method achieves the best result in
person and the second best results in obstacle and car. The PFSegNets method and the HRNet + OCR
method achieve the best result in obstacle and car, respectively. Although the ABSCS method has a
much higher V MAD in animal, this is also related to the relatively small number of images containing
animals resulting in a great contingency. Therefore, the overall effect of the ABSCS method is better
than that of the deep learning methods.
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Moreover, to further illustrate the improvement of the composite method on the used DeepLab
V3+ method, this work also calculates the absolute and relative growths of V IoU and V MAD. The results
are shown in Table 3.

Table 3: Absolute and relative growths in AeroScapes

Class V IoU absolute
growth (%)

V IoU relative
growth (%)

V MAD absolute
growth (%)

V MAD relative
growth (%)

Obstacle 0.78 1.06 0.12 3.75
Person 0.94 1.38 0.10 4.74
Car 0.78 0.89 0.23 8.01
Animal 1.40 2.01 0.77 7.06

Since the proposed ABSCS method is the post-processing of deep learning results and mainly
improves the boundaries of objects, V IoU of the ABSCS method achieves an improvement of about
1%. However, the absolute and relative growths of V MAD show that the ABSCS method has made
relatively great progress in boundary optimization. Quantitative results show that the ABSCS method
is helpful in optimizing the semantic segmentation results of individual objects in aerial images.

3.4 Application Validation
From the perspective of engineering practices, a small deviation in a boundary can make a

big difference. In this work, the effectiveness of the ABSCS method is verified in 3D semantic
reconstruction, including the applications of point cloud semantic segmentation and image inpainting.

The proposed ABSCS method can be used to deal with the semantic segmentation of large-size
images. As shown in Fig. 18, when an aerial image with the size of 1024 × 1024 is taken from a low-
view point, a building may occupy a large area of the image, while a car may occupy a small area. Due
to the limitation of GPUs, deep learning methods may can not directly process a large-size image. If
the image is down-sampled to the size of 512 × 512, the deep learning semantic segmentation method
may get unsatisfied results, and if the image is cut into four pieces, unnecessary trouble may occur at
adjacent junctions.

Figure 18: Large-size image and its semantic segmentation results with different methods: (a) the large-
size image with building and car examples, (b) the down-sampled semantic result with building and
car examples, and (c) the cut and merged semantic result with building and car examples
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For example, in Fig. 18a, it can be seen that the large building in the red box is in the center of the
image, while the small car in the yellow box is in the lower-left corner of the image. Different methods
are adopted to semantically segment the image, and in deep learning results, buildings are red and cars
are purple. In Fig. 18b, the image is down-sampled to 512 × 512, and DeepLab V3+ is adopted to
semantically segment the down-sampled image. It is shown that the result after down-sampling is not
ideal, many objects are connected together and the boundary effect is very poor. Some small objects,
such as cars, cannot even be detected. In Fig. 18c, the image is cut into four 512 × 512 pieces, and the
DeepLab V3+ method is adopted to semantically segment the pieces, and then the results are stitched
to the original size. It is shown that the boundary effect of objects is good. Yet, for the building in the
center, there is a clear patchwork of pieces in the up part of the building. To achieve good application
effects, this work adopts Fig. 18c for the next validation.

In 3D semantic reconstruction, different operations need to be performed on different objects
according to actual requirements. For example, when only immovable objects are important, buildings
need to be modeled and cars need to be removed, but when all objects are important, both buildings
and cars need to be modeled separately. To illustrate the effectiveness of the proposed method, this
work takes the car in the yellow box and the building in the red box in Fig. 18 as examples, and
adopts the deep learning results and the final results with the ABSCS method to conduct comparative
experiments. In view of the above two applications, this work carries out image inpainting and point
cloud semantic segmentation for the car and point cloud semantic segmentation for the building. The
segmentation and application results are shown in Fig. 19. From Fig. 19, it is shown that the label
boundaries of both the car and the building are improved, which directly improves the effects of the
subsequent application of image inpainting and point cloud semantic segmentation.

For the car, Figs. 19e and 19f show that the front of the car is well modified. In Fig. 19m, the
texture of the car cannot be completely eliminated and will affect the texture of the road, yet this
situation has been resolved in Fig. 19n. For the complete car point cloud in Fig. 19b, when semantic
segmentation results are adopted to segment the car point cloud, compared with Figs. 19i and 19j can
separate the car more completely, and therefore, more points of the car can be used for subsequent
applications.

For the building, from Fig. 18c, it can be seen that at the joint of four pieces, which is also in
the middle of the building in Fig. 19g, there is a horizontal line with obvious splicing. Through the
modification using the proposed ABSCS method, the final building label in Fig. 19h is close to the
real situation. Moreover, when 3D semantic reconstruction is carried out, buildings often need to be
detected separately, and therefore, the building point cloud can be adopted to further carry out 3D
mesh reconstruction and texture mapping. Figs. 19k and 19o show that the segmented building point
cloud using the deep learning label have a huge gap. By using the modified building label, Figs. 19l and
19p segment the building point cloud completely, and the points in the gap are well-identified.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 19: Segmentation and application results: (a) original car image, (b) complete car point cloud,
(c) original building image, (d) complete building point cloud, (e) deep learning car label, (f) final car
label, (g) deep learning building label, (h) final building label, (i) point cloud segmentation based on
deep learning car label, (j) point cloud segmentation based on final car label, (k) top view of point cloud
segmentation based on deep learning building label, (l) top view of point cloud segmentation based on
final building label, (m) image inpainting based on deep learning car label, (n) image inpainting based
on final car label, (o) side view of point cloud segmentation based on deep learning building label, and
(p) side view of point cloud segmentation based on final building label
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4 Discussion

It is worth mentioning that the ABSCS method has relatively large modification potential, which
is mainly reflected in the following three aspects:

• Replaceability

The ABSCS method is based on traditional image processing and deep learning processing
methods. In this work, only three typical traditional methods and one suitable deep learning method
are adopted to illustrate the validity of the composite method. However, the traditional methods and
the deep learning method can be replaced by other state-of-the-art methods. Especially, deep learning
methods are constantly updated nowadays, and if there is a more suitable deep learning semantic
segmentation method for aerial images in the future, the current method can be further replaced.

• Practicability

The ABSCS method is not only applicable to aerial images but also applicable to other daily ones,
such as street view ones and indoor ones. For different scenarios and user needs, thresholds can be
modified to yield ideal results.

• Generalizability

Many steps are based on connected components, and the current method can be applied to other
fields such as instance segmentation in the future. Meanwhile, the ABSCS method can be further
improved to deal with many other real-life applications such as object grab and autopilot.

5 Conclusions

This work proposes an Adaptive Boundary and Semantic Composite Segmentation (ABSCS)
method for individual objects of aerial images, which can process large-size images with limited
GPU performances. By adaptively dividing and modifying the aerial images with the proposed
principles and methods, using the deep learning method to semantic segment and preprocess the
small divided pieces, using three traditional methods to segment and preprocess original-size aerial
images, adaptively selecting traditional results to modify the boundaries of individual objects in deep
learning results, and combining the results of different objects, this work can not only identify the
semantic information but also give the explicit object boundary information. Qualitative experiments
demonstrate that compared with the deep learning results, the ABSCS results are more consistent
with the boundary of the objects in terms of visual perception. The results are also improved in the
quantitative experiments in terms of the global intersection-over-union metric and the median absolute
deviation metric. Finally, the validity and necessity of the ABSCS method are discussed through
experiments on applications of image inpainting and point cloud semantic segmentation.

The ABSCS method has the advantages of replaceability, practicability, and generalizability. It can
be replaced later when new deep learning or traditional methods become available, can be modified and
applied to other images of different fields, and can be extended to instance segmentation or other image
semantic segmentation. In addition, the use of multiple views or videos may also improve segmentation
effects [47]. After the improved semantic segmentation of objects is realized, many applications such
as object detecting and removal, object aiming and striking, and object modeling can be conducted as
well. In the future, we will carry out related research in the above aspects.
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