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ABSTRACT

Transmission line (TL) Parameter Identification (PI) method plays an essential role in the transmission system.
The existing PI methods usually have two limitations: (1) These methods only model for single TL, and can not
consider the topology connection of multiple branches for simultaneous identification. (2) Transient bad data is
ignored by methods, and the random selection of terminal section data may cause the distortion of PI and have
serious consequences. Therefore, a multi-task PI model considering multiple TLs’ spatial constraints and massive
electrical section data is proposed in this paper. The Graph Attention Network module is used to draw a single
TL into a node and calculate its influence coefficient in the transmission network. Multi-Task strategy of Hard
Parameter Sharing is used to identify the conductance of multiple branches simultaneously. Experiments show that
the method has good accuracy and robustness. Due to the consideration of spatial constraints, the method can also
obtain more accurate conductance values under different training and testing conditions.
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1 Introduction

With the increasing energy demand, the power transmission network is becoming more and more
complex, and the stability requirements of the distribution system are getting higher and higher.
Transmission line parameter identification method plays an essential role in the smooth operation of
power distribution system. However, due to changes in temperature and humidity and sag caused by
line aging, line parameters will change inevitably [1]. For that reason, the parameters must be regularly
updated. Therefore, it is important to discuss a real-time PI method with high accuracy and strong
robustness.

Currently, the main methods of PI include theoretical calculation, off-line manual measurement
and real-time measurement based on measured data. Compared with high-cost manual off-line
measurement or formula calculation with low confidence, PI based on measured data has attracted
great attention because of its convenience and economy. According to the data source, these methods
can be divided into two categories: (1) parameter identification based on SCADA (Supervisory
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Control And Data Acquisition) System [2–4]. (2) Parameter identification based on PMU (Power
Management Unit) System [5–7]. Although the voltage and current information obtained by PMU is
more comprehensive and accurate than SCADA’s, the PMU devices still have the problem of phase
angle synchronization [8]. Besides, due to the high cost of PMU devices, it may not be economically
viable to install PMU on each TL of the power system. Therefore, this paper will focus on the common
SCADA data.

However, the existing traditional identification methods based on SCADA data have limitations
on two levels as follows:

On one hand, traditional method considers the cross-section data of SCADA too ideally. First of
all, the Remote Terminal Unit (RTU) of current transmission system adopts the t-polling mechanism
at a given time to collect data [9]. It stores the data of multiple acquisition terminals as section data in
the database, and generally takes seconds as the section time scale, which will generate a large amount
of historical data. The data section used by traditional PI methods is selected by manual experience.
It is easy to select the section where the system has abnormalities and noise interference, causing the
failure of generating effective branch parameters [10]. At the same time, a large amount of reliable
historical data is ignored. Secondly, during data collection, the acquisition terminal does not calculate
whether the existing system is in a steady state process, so the real-time telemetry data reported to the
master station may be either a steady state value or a transient value. The measurement data presented
at this point varies greatly before and after, which becomes an outlier. Inputting this deviation data
into the traditional method for identification will cause parameter distortion [11].

On the other hand, the traditional method itself can complete the PI task under pure data input.
Still, some limitations exist: SCADA-based PI methods can be roughly divided into two categories. One
is the augmented state estimation method. References [2,3] used the normal equation for augmented
matrix estimation and Kalman filtering. These methods can better estimate line parameters, but
its iterative process requires the use of augmented Jacobian matrix. For that reason, the method
requires the measurement system to satisfy the observability condition. In addition, a huge Jacobian
matrix condition number may lead to numerical non-convergence problems. Reference [12] proposed
a Kalman filter method based on unscented change, which simplifies the amount of computation by
calculating the unscented transformation of the state matrix. Reference [13] used projection statistics
and the coupling relationship between parameter errors and measured values to detect incorrect
branch parameters related to leverage points. Adding them into augmented matrices for estimation can
effectively detect incorrect parameters and correct them. However, there is still the problem that the
condition number of the Jacobian matrix is too large. Another category is residual sensitivity analysis.
Reference [14] used the relationship between the error parameters and the measurement residuals
to correct the parameters through repeated iterations. Still, it is necessary to assume the position
of the known error parameters before the iteration. Reference [15] derived an approximate linear
formula for the series impedance of the bus voltage and the line active and reactive power flow. This
method abandons repeated iterative steps and has specific feasibility. However, this is an approximate
linear formula that relies too much on the purity of the measurement data, so the results may not
be ideal for the identification task of doped noise data. Reference [16] used a four-step simplified
identification method. This method firstly deduces the approximate relationship between the voltage
phase difference and the reactance, roughly estimates the voltage phase difference, then combines the
Taylor series expansion to calculate the voltage phase difference more accurately, and finally derives
the reactance data.
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In summary, traditional PI methods are all numerical methods based on deriving the formulas
of measured electrical variables, which means that the method requires the noise ratio of the input
electrical variables to be kept within a small range on the one hand. On the other hand, these methods
require stringent prerequisites, meaning the measurement system needs to satisfy the observability
condition and know the location of the wrong parameter. Still, there is a risk of non-convergence.
These limitations require researchers to investigate methods for adapting to noisy time-sectioned data.
First, the method should not manually select a few cross-section data but should be able to utilize a
large amount of historically reliable data. Second, the location of known wrong parameters is not
required. In recent years, neural network models have become a research hotspot due to their fitting
solid performance and robustness [17]. In this era of massive data flooding, neural network models
can train massive data and extract main features to build computational models [18]. In the case of
outlier information and noise interference, the model can adaptively converge under the addition of
suitable regular conditions. Secondly, the neural network model does not require wrong parameter
positions. Inspired by this, our paper attempts to cover the neural network methods for branch PI.

Applying traditional neural network methods to PI can improve accuracy and robustness, but
some restrictions exist. Reference [19] used a long-short-term memory neural network method to
perform regression analysis on historical electrical measurement data. Reference [20] used fully
connected neural network to improve the accuracy of the model. These methods utilize the historical
electrical data of both ends in the SCADA system and also have good accuracy. But there are still two
limitations: (a) These methods perform modeling operations on a single branch, which means that
they cannot support multi-branch PI or require multiple model redundancy to cope with the multi-
branch PI. (b) These methods do not take the topological constraints of the TL into account. For
a single branch, the SCADA value of the branch node is affected by all branches connected to the
node. Therefore, PI directly through a single branch will lead to excessive error, unless the system is
an ideal system without error. The reason for these limitations is quite simple: These methods cannot
accept the condition that the grid measurement data belong to graph data with structural constraints
[21]. This means that the method enforces the decoupling of grid data into multiple branch data for
identification. Actually, the location of the endpoints of the TL is usually irregular. In addition, the
number of adjacent edges of the TL nodes is different. Only when the power grid branch data is
regarded as graph data can the topology constraints of the network be analyzed to complete the line
identification. Fortunately, the graph neural network in deep learning can parse out the node adjacency
information in the network and embed it to the whole grid. Therefore, this paper applies graph neural
network methods to PI.

In view of a series of practical problems existing in the PI methods of distribution network, this
paper proposes a multi-branch PI method considering the power grid structure constraints and the
influence of transient data. The identification parameter for which is the conductance G. Specifically,
first of all, we use the graph modeling method to model the time slice data of the grid branches into
graph data. Then, aiming at transient bad data that may appear in data acquisition, a pooling module
that draws the context of time series electrical variables is designed to smooth the impact of temporary
data on the model. Secondly, we design the GAT module, expecting to mine the branch node topology
constraint information, and adaptively learn the weights between the line nodes to deal with the error
caused by the loss of single branch information. Finally, considering the requirements of multi-branch
identification, we use the hard-parameter-sharing strategy to design the model layers. The model uses
the first few layers of the network as parameter-sharing layers and finally separates a single task
regression layer to do the output layer of different tasks. In the loss function backpropagation, we
design a self-balancing loss function module to avoid the model Tending towards jobs with large target
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parameters. After this design, the model can effectively reduce redundancy and learn the information
gain brought by other tasks. The model shows good robustness and accuracy on the real data set
given by China Power Grid, which has certain practical significance. The last, we Summarize our
contribution in this paper as follows:

• DL correlation method is covered on branches PI in this paper, which effectively alleviates the
error caused by the manual selection of the wrong section data for identification, and uses a
large amount of reliable historical data to improve the accuracy.

• Power grid data is transformed into graph by some graph modeling method, which provides a
new idea for the direction of PI. Due to the consideration of graph structure constraints, the
method becomes more robust and immune to noise interference and outlier information.

• Hard Parameter Sharing Multi-task strategy is adopted to reduce the model redundancy. Loss
balance function is designed to mitigate task bias. Through this strategy, we implement multiple
outputs of one model.

The rest of this paper is organized as follows: the second part will introduce the feature selection,
theoretical basis of conductance (G) regression equation, graph modeling method, and method
proposed in this paper. The third part gives the experimental setting and results and then analyzes
them. Finally, the fourth part summarizes and offers prospects.

2 Multi-Branches PI Based on Graph Modeling Method and Timing Pooling with Multi-Task Strategy

First, we introduce the basis of feature selection and label making for branches’ conductance (G),
that is, π type equivalent circuit model. Then we abstract and quantify the characteristics of branch
head and end electric island into graphic data by graph modeling method that we proposed. Finally,
we introduce the design idea and composition module of this model.

2.1 Theoretical Basis of Feature Selection and Label Making
In data engineering, determining the model input and label through the corresponding theoretical

knowledge is the premise of application. Here we use traditional methods to construct the input and
label. In the early stage of the proposed erection of high-voltage TLs, π type equivalent model is
usually used to calculate the relevant parameters, which is the best theoretical model for PI under
ideal conditions. The target parameter of branch identification we selected is conductance G. Due to
the problem of line aging, the parameters calculated by π equivalent circuit can not be used as labels,
but our purpose is only to use them as a feature selection and comparison benchmark for the task
of branch PI. In subsequent applications, a truly reliable label can be used as the fitting target of the
model.

High-voltage transmission lines can be equivalent to the π-type circuit model. As shown in Fig. 1,
Z = R + jX is impedance, Y = jB is susceptance. Um � ϕum, Im � ϕim, Pm, Qm, Un � ϕun, In � ϕin, Pn, Qn

respectively refer to positive sequence voltage phase angle, current phase angle, m-terminal active
power and reactive power, and n-terminal reactive power. Im

′ � ϕim
′, In

′ � ϕin
′, Pm

′, Qm
′, Pn

′, Pn
′ respectively

represent the current phase angle, active and reactive power after passing through susceptance.

According to power balance equation of TLs, the following equation can be derived:

Pm + Pn = R
(
Im

′)2 = R × P2
m + (

Qm + U 2
mB/2

)2

U 2
m

, (1)
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Pm + Pn = R
(
In

′)2 = R × P2
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mB/2

)2

U 2
n

, (2)

Qm + Qn = X × P2
n + (
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)2

U 2
n

− U 2
mB
2

− U 2
n B
2

, (3)

After that, according to the admittance equation:

G + jB = 1
R + jX

. (4)

The derived branch conductance equation G can be expressed as follows, where y = B/2 is the
ground susceptance.

G =
(Pm + Pn)

[
P2

m + (
Qm + U 2

my
)2

]
U 2

m

[
(Pm + Pn)

2 + [
Qm + Qn + (

U 2
m + U 2

n

)
y
]2

] , (5)

To sum up, we choose x = (Pm, Pn, Qm, Qn, Um, Un, y) ∈ R
7 as model input according to the branch

conductance (G) regression equation above. Reference [22] also showed that the admittance parameters
of TL can be measured at both ends of the transmission line through active power, reactive power and
voltage amplitude, which is sufficient to determine the conductance of positive sequence line. Phase
angle information is not required. Specifically, our task is to train a proper function to map an output
according to the input of SCADA measurement data.

Figure 1: Using lumped parameter π-type equivalent circuit

2.2 Graph Modeling Method on Grid Data
The expansion research of the machine learning method mentioned above in branch PI is difficult

to support the simultaneous identification of multiple branches. One major obstacle is that they do not
know how to integrate global information and often ignore the fusion of branch data and topology
constraint information. In fact, the power grid data is divergent. That is, the measurement data of
different branches are stored in different acquisition units scattered in space. If the multi-branch is to
be identified, the local information must be integrated into the global information. However, suppose
the branch data is simply spliced in a column format, and the topology constraint information is
ignored. In that case, the identification parameter deviation will also be caused as mentioned in the
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introduction. Therefore, this paper proposes a method to abstract the power grid data into graph data
to describe the global branch electrical data in non-Euclidean space.

Specifically, the topology of grid branch actually takes the power station as the node and takes
TL as the connecting edge. However, the research object of this paper is the TLs, so we try to treat
the TL as a node in the graph structure, and the public power station of the line as an edge. As shown
in the Fig. 2, there are ldf , lfd, lfe, lef , lde lines between D, E, F three power stations, we regard these
lines as the node of the graph data ndf , nfd, nfe, nef , nde. The common power station between adjacent
lines will become the connection line, which constitutes the graph data on the right side of Fig. 2. For
graph data structure, the input of neural network is changed from x to X = (X1, X2, · · · , Xn)

T , and the
label is changed into g = (g1, g2, · · · , gn)

T . In the branch identification of a single model, a single Xk

corresponds to a single gk (where k = (1, 2, · · · , n) denotes the kth branch), and in our graph neural
network, we need to use the input X of all branches to realize the identification of gk, respectively.
After such processing, the grid data on each time acquisition section is presented as graph data.

Figure 2: The topological structure of power grid branch is converted into the graph structure

2.3 STP-GTN
Our proposed model can be divided into two modules, the encoding module STP-Block and the

decoding module Multi-fitting-Block. Firstly, to deal with the mixing of transient data during the
data collection process, the STP module uses average pooling for each feature of each grid node in
a time window with a span of k to obtain the graph data of each time slice. Then, the module uses
the node attention mechanism in GAT to calculate the attention coefficients of the node itself and
its adjacent points according to the connection information of the power grid to mine the hidden
structural information and integrate it into the features of the node to increase the dimension. Finally,
put the dimension-raising information into Multi-fitting-Block. This module uses a hard-parameter-
sharing strategy to build a multi-layer fully connected layer to predict the final parameters. Subsequent
experiments show that the method is also accurate and robust in bad data.

Firstly, we should to explain the design considerations and theoretical basis of the STP module,
and the first is the time-pool operation design consideration. In fact, traditional PI numerical method
often considers the input SCADA cross-section data too ideally. Therefore, we must analyze the
possible disturbances and abnormal situations in the SCADA measurement process to design the
model structure. According to the reference [23], measurement disturbances and bad data usually have
the following types:

• Transient data and steady-state data are mixed. As mentioned earlier, during the acquisition
process, the terminal cannot judge whether the system is in a steady-state process, resulting in
the measured value being either a steady-state value or a transient value.
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• Power failure measured data loss. During the operation of the distribution network, there will
be power failure of the transmission branch due to various reasons, such as lightning trips,
maintenance, repair of the power-off line, and so on, which means terminal data cannot be
collected at this time.

• Noise pollution. Acquisition devices are usually electronic sensing devices. Inevitably, the
equipment will produce electromagnetic noise due to the environment.

According to reference [23], transient data mixing is the main reason for bad data. Therefore,
our method mainly considers this factor to adjust the model composition. Generally, for rapidly
changing data such as transient data, researchers use data smoothing to reduce the impact on model
performance. Data smoothing can be divided into linear smoothing and nonlinear smoothing. Non-
linear smoothing requires finding a nonlinear function to estimate the branch data. Using nonlinear
function to calculate each transient data point will undoubtedly bring substantial computational
consumption. Therefore, we use mean linear smoothing to mitigate the impact of transient data.
Subsequent experiments also found that the accuracy of the model proposed in this paper will not
be greatly affected when the transient simulation data is mixed. In case of zero value of data loss, the
influence can also be reduced through mean smoothing. As for noise interference, the neural network
model can converge adaptively in adjusting regular parameters. This subsection first introduces the
mathematical principle of GAT, which is the core of STP module, and analyzes why GAT should be
selected. Secondly, we put forward the reasons for the emergence of transient data and the average
pooling we use. Thirdly, we introduce the design and principle of multi-task decoding module.

Then, we need to describe the design considerations and theoretical basis for the operation
of GAT to extract topologically constrained information in space. Our use of GAT to extract
topology constraints has two advantages: (1) Considering information that is invariant under line
data interference TLs’ connection constraints. (2) While extracting constraint information, the branch
information is well integrated to lay the foundation for multi-branch identification.

GAT is a graph neural network proposed by Velivckovic [24]. Its core module uses Mask attention
mechanism [25] to calculate node characteristics after fusion of spatial information. Suppose there is
a graph G ∈ (V , E, D), V is a set of N nodes, E is a set of edges, D is the degree matrix of nodes.

h =
{→

h1,
→
h2, . . . ,

→
hN

}
,

→
hi ∈ RF , h is a set of node feature, F is number of each feature. For node i,

calculate correlation coefficient neighbors j ∈ Ni and itselfs one by one:

eij = a
([

Whi||Whj

])
, j ∈ Ni, (6)

where W is learnable weight matrix, hi and hj characteristics of vertices, [.||.] is concatenate. This
attention mechanism allows each node to pay more attention to other neighboring nodes. In order
to make weight coefficients easy to compare between different nodes, finally softmax function need
be added to normalize all the choices of target node j:

αij = exp
(
LeakyReLU

(
eij

))∑
k∈Ni

exp (LeakyReLU (eik))
, (7)

hi
′ = σ

⎛
⎝∑

j∈Ni

αijWhi

⎞
⎠ . (8)

In Eq. (7) LeakyReLU and σ is activation functions, in Eq. (8) hi
′ is node feature calculated by

Mask attention mechanism.
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Through our Graph modeling method and GAT, each vertex of the graph structure will fuse the
adjacent contact constraint information differently. In the TLs, the difference of the line each is usually
very huge. Even if two wires with similar specifications are connected at the beginning and end of the
same power station, their sag and environment must be different. This means that the model needs to
consider the structural information on both sides of the same node asymmetrically. However, another
popular graph neural network method GCN [26] is hard to consider node differences. Its hidden layer
calculation formula is as follows:

H (l+1) = f
(
Hl, A

) = δ
(

D̃− 1
2 ÃD̃− 1

2 H (l)W (l)
)

, (9)

where H is the lth middle layer information, δ is the activation function, Ã is A + I , that is, the addition
of adjacency matrix A and identity matrix I , and D is the degree matrix The operation D̃− 1

2 · D̃
1
2 is to

perform spectral decomposition of the matrix Ã. This operation refers to the graph signal theory and
maps the structural constraints in frequency domain. However, this mapping only depends on the
value of the degree matrix and cannot allocate different learning weights to different adjacent points.
Therefore, we choose GAT as the graph neural method to extract structural constraints.

In summary, the workflow of our coding module STP module is shown in the Fig. 3. We construct
a 3D tensor by splicing the graph data of each time acquisition section after graph modeling processing.
The tensor length is the feature dimension, the width is the number of nodes, and the height is the time
dimension. Each 2D section is a grid diagram data. We perform mean operation in the historical
time window of k for each feature and input the GAT network to mine branch topology constraint
information. The specific calculation process is as follows:

Figure 3: STP block introduce

Given a grid data at a certain time G ∈ (V , E, D), Define node vi ∈ V , i ∈ [1, N], its neighbor
nodes and edge set are NB(vi) = {vj|eij ∈ E}, D is degree matrix. We assume that the present point in
time is directly affected by the past. Then, the grid topology data of past k time slices can be formed
into N matrices X (t) ∈ RNB(vi)k∗F, i ∈ [1, N], F is number of node features’ dimension, k is time receptive
field, NB(vi) is number of adjacent point sets. This way, input can be spliced and organized into a 3-D
matrix.

X (t) = Concat
(
X1

(t−k+1), X2
(t−k+2), . . . XN

(t−k+1)
)

, (10)

where Concat is stitching operation, in that way matrix X (t) ∈ RNB(vi)k∗F, i ∈ [1, N] can be rearranged
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into a 3-D space-time tensor, and the time-series context information X (tc) can be obtained through
pooling.

X (tc) = 1
k

∑
0≤j≤k

X (t)
j . (11)

Then we use GAT layer operation to fuse spatial information.

X (st) = GATConv(X (tc), D), (12)

where D is degree matrix, information about temporal context and spatial topology has been
incorporated by X (st). To select the super parameter k, we traverse the selected value by control variable
method. In increasing transient data mixing proportion, we found that taking 4 as k is the lowest mean
value of the regression error. In fact, the value of k cannot be fully believed by experiments. This paper
only takes it as a part of the application of the method and sets the transient mixing conditions in
advance according to the literature. Suppose later research wants to refer to our work. In that case,
this paper believes that the actual selection should be based on whether the terminal has corresponding
optimization for the transient data. If the acquisition system has the corresponding optimization, the
value of k can take 1, which means abandon the consideration of transient data. Considering only
structural constraints and deep optimization can also achieve better parameters.

Secondly, we elaborate on the design considerations and theoretical basis of the Multi-Fitting
module. In fact, multi-branch PI is a multi-task objective. There are generally two solutions for
multi-task goals. One is to use multiple isolated models to deal with multiple tasks redundantly,
and the other is to use parameter-sharing thinking to combine multiple models so that the models
can be widely used in various tasks. Branches’ data are strongly correlated with each other, and
changes in electrical variables of a transmission branch often affect the measurement data of the
entire distribution network. Multi-task learning [27] just utilizes the association and conflict between
multiple tasks to realize multi-parameter identification.

As shown in the Fig. 4, the main network of multi task fitting block proposed in this paper is
multi-layer FCN. Firstly, we use the hard parameter sharing strategy to flatten the tensor x processed
above and input it into the shared layer for learning. Then, model separate the layers and tags of
different tasks to complete the loss calculation. In the calculation, we consider that the multi task
learning should not dominated or biased by a branch regression task. Therefore, this paper proposed
a balanced regular loss function to balance the importance of the task. Finally, model fit the target to
complete multi-parameters identification by continuous iteration. Specifically, the module will get the
information of temporal and spatial constraint fusion after encoding STP block. Then, model perform
MSE loss function calculation on the separated full connection layer and label:

MSE = 1
n

n∑
1

(
ŷi − yi

)2
, (13)

where ŷi is predicted value of single branch parameter. yi is the true value. In the specific operation,
we found that the parameter targets and measurement distributions of different branches are very
different resulting in a huge difference in the return gradient of the loss function calculation. In this
way, some branches with large gradient [28] will converge in advance, while the remaining target with
small proportion will not converge, which causing identification errors. Therefore, we hope that our
module can balance the loss between tasks when the gradient loss is returned and updated.
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Figure 4: Multi-fit block introduce

In fact, we only need a loss function with adaptive weighted multi branch loss which set to multiply
the corresponding balance weight to pull the losses of all tasks to the same level during loss calculation.
We design the loss balance function as follows:

L (T , σ1, σ2, . . . , στ , w) =
∑
τ∈T

(
1

2σ1
2
L1 (w) + 1

2σ2
2
L2 (w) · · · + log σ1σ2 · · ·

)
. (14)

Among that, L(·) represents the loss of the total task, L∗(.) represents the loss of the subtask, σ∗
is the weight coefficient of a subtask goal, and w represents the network learning parameters of the
subtask. We visualized the balance of the decoding module for the branch tasks. As shown in the Fig. 5,
the branch tasks still have relatively significant branch losses when the model is iterated to about 1100
generations. After the calculation of the multi task balance loss function designed by us, the return
loss is obviously more concentrated, and the bias between tasks is effectively alleviated.

Figure 5: Loss comparison of different branches after self-balancing

As can be seen from the Fig. 5, the losses of different branches are multiplied by a set of weight
parameters |σ | = (0.43, 1.21, 1.26, 0.84, 0.59, 1.01), under the same scale, the RMSE losses of different
branches are closer when multiplied by the weight factor. From the Eq. (1) in Chapter 2, it can be seen
that similar task losses can alleviate the task gradient conflict, so that the parameter update of the
model tends to be optimized.

According to the above introduction of the algorithm for transmission lines PI proposed in this
paper, the overall process of the identification method proposed in this paper can be divided into
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three parts: 1) Data import and simulation condition setting; 2) STP-GTN model training; 3) Use
trained model to identificate parameters and evaluate performance. The specific calculation steps are
as follows, and the flowchart is shown in Fig. 6.

(1) The first part is data importing and simulation condition setting. We first initialize the
parameters and simulation conditions used for training and testing. After importing the data
measured by the SCADA system, we divide the data set according to the set test set ratio and
add simulation conditions. Then, this paper uses the PyTorch-geometric [29] related interface
to convert the grid data into graph data according to the graph modeling method mentioned
above.

(2) Followed by the model training part. According to the setting of parameter k, we pool the
graph and input it into STP-GTN for training, and set the evaluation threshold. Generally, we
will stop after 200 rounds of training. To know iteration process has converged in advance, we
add an early stop mechanism. If the evaluation indicators have not changed for a long time,
we will stop training and temporarily save the model parameters.

(3) The last part is the testing and evaluation part. Like training, we input test graph data processed
by pooling operation into the trained model for PI and calculation of evaluation indicators.

Figure 6: Flow chart of STP-GTN algorithm
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3 Experimental Details and Result Discussion
3.1 Introduction of Branches Identification Data Set

The data set in this work are collected by the real SCADA system, which is provided by the China
Electric Power Research Institute. The TLs network used is composed of 17 TL station nodes. The
recorded data is arranged in chronological order by RTU. Each section data contains 7 features, and
the features of all sections are processed by graph modeling method above. The data set consists of
8640 groups of data, and the recorder records the data every 1 s. Among them, 6700 groups of data
are selected as the training set, and 1900 groups of data are selected as the test and verification.

The Table 1 and Fig. 7 show the general situation of data sources, which represents that the
transmission nodes are far away, and the differences between branches are large. The characteristics
of transmission lines are also quite different. In fact, this is the general situation in the existing power
distribution network. Therefore, even if the machine learning and depth PI methods mentioned above
do not consider how to splice the data of multiple branches, and force one model to complete the
identification of multiple branches, the parameter distortion between tasks will also happen because
of branches’ discrepancy.

Table 1: Examples data difference and average distance in data source (TL1 TL2)

Distance (Km) Pm (MW) Pn (Mvar)

90.8 [−21.497, 696.906] [−74.37,−163.905]
[−239.067,−27.791] [22.306,−32.33]

Figure 7: Examples that illustrate the characteristic heterogeneity of different branches

3.2 Experimental Details and Benchmark Model
At the beginning of our research, we investigated the possible interference of PI data as mentioned

above. Our design is based on the investigation of bad data. Considering the preciseness of the
application method, the experimental design in this paper needs two parts: a) Considering the
interference during training, and comparing the methods based on the same interference noise during
testing. b) The simulation conditions of model training and test are different without considering the
occurrence of interference during training. After such adjustment, if models in this paper still show
strong robustness under these parts, we can talk about the specific application. The next section is
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arranged as follows: firstly, we visually describe the simulation interference conditions, then describe
the process and benchmark of the experiment, and finally complete the details of the experiment.

We set three kinds of interference noise according to the investigation mentioned above. The first
type is Gaussian noise in the acquisition process (we design Gaussian noise concerning Brown’s work
[30]) as shown in Fig. 8a below. The second noise is power-off data loss (which refers to Kunjin Chen’s
working noise [21]) as shown in Fig. 8b above. The third noise is a kind of transient data mixing shown
in Fig. 8c.

Figure 8: Simulation of real environment

In order to deal with these three kinds of interference, before the final model is proposed in
this paper, machine learning method and deep learning model are used successively in the whole
experimental process. This is a gradual process: As far as the label-making theory in this paper is
concerned, the parameter identification task essentially transformed by us into a regression task.
Therefore, we first use six machine learning methods, such as linear regression, polynomial regression,
ridge regression, SVR, XGBoost [31], LightGBM [32]. The above machine learning methods are used
in the sklearn machine learning algorithm package. We use the cross validation method to obtain the
hyperparameters of the model: the highest term of the calculation formula is considered to be 2 in the
polynomial regression. SVR uses multi-core function after parameter adjustment, plus penalty factor
c = 10, gama = 0.1. XGBoost is the fastest and best open-source boosting tree tool at present and
also the benchmark with the best comprehensive performance in Kaggle regression competitions. The
maximum iteration depth of XGBoost is 300, the learning rate is 0.01, the number of boost rounds
is 300, and the degree of verbosity is false. LightGBM is the best gradient lifting algorithm among
the time complexity optimization algorithms for XGBoost. We set the learning rate of LightGBM
algorithm to 0.01 and the maximum iteration number to 200. Default parameters are best used in
comparisons.

In addition, we also refer to some work on the intersection of DL and branch PI [33], and
select three deep learning methods as benchmarks: full connection layer neural network (FCN)
[20], convolution neural network (CNN) [34] and long-term and short-term memory neural network
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(LSTM) [35]. FCN makes full connection layer regression prediction of x by flattening the input matrix
X ∈n×7 into one-dimensional matrix of [1, n × 7]; In the CNN model, a one-dimensional convolution
window with a size of 1×7 is used to perform convolution operation on the input characteristic matrix
by downward sliding step, so as to ensure that the characteristic matrix of the hidden layer contains the
input characteristics of other branches. Finally, the Linear layer is used for prediction; In LSTM, the
connection of historical data time series of branch is considered, and two-layer LSTM is used to obtain
the implicit characteristics of branch nodes, and finally the Linear layer is used for prediction. The
biggest difference in implementation between our method and these selected deep learning methods
is the use of graph neural network layers to extract and fuse branch topology information before
flattening the input matrix.

Finally, other details about our experiment are described as follows: in this work, Adam [36]
is selected as the neural network optimization algorithm. Unlike the traditional random gradient
descent, Adam does not maintain a single learning rate in updating weights but uses the first-order
moment estimation and second-order moment estimation of the gradient to design independent
adaptive learning rates for different parameters. The Adam algorithm requires a small amount of
memory. After offset correction, the learning rate of each iteration has a specific range, which makes
the parameters relatively stable. For the measurement indicators, we use relative error to measure
the advantages and disadvantages of the comparison model according to the particularity of the
transmission network task. The reason is that we found that the order of magnitude of inductance
G is 10−7. If MSE or MAE is used, it is difficult to directly see the advantages and disadvantages of
the resulting feedback. The formula is as follows:

R_error = abs
(
yi − ŷi

)
yi

∗ 100%. (15)

Among that, yi is true value of branch parameters, ŷi is predicted value, abs(·) means Take absolute
value.

3.3 Analysis and Discussion of Experimental Results
3.3.1 a) Pre Define Interference Limit during Test

The innovation and application of methods must consider the existing natural environment and
can not just pursue the stacking of new methods and be divorced from reality. The method in this paper
is proposed considering the insufficient data of general measurement process. In order to be rigorous,
our experiment is divided into two steps: 1) pre-define the same training and testing conditions based
on the bad data of survey measurement and compare the accuracy of the model; 2) do not pre-set the
test simulation conditions, and the training and testing are based on different conditions to test the
robustness of the model.

Here we need to mention our experimental process and ideas to inspire the follow-up work. Firstly,
our initial idea is to develop a unified model to deal with multi-branch identification by using multi-
task parameter sharing and modeling grid data into graph data. Secondly, considering the complexity
of measurement noise, we want to improve the model fitting ability by stacking depth FCN. It is found
that the method performance will decrease by 100% in case of data loss. Later, we used LSTM and
hoped that LSTM could remember information for a long time and reduce the dependence on adjacent
time sections. It was found that the effect was still not very ideal. A continuous loss of data results in
a high return gradient. Finally, we plan to use CNN to deal with this situation because CNN will not
consider the loss of specific timing when using convolution and globally shared parameters. Although
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the effect is relatively good, almost all deep learning and machine learning methods fail in the case
of complex noise. Finally, we think that the most suitable modeling method for branch identification
task is graph neural network, and we find that the method still performs well in the case of complex
noise. Our experimental results are as follows.

Table 2 shows that abbreviation LR (Linear Regression), PR (Polynomial Regression), RR (Ridge
Regression). It can be seen from table above that the performance of traditional regression method is
very good when there is no noise and only a small amount of Gaussian noise is added. The reason is
also very simple: when the grid data is non-pollution, the traditional regression model will achieve high
prediction accuracy. However, in the case of missing data and outliers, the traditional methods that
rely on data purity fail, because the conditions of polynomial regression and ridge regression are very
harsh, and the missing characteristics have a great impact on the results. Benefiting from XGBoost’s
good fitting ability for residual terms, the overall performance is better than most of the machine
learning algorithms we use when the noise is simple or no noise. However, in the case of complex noise,
XGBoost and LightGBM have unstable identification parameters. This kind of gradient-boosting tree
will have a sharp decline in performance when high-dimensional sparsity occurs, meaning features are
missing. The disadvantages and advantages of each method can be clearly seen under a single noise.
The parameter accuracy of LSTM and FCN, which depend on time sequence continuity, is reduced
by 3 times in case of branch data loss or transient outlier data. CNN and our method converge well
under a single condition.

Table 2: Relative error (%) of conductance (G) with different method based on same train and test
condition

Model None Noise 50 dB (a) Feature loss 5% (b) Add outlier 5% (c) a + b a + c b + c a + b + c
LR 6.82E−03 6.73E−02 65.182 64.173 75.382 70.741 346.31 68.649
PR 6.73E−02 3.73E−02 44.580 48.757 45.268 55.926 269.26 50.303
RR 2.45E−03 2.58E−02 52.280 53.744 49.753 52.315 359.247 53.997
SVR 1.635 1.848 22.280 35.782 40.172 65.228 160.780 53.997
XGBoost 1.117 1.372 15.691 38.864 52.162 82.659 120.733 62.214
LightGBM 1.252 1.528 18.463 46.852 63.714 77.542 180.217 57.016
FCN 1.084 1.949 4.001 7.453 2.011 1.026 6.421 14.386
CNN 1.554 1.787 2.157 2.033 1.075 1.399 1.467 1.876
LSTM 1.613 1.753 6.701 7.844 1.398 1.888 8.854 10.828
Ours 1.393 1.434 1.791 1.682 1.027 1.658 1.114 1.277

Because noise usually does not appear singly, we add mixed complex noise. Under the condition
of complex noise, our method performs best at the index level. The reason is that our method can take
into account an invariant information structure constraint in the case of complex noise. Even in the
case of data loss and transient outliers, our model can still mine the hidden structural attention in the
branch. When the parameter interference of a single transmission line is serious, our method can mine
the information of other branches to fill the interference loss through GAT coding so that the complex
noise will not greatly impact the results. When the noise interference is large, the relative error of the
method can be guaranteed to be less than 10%. For the branch conductance, it is enough to deal with
the calculation.

We post the convergence curve at the training stage as a visual demonstration in Fig. 9, where the
left column represents the simple noise simulation environment, and the right column represents the
complex noise. For comparison, we separately show the curve at the end of convergence at the bottom



2650 CMES, 2023, vol.136, no.3

of two chart columns. Our method converged to an acceptable range at the end of the training process.
However, other DL methods fluctuate violently, resulting in higher final calculated index than our
model. So we think that these DL methods have weak anti-interference ability.

Figure 9: The relative error convergence curve of the deep learning algorithms, where column A
represents the simple noise simulation environment, and column B represents the complex noise. Curve
details means the convergence stage of training results, that is, the comparison after 100 generations

In fact, when we design the experiment, we consider bad data conditions in advance so that one
of the advantages of our method can be shown in the compensation experiment. In the experiments
without limited test interference conditions, our approach takes advantage of good robustness by
considering invariance of spatial constraints.

3.3.2 b) Without Limited Test Interference Conditions

The model in this paper involves an operation of mean smoothing, which is an intermediate
module designed based on the survey of bad data. In order to study rigorously, we must remove the
conditional restrictions on bad parameters before training. Assuming that the actual test situation is
not known during the training, the known condition training is used to optimize the weight of the
super parameters and methods. Save the unknown test conditions of the model verification of the
above links. Among them, the characters represent the meanings a (50 dB), A (100 dB), b (5% missing
feature), B (10%), c (5% outliers appear), C (10%).

Several conclusions can be drawn from the above Table 3. (1) Such training and predictive
simulation settings are devastating for machine learning and traditional regression method. (2) Only
the deep learning method has immunity under different train and test conditions. In the comparison
of DL methods, the error of our method is about 2 times less than that of other methods. In fact, our
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method has strong robustness because we use graph modeling method and graph neural network to
extract the only invariant spatial constraint information in complex interference.

Table 3: Relative error (%) of conductance (G) with different method based on different train and test
condition

Model a|A a|a + b a + b|a + c a + c|a + b + c a + b + c|A + B + C

LR 42.2 1045.1 3e7 967.6 70.6
PR 35.9 1e5 3e9 571.3 55.2
RR 36.8 1291.4 9e5 571.3 51.9
SVR 32.6 160.2 5916.4 644.2 46.7
XGBoost 22.1 125.7 2355.3 525.6 36.5
LightGBM 17.3 143.3 3723.6 422.1 56.1
FCN 7.9 146.5 162.4 33.1 22.9
CNN 4.7 141.9 74.7 66.5 24.7
LSTM 9.4 162.1 91.5 56.2 15.9
Ours 3.7 16.2 11.7 8.5 5.8

4 Summary and Outlook

For the problems of transient mixing and data contamination in data acquisition, the traditional
numerical parameter identification method that relies too much on steady-state input and data purity
may have the problem of identification distortion. This paper proposes a multi-branch parameter
identification model considering topological constraints and transient data. Assuming that the grid
data is essentially non-Euclidean data, the model uses graph modeling methods and graph neural
networks to extract topology constraint information, which provides additional help for model
robustness. Considering transient data in the collection process, this paper proposes a mean smoothing
operation to reduce the influence of transient mixing on the identification results. Finally, this paper
uses the parameter-sharing strategy and the self-balancing loss function to identify multiple branches
with one model.

In experiments based on simulated data of natural SCADA systems, since this paper considers
the topology constraint information that is invariant under the changing noise, the model can also
have less relative error under the condition of complex noise. Specifically, we compared the model
with fully connected neural network model (FCN) that without adding graph neural network layer,
convolutional neural network (CNN), and long short memory network (LSTM) which depend on
temporal integrity under different noise disturbances in training and testing. Still, our model shows
better immunity.

However, our method needs to rely on the determined topological connection matrix. That means
our model needs to reset the conditions and train when the grid adds new nodes, so we can only use the
fixed branch structure. In the future, it is hoped that the dynamic graph neural network method can
be used based on the graph modeling method in this paper to complete the parameter identification
in the dynamic large-scale power grid.
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