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ABSTRACT

This paper introduces an aircra� wing simulation data set (AWSD) created by an automatic work�ow based

on creating models, meshing, simulating the wing �ight �ow �eld solution, and parameterizing solution results.

AWSD is a �exible, independent wing collection of simulations with speci�c engineering requirements. The data

set is applicable to handle computer geometry processing tasks. In contrast to the existing 3D model data set,

there are some advantages the scale of this data set is not limited by the collection source, the data �les have

high quality, no defects, redundancy, and other problems, and the models and simulation are all designed for the

speci�c actual engineering demand. Moreover, AWSD has the characteristics of rich information and a similar

model structure, which contributes to the construction of the surrogate model. On the other hand, this data set

is suitable for advancing research of data mining in computational geometry graphics. To solve the problem that

the CFD �ows �eld results are not intuitive, this paper used the resampling method of surface data to sample the

result to the model surface, then segmented the re-sampled 3D mesh surface, and compared with the di�erences

among K-means algorithm, Mini-Batch K-means algorithm, and Spectral Clustering algorithm. AWSD provides

300 sets of models, meshes, CFD simulation results, and parametric results based on ARAP (As-Rigid-As-Possible)

and Harmonic mapping for advancing the construction of engineering surrogate models, 3D mesh segmentation,

surface resampling, and related geometric processing tasks.
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1 Introduction

The combination of data sets, neural network methods, and machine learning is changing some

fields of computer science, while the data sets are the foundation of development. In industry, the

establishment of surrogate model simulation calculations based on machine learning can solve the

problem of a large number of physical simulation calculations. The traditional surrogate model can

help design a simple regression model by manually adjusting the training shape. Modern surrogate

models combine data sets with deep learning methods to learn directly from the shape of the model.

Therefore, high-quality data sets have a great impact on the application of deep learning in engineering.
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At the same time, 3D mesh segmentation based on machine learning has emerged in recent

years. As far as the current state of research is concerned, there is no clear standard for the system

evaluation criteria of segmentation methods and problems that the sensitivity of existing algorithms

to models is different, so 3D mesh segmentation needs to be explored from multiple angles and fields.

Therefore, high-quality data sets can provide rich information from multiple perspectives to promote

the comprehensive consideration of 3Dmesh segmentation, which is important significance to advance

the application of machine learning in 3D mesh segmentation.

At present, the data collection of the 3D model data set comes from the following three sources:

Comprehensive generation of shape data. Users need to manually input programs or engineers to

explore and input accurate geometric parameters to create models. Although the users can accurately

control the shape model’s generation, this designed behavior limits the shape diversity and lacks

authenticity.

Collecting shape data. The collection of this kind of shape data comes from all kinds of publicly

available interfaces hosted. A new large-scale model data set was formed by filtering the collected

models, including segmentation, classification, cleaning, shape exploration, and other operations.

However, for example, ShapeNet, ABC, etc. This kind of model data sets need more practical

engineering simulation, so it is impossible to develop the surrogate model.

Design competition data. The collection of this kind of shape data comes from the engineering

design competition. The contestants create the model according to the specific engineering require-

ments, so this kind of data maintains the authenticity of the model and has engineering simulation.

However, the data file submitted by the participantsmay have defects, redundancy, and other problems.

It is necessary to clean up the competition works. In addition, the scale of the data set is limited by the

number of works.

Considering the characteristics of three kinds of data collection, this paper proposes to create

a simulated aircraft wing data set (see Fig. 1). This is a new, independent collection of simulations

with specific engineering requirements. A simulation with specific engineering requirements means

that AWSD provides a collection of data for the creation of models, meshing, numerical simulation

solutions, and their parameterization based on an automated workflow to address simulations at

the experimental assumptions of aircraft airfoils under specific incoming physical conditions (e.g.,

pressure, temperature, specific heat capacity), Mach number and specified incoming flow direction in

terms of attack angle and side-slip angle. The data set is equipped with CADmodels, triangular mesh

data, solution result files of simulated aircraft wing flow field, and parameterization result files of flow

field solution resampling.

The contributions are as follows:

1. Create data set: An automatic workflow used in batch to create CAD models, automatic sub-

division surface mesh, calculate CFD flows field, and model parameterization of resampling

of flow field results.

2. Data resampling: To solve the problem that the CFD flows field solution result is not intuitive,

and sample the flow field solution result to the model surface.

3. 3D mesh segmentation: Resampling results were used for 3D mesh segmentation based on

iterative clustering and spectral clustering and compared the difference between iterative

clustering and spectral clustering.
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Figure 1: Introducing AWSD: An aircraft wing data set (AWSD) created by an automatic workflow

Section 2 describes the advantages and existing problems of SimJEB, ShapeNet, and ABC, and

compares the differences with AWSD proposed in this paper. Section 3 describes the automated

workflow for creating this data set. Section 4 presents the applications of the data set in resampling

and 3D mesh segmentation. Section 5 summarizes the conclusions of this paper and puts forward

suggestions for future work.

2 Related Work

2.1 Compared with Existing Datasets

SimJEB is a complex, diverse, and open data set for mechanical support and related structural

simulation. This data set is used in promoting deep learning, engineering surrogatemodeling, and other

tasks and comes from the GE Jet Engine Bracket Challenge. After filtering, SimJEB finally collected

381 models. Each model is equipped with five data type files as a set of data: a) CADmodels, b) finite

element models, c) tetrahedral mesh data, d) triangular surface mesh data, and e) simulation results.

The surrogate model based on the model in SimJEB can simulate and solve the problems that cannot

be solved by the original model [1]. The data set we provide inherits this advantage. It can be used

as the input of simulation calculation to establish a surrogate model, to avoid using the knowledge of

fluid mechanics and solid mechanics for finite element simulation. Compared with SimJEB, the scale

of the data set we provide is not limited, so researchers can specify the scale of the data set. Eachmodel

in the data set we provide is equipped with three data type files as a set of data: a) CAD models, b)

triangular surface meshes data, c) simulation results, and d) parametric results. The establishment and

source of data sets are not bound by the comprehensive generation of shapes, collection of shapes, and

design competitions and data sets can be established according to the specific needs of engineering

projects.

ShapeNet is a large and informative 3D model repository. There are many kinds of models in

ShapeNet, and each model is provided with a large number of annotation sets. However, there is a

problem with expanding new data in ShapeNet that models need to artificially extend the annotated

model and collect newmodels from new data sources. The models contained in ShapeNet only include
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the 3Dmodels of objects from daily life, while excluding CADmechanical parts, molecular structures,

or other objects in specific fields [2]. Therefore, compared with ShapeNet, the data set we provide does

not require collecting new models from various new sources or artificially annotating the model while

solving the problem that ShapeNet cannot be applied in specific fields.

ABC-Data set is a collection of more than one million independent and high-quality 3D models,

which is applied to geometric deep learning. The source of models in the ABC-Data set comes from

the publicly available interfaces hosted by OnShape. However, the model is designed and created

artificially, so there is a problem that models may have imperfect boundaries, intersecting faces,

and edges, or duplicate vertices. To avoid low-quality defective models, model collectors need to

use geometric and topological criteria for filtering. Therefore, compared with ABC-Dataset, the

CAD models in the data set we provided are created in batches by using the open-source software

OpenCasCade to avoid incomplete models in model loading and translation [3].

Compared to the existing data sets mentioned above (see Table 1), AWSD provides a data collec-

tion method for collecting data to form data sets. Its efficiency and intelligence will be demonstrated

by listing the sources of the current three data sets collected and comparing them by size, collection

method, purpose, advantages, and disadvantages (see Table 2).

Table 1: Overview of existing datasets and AWSD capabilities

Datasets #Models Source Applications Manual

marking

Time

ABC 1,000,000+ Onshape Geometric deep learning
√

-so far

ShapeNet 3,000,000+ Download

online

Computer graphics,

computer vision, robotics

and other related disciplines

√
-so far

SimJEB 300 Competition

collection

Surrogate model
√

14

person-years

AWSD 300 Automatic

generation

Surrogate model,

3D mesh segmentation,

data mining

- 3–5 days

Table 2: Comparison of data set collection methods

Category Comprehensive

generation of

shape data

Collecting shape

data

Design

competition data

AWSD

Size Limited by

manual and

learning costs

Large collection

of platform-based

agents

Limited by the

number of

participants

User-defined

(Continued)
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Table 2 (continued)

Category Comprehensive

generation of

shape data

Collecting shape

data

Design

competition data

AWSD

How to collect Manual input by

the user or

exploration of

parameters by the

engineer to

generate the

model

Originated from

the collection of

various original

model data, the

model data is

filtered to form a

new large model

data set

Engineering

design

competition

Automated workflows

Applications Machine learning,

artificial

networks,

computer vision

Artificial

networks,

computer vision

Machine learning,

developing

surrogate model

For training machine

learning models to solve

time-consuming and

costly engineering

simulation calculations

Variety of data - -
√ √

Advantages Model accuracy

can be guaranteed

Large scale and

variety of data

Realistic

engineering

simulations to

help build

surrogate models

Addressing to reduce

the cost of numerical

simulation time and the

high cost of wind tunnel

experiments

Disadvantages High-time costs

for collection,

poor diversity of

data, lack of

realism in models

Lack of

engineering

simulations

Data quality is

not high,

screening required

Modeling skills are

required to solve

different engineering

problems to complete

solutions

2.2 Processing of Geometric Data

Data mining is a hot issue in artificial intelligence and database research. It is a decision-support

process based on artificial intelligence, machine learning, pattern recognition, statistics, database,

visualization, and other fields. Its advantages are to achieve highly automated data analysis and

make reasonable inductive reasoning, tap potential patterns and help decision makers make correct

decisions. The research on geometric modeling, data processing, and data mining theory based on

algebra, geometry, and other core mathematical fields is one of the research hotspots of computer

geometry graphics. The application of this technology can improve the research level in the basic theory

of free curve and surface modeling, graphic image processing, and finite element analysis, and provide

basic theoretical support for the secondary development and application of CAD, CAM, CAE, and

other fields.

This section summarizes the research status of relevant data processing and data mining theories

involved in this paper.
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Data preparation. A three-dimensional point cloud provides efficient external representation for

complex objects and their surrounding environment [4], so it is widely used in many fields. Point

cloud processing includes surface reconstruction [5–7], rendering [8–11], feature extraction [12–15]

and visualization [16,17].

Point cloud resampling is an important tool to point cloud segmentation. There is a problem

in that it takes a lot of time to calculate the traditional contour detection to obtain the normal and

classification model of the surface [18,19]. In the team [20], an effective random resampling strategy

is proposed to reduce the computational complexity, which is intended to represent the resampling

problem as a graphical signal sampling to resample the 3D point cloud. To replace the traditional

uniform resampling, the team [21] proposed contour enhancement resampling based on the point

cloud resampling research of hypergraph spectrum analysis to solve the problem of selecting the point

set in the point cloud and extracting different surface features.

Data mining in clustering. Data Mining algorithms include classification, clustering, association

rules, and linear regression. Clustering is the core of applications in many data areas and has a wide

range of applications in various fields. This paper will focus only on the K-means clustering algorithm

for computational geometry.

Although the K-means clustering algorithm is considered to be one of the most powerful and

popular data mining algorithms in the research field [22], this algorithm will lead to accidental

convergence due to the random initialization of the centroid, which has certain limitations. Therefore,

the K-means clustering algorithm has various variants. The team [23] introduced an extended fuzzy

K-means algorithm, which is used to classify data, and the clustering center vector is expressed as an

extended form to preserve more clustering information as much as possible. The team [24] proposed

a K-means clustering algorithm based on adaptive learning to solve the problem that the traditional

K-means clustering algorithm is vulnerable to noise and outliers.

Results and evaluation. In machine learning, a clustering algorithm is a relatively important

part of an unsupervised learning algorithm, which is commonly used in low-resource and unlabeled

cases. K-means is one of the most important algorithms in clustering algorithms, and there is a fatal

disadvantage in the selection of the K value. If the selection is good, the clustering effect can be better.

Therefore, the corresponding optimal clustering results are given by using the evaluation index of the

clustering effect. The silhouette coefficient is an index to evaluate the clustering effect. The best value

is 1, the worst difference is−1, and the values close to 0 represent overlapping clusters. Negative values

usually represent samples assigned to the wrong cluster. At present, researchers often use this method

to evaluate unsupervised learning results. For example, the team [25] used a silhouette coefficient to

evaluate a method of power grid region classification based on SOM clustering, and the results show

that it has good accuracy. The team [26] used the silhouette coefficient to identify good clustering

results for household smart meter data.

3 Automated Workflow

The following section describes the automated workflow for model creation, mesh generation,

wing flight flow field solution simulation, and parameterization of solution results. The complete

workflow is depicted in Fig. 2. In the complete workflow, professionals need to set the parameter

setting and constraint conditions of the project according to specific engineering needs. The use of

the automated workflow proposed in this paper requires a professional to understand OpenCasCade

to complete the model creation and to specify the mesh density in the meshing step to facilitate

the solution. What’s more, professionals need to have a background in CFD solving for aircraft
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wing shapes, to be familiar with solving experimental assumptions, and to complete the loading of

experimental conditions to complete the simulation.

Figure 2: The automated workflow is used to create models, mesh, finish flow field solution, and

parameterization

3.1 CAD File Acquisition

There are 300 CADmodels of aircraft wings, which come from the batch generation of programs.

We took OpenCasCade as the development engine, used a 3D B-spline curve to approximate the

geometric parameters of the wing end face, and completed the creation of the wing 3Dmodel through

lofting operation (See Fig. 3). At present, the 3D B-spline curve approximation is used to roughly

fit the five points defined to express the aircraft wings profile structure and facilitate the integration

of control parameters. To accommodate the fitting of fine geometries, the construction of the 3D

model can be adapted to the needs of the actual geometry processing task by adding fitting points

or constructing a custom fitting function. Since the 3D model of the aircraft wing is a topological

structure, the derived format is STL, which is convenient for subsequent CFD simulation calculation.

Moreover, we also provide the derived STL format of the half membrane structure of the aircraft wing.

In the subsequent CFD flows field calculation, we will use the half membrane structure as the input

to shorten the solution time and cost.

Figure 3: The generation process of CAD original model of an aircraft wing. Eight points determine

the shape of the end face of the wing, 3D B-spline fitting forms a closed figure, and end face lofting

forms a model
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The principle of batch generation of CAD models of an aircraft wing is to generate different

models by changing the geometric parameters and distance of both end faces of the aircraft wing. The

position of four points at both end face of the aircraft wing determines the shape of the 3D B-spline

curve approaching the closed figure. The change of the end face distance is to change the Y value of

four points in the smaller of the two end faces of an aircraft wing. To ensure the rationality of the

aircraft wing model generated in batch, we design to change the geometric parameters of the model

step in step. When the number of models generated in the batch is required to be less than 50, we

change the value of distance and geometric parameters of two end faces, which changed each time are

0.5% of the current parameter. When the number of batch-generated models is required to be greater

than 50 and less than 200, each variation in the geometric parameters is 0.1% of the current parameter

value. When the number of batch-generated models is required to be greater than 200 and less than

500, each variation in the geometric parameters is 0.05% of the current parameter value.

3.2 Surface Meshing

BeforeCFD flows field analysis, it is necessary tomesh eachCADmodel. Although in Section 3.1,

the CADmodel generated in the batch is in STL format and the model file is a surface mesh structure,

which will affect the subsequent calculation because of the low-quality grid. Therefore, we redivided

the surface mesh of the CAD model. In the case of saving time and cost, we should improve the

calculation solution as much as possible and encrypt the surface mesh of the model. We save the CAD

model after surface mesh re-division in STL format. At the same time, we also provide the STL file of

the corresponding half model after meshing (see Fig. 4).

Figure 4: The meshing of the full model and half model of an aircraft wing. Fully automatic workflow

supports STL formats output of the full model and half model and supports researchers to re-divide

the model surface according to engineering requirements
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3.3 CFD Solution

We finish batch CFD flows field analysis with the program. The input file data required for CFD

flows field analysis are: a) CAD model data file, b) Cartesian grid [27] generation configuration file,

and c) CFD solution configuration file.

Cartesian grid generation: To set the parameters required for the Cartesian grid to be generated

according to the CAD model data file generated in Section 3.2.

Firstly, setting the symmetry plane. The symmetry plane of the CAD model is X − Z symmetry

plane, so the symmetry plane position of the Cartesian grid is X − Z plane with y = 0. Secondly,

setting the value of the background bounding box. Increasing this value will make the solution area

larger. Finally, setting the numerical value of the digital-analog bounding box. Increasing this valuewill

density the cells near the imported CAD model. Other configuration contents are shown in Table 3.

Table 3: Parameter values used in Cartesian grid generation

Mesh param Value Description

Dimension 3 Dimension of model

ModelName ∗.stl The file path to the model file

IsSym 2 The integer that stands for symmetry

SymmPos 0.00001 The position of the symmetry face

BackBox_BackLayer 5 The minimum split layer of non-intersect cells within

backbox

BackBox_ModelLayer 5 The minimum split layer of intersecting cells within

backbox

ModelBox_BackLayer 5 The minimum split layer of non-intersect cells within

the model box

ModelBox_ModelLayer 13 The minimum split layer of intersecting cells within the

model box

BackBox_Ratio 8 The ratio of the backbox size to the max size of the

model

ModelBox_Ratio 0.1 The enlarged ratio of the model box size to the

minimum size of the model box

BufferLayer 2 The layer num to buffer cells

PunctureIterNum 0 Const thermal conduct coefficient

DefineMaxLayer 14 Prandtl number

Flow field solution: The CFD flows field solution needs to specify the physical properties of the

incoming flow, such as pressure, temperature and specific heat capacity, etc., as well as the Mach

number and incoming direction, in which the angle of attack and side-slip angle is used to specify

the incoming direction. In addition, the CFD flows field solution also needs to control the solution

process. For example, too few iteration steps will affect the solution results. Other configuration

contents are shown in Table 4.
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Table 4:Parameter values used inCFD flow field calculation. For other configurations such as solution

acceleration methods, see https://github.com/suxiang09/AWSD-Dataset

Solution param Value Description

SIMULATION_KIND STEADY Simulation strategy

PHYSICAL_PROBLEM EULER Physical governing equations

MACH_NUMBER 0.95 Mach number

AOA 0 Angle of attack

AOS 0 Angle of slide

FREESTREAM_PRESSURE 101325 Pressure of freestream

FREESTREAM_TEMPERATURE 300 Temperature of freestream

INLET_PRESSURE 101001 Pressure of inlet

INLET_TEMPERATURE 271 Temperature of inlet

OUTLET_PRESSURE 101002 Pressure of outlet

OUTLET_TEMPERATURE 272 Temperature of outlet

GAMMA_VALUE 1.4 The ratio of specific heats

GAS_CONSTANT 287.87 Specific gas constant

LAMINAR_VISC_MODEL SUTHERLAND Laminar Viscosity model

SUTHERLAND_MU_REF 1.716E-05 Mu reference

SUTHERLAND_T_REF 273.15 T reference

SUTHERLAND_S_CONST 110.555 Sutherland const

MU_CONST 1.716E-05 Const mu

Finally, the Euler model is used for the solution. After a successful solution, we saved the results

in CGNS format. The solution process is shown in Fig. 5. The solution results include a pressure field,

temperature field, velocity field, and so on.

Figure 5: CFD flows field solution flow. To better show the internal solution effect of the flow field,

we set the rendering transparency to 0.4

https://github.com/suxiang09/AWSD-Dataset
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To assess the reasonableness of the generated models and their simulation solutions, it is unfortu-

nately and not possible to measure all the models provided by AWSD and their simulation results in

the form of an experimental comparison, as the generation in batches of CADmodeling for the airfoil

shape is artificially defined. However, the airfoils included in the AWSD are based on the ONERA

M6Wing as a variant. The following will demonstrate the validity of the airfoil model in the form of a

comparison of the CFD-solved simulation results and experimental values provided by the automated

workflow that generates the AWSD. In the following, the pressure of the z/l = 0.2 wings section for the

ONERAM6wing is selected, and the experimental values are comparedwith the calculated simulation

results (see Fig. 6).

Figure 6: Comparison of simulation and experimental results of wing section pressure for ONERA

M6 wing with z/l = 0.2

3.4 Surface Parameterization

Parameterization of a 3D model is the process of mapping a 3D model to a 2D plane. In this

section, we respectively used the ARAP (As-Rigid-As-Possible) algorithm [28] and harmonic mapping

[29] to parameterize the resampling results of the convection field (see Section 4.1).

Firstly, File parsing. The resampling results include not only the topological relationship and

geometric information of the model but also the attribute information. Secondly, the parameterized

object is a mesh model without attribute information, so we extracted the topological relationship and

geometric information of the model, and then parameterized the extracted results. Finally, we bound

the attribute information on the parameterized grid result to finish the parameterization of flow field

results (see Fig. 7).
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Figure 7: The parametric flow of resampling results. To re-sample the flow field data to the surface

of the half model, extract the geometric and attribute information, parameterize, and finally bind the

attribute information

3.5 Automatic Processing Pipeline

From the creation of the CAD model, the meshing of the model surface to the solution of CFD

flows field, the whole process is automated batch processing, so researchers can quickly obtain data

sets of different sizes according to research needs to solve the problem of insufficient data. At the same

time, data analysts only need to complete business understanding, and the rest of the modeling and

solving processes that need repeated iteration do not need to be carried out manually, which greatly

shortens the time and cost of data set creation. Batch-generated models will also greatly reduce the

model cost. In addition, batch generation of data with strong similarity is conducive to promoting

the application of machine learning and neural network methods in geometric data processing. As the

size of the data set can be tailored to the actual geometric processing task, the length of the data set

generation time is influenced by the number of iterative steps of the CFD numerical solution. The

more iterative steps to solve the problem, the longer it takes to generate the data set. As the size of

the data set currently used in engineering and equipped with the model, mesh, and solution results are

around 300, the AWSD is sized at 300 sets. The automatic workflow of data batch generation is shown

in Fig. 8.
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Figure 8: The automatic workflow of data batch generation. The data set provides CAD model files,

triangular mesh data, flow field solution result files, and its resampling parameterization result for

each model. In addition, the workflow also supports the output of half-model meshing results
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To quantify the time taken to generate the data set, the example of the generated data set provided

by AWSD. Ninety-nine percent of the time the data set generated by AWSD focuses on simulation

solutions. Because the number of iteration steps of the simulation solution affects the solution effect

and the generation time of the data set, we will provide the solution results of 100 to 500 equal

interval iteration steps (see Table 5), as well as the generated time of modeling, meshing, simulation

and parametric results of 300 sets of data in this paper (see Table 6).

Table 5: Demonstration of the results of the solution in this case

Iteration steps 100 200 300 400 500

Results

Table 6: 300 data set generation times for this case

#Models Creation Meshing Simulation Parameterization

300 5min 12 s 12min 23 s about 41 h 10min 31 s

4 Digital Geometry Processing

This section describes the analysis and applications of the data set obtained in Section 3. The steps

are as follows:

1) use resampling with data method to sample the solution results of the external flow field to the

surface of the wing model.

2) cluster the pressure field, temperature field, Mach number, and enthalpy in the resampling

results by using K-means, Mini-Batch K-means, and spectral clustering algorithm.

3) evaluate the clustering results.

4.1 Resampling

Since the bounding box stored the results of the flow field solution data obtained in Section 3, the

result of the mechanical structure surface of the model cannot be seen intuitively through rendering

and display (see Fig. 9). To solve this problem, the data in contact between the bounding box and the

model needs to be resampled to the model surface (see Fig. 10).

Resampling steps are as follows:

Import file: Need to provide the flow field solution result (. CGNS) as source data and the

mechanical structure file (. STL) of the model as re-sampled data.
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Analysis file: Read the flow field solution results and model files using the reader extended by

VTK.The data type of the flow field solution results ismultiblock data.We used the filter to change the

data type to PolyData used to represent the geometry including vertices, lines, polygons, and triangles

for subsequent operations.

Resampling: Use the filter to sample the point and cell data of the flow field solution resulting in

the data set to the point of the model file data set. The output has the same structure as the flow field

solution result, and its point data contain the re-sampled values from the flow field solution results.

Figure 9: The storage location of flow field solution results. (a) The resulting data is in the space where

the bounding box is located; (b) No results on the model surface

Figure 10: Resampling process of flow field solution results. (a) The data source provides resampling

data (b) Model to be sampled (c) Resampling results of flow field solution results

4.2 Iterative Clustering

In recent years, a variety of new 3D mesh segmentation has emerged. As an important research

direction of computer graphics, 3D mesh segmentation will promote the development of digital

modeling, mesh deformation, mesh compression and other fields to a certain extent [30]. At present,

these 3D mesh segmentations are mainly based on cluster analysis. Compared with the method based

on region growth and hierarchical clustering, the method based on iterative clustering can transform

the segmentation problem into a given segmentation number K, and search for the best segmentation
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region through iteration. In this section, we will segment the surface mesh of the resampling results in

Section 4.1 based on K-means iterative clustering.

The steps of iterative clustering segmentation are as follows:

Input: a) Sample set D =
{

x1,x2, · · · , xm
}

, which is derived from the surface mesh cell attribute of

the resampling result, where each sample is xi = (xi1, xi2, · · · , xin); b) Number of clusters K.

Output: Cluster partition C =
{

C1,C2, · · · ,Ck

}

, where Ci = [λi, xi], cluster marker λi ∈
{1, 2, · · · , k}, xi is the cluster marker vector containing K elements.

Step 1: Randomly select K objects from n sample objects as the initial cluster center iteration.

Step 2: K clusters are formed by assigning each sample to the nearest cluster center. Then

recalculate the cluster centers.

Step 3: Repeat Step 2, until each cluster centers remain unchanged.

We did a K-means analysis of the pressure field, temperature field, Mach number, and enthalpy

after resampling as samples, where K = 3. The results are shown in Fig. 11, the number of clusters

is 3, and each 3D mesh is divided into three categories according to the color. The statistical

information is the green label, which corresponds to the blue in 3D mesh rendering, the red label in

statistical information corresponds to the white in 3D mesh rendering, and the blue label in statistical

information corresponds to the red in 3D mesh rendering.

4.3 Results and Discussion

The experimental results show that the surface features of the re-sampled model can be roughly

extracted after 3D mesh segmentation based on K-means. We make statistics on the pressure,

temperature, Mach number, and enthalpy respectively, as shown in Fig. 12. The iterative results show

that the similarity within clusters is high and the similarity between clusters is low. In addition, we also

use Mini-Batch K-means [31] and spectral clustering [32] for surface grid clustering. It is found that

the segmentation results of Mini-Batch K-means are consistent with those of the traditional K-means

algorithm. The clustering results of spectral clustering are not good, but to sample data with strong

continuity, such as Mach number, spectral clustering, and K-means clustering results are consistent.

The silhouette coefficient is the evaluation index of clustering performance, so we quantitatively

analyze the silhouette coefficient obtained by the three clustering algorithms. The experimental results

demonstrated that the silhouette coefficient of spectral clustering results in pressure, temperature, and

enthalpy is low while the silhouette coefficient calculated based on Mach number shows good results.

It is consistent with the above conclusions of manual observation, but it is not as high as the silhouette

coefficient obtained by Mini-Batch K-means and K-means. Since the silhouette coefficient can help

find the optimal number of clusters K, we choose K with a larger silhouette coefficient as the number

of clusters. The cluster number in pressure should be 4, in temperature should be 1, in Mach number

should be 3, and in enthalpy should be 2 (see Fig. 13).
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Figure 11: K-means clustering result statistics and results of 3D mesh segmentation
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Figure 12: The statistics and 3Dmesh segmentation results of K-means, spectral clustering, andMini-

Batch K-means clustering
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