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ABSTRACT

This paper aims to investigate a new efficient method for solving time fractional partial differential equations. In
this orientation, a reliable formable transform decomposition method has been designed and developed, which
is a novel combination of the formable integral transform and the decomposition method. Basically, certain
accurate solutions for time-fractional partial differential equations have been presented. The method under concern
demands more simple calculations and fewer efforts compared to the existing methods. Besides, the posed formable
transform decomposition method has been utilized to yield a series solution for given fractional partial differential
equations. Moreover, several interesting formulas relevant to the formable integral transform are applied to
fractional operators which are performed as an excellent application to the existing theory. Furthermore, the
formable transform decomposition method has been employed for finding a series solution to a time-fractional
Klein-Gordon equation. Over and above, some numerical simulations are also provided to ensure reliability and
accuracy of the new approach.
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1 Introduction

Through the development of science, various phenomena of memory and hereditary properties
cannot be well expressed by standard differential equations [1–4]. To address such problems, so many
phenomena are described by using fractional differential equations. Indeed, fractional differential
equations have been magnificently utilized in modeling various physical and chemical phenomena.
Therefore, the mathematical side of fractional differential equations and their solving techniques have
been studied by many authors (see, e.g., [5–11]). Meanwhile, different methods have appeared in the
contribution of fractional calculus, including homotopy analysis [12,13], fractional transform methods
[14–18] and residual power series methods [19–23] as well. Various researchers have combined more
than one technique to create new methods, such as the Laplace residual power series method and the
ARA residual power series method, to mention but a few. In this study, we create a new method named
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the formable transform decomposition method (FTDM), which combines the formable integral
transform [9] and the decomposition method. It is of interest to mention that such an approach is
apparently efficient and accurate in solving fractional partial differential equations and finding their
analytical solutions. It also moderates solutions in terms of a series form which converges to the exact
solution. To display the applicability of the method, we introduce applications and analyze certain
results.

We first consider the nonlinear time-fractional Klein-Gordon equation (TFKGE)

Dα

t v (x, t) = ∂2v
∂x2

+ a v (x, t) + b v2 (x, t) + c v3 (x, t) , (1)

with the conditions

v (x, 0) = f (x) , vt (x, 0) = g (x) , x ∈ R. (2)

The Klein-Gordon equation has been raised by the physicists Klein, Fock and Gordon to describe
relativistic electrons as one of the important mathematical models in quantum mechanics [24,25] and
relativistic physics [26,27], as a model of dispersive phenomena. There are numerous papers dealing
with the numerical solutions using the finite difference, the finite element and the collocation method
(see, e.g., [28–33]). As far as we know, many effective methods have been settled and implemented
to solve time-fractional Klein-Gordon equations, such as the Adomian decomposition method, the
natural transform decomposition method, the Shehu transform decomposition method and the
homotopy method, see [34–38] for more details. However, we establish and implement the FTDM
in solving the nonlinear time-fractional Klein-Gordon equation and, consequently, present the new
solution in a series form and show that the solution converges rapidly to the exact solution with
easier calculations. Moreover, we show several figures and tables and compare our results with other
numerical methods to prove the strength of our approach.

The novelty of this study arises from offering a new approach to readers for solving nonlinear
fractional partial differential equations, being a hot and challenging subject for researchers in recent
decades. However, we claim that our method is a new analytical technique integrating the formable
integral transform and the decomposition method. That is, with no need for linearization, differentia-
tion or Lagrange multiplier, the FTDM expresses the solution in the form of infinite converging series
to the exact solution.

In brief, this article is organized as follows: In Section 2, basic definitions and theorems are
given. In Section 3, new results involving the formable integral transform of fractional operators are
established. In Section 4, a technique methodology and convergence analysis are shown. In Section 5,
several numerical experiments emphasizing the effectiveness of the FTDM are provided.

2 Basic Definitions and Properties

This section covers the basic definitions and notations from the fractional derivative area. The
definition of the formable integral transform and its properties are also presented.

Definition 2.1. The Riemann–Liouville fractional integral of a function g of order α > 0 is
defined by

Iα

t g (t) = 1
� (α)

∫ t

a

(t − τ)
α−1 g (τ ) dτ . (3)
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Definition 2.2. The Caputo fractional derivative of a function g of order α > 0 is defined by

Dα g (t) =
⎧⎨
⎩

1
� (n − α)

∫ t

0

g(n) (τ )

(t − τ)
α+1−n dτ , n − 1 < α < n

g(n) (t) , α = n
. (4)

Definition 2.3. The Mittag-Leffler function is defined by

Eγ ,λ (z) =
∞∑

j=0

zj

� (γ j + λ)
, z, γ , λ ∈ C and � (γ ) > 0. (5)

Definition 2.4. A function g : [0, ∞) → R is said to be of exponential order α( α > 0), if there
exists a constant M > 0 such that for some t0 ≥ 0, we have

|g (t)| ≤ Meαt, for all t ≥ t0.

Definition 2.5. In [39], the formable integral transform of a continuous function g on the interval
(0, ∞) is defined by

R [g (t)] = s
u

∫ ∞

0

e− st
u g (t) dt = B (s, u) .

The inverse formable integral transform is given by

g (t) = R−1 [B (s, u)] = 1
2π i

∫ c+i∞

c−i∞

1
s

exp
(

st
u

)
B (s, u) ds.

In what follows, we present some properties of the formable integral transform that are needful
in the sequel. For more proofs and properties, we refer to [9,40–44] and references cited therein.

Property 1. If u (t) and v (t) are two functions in which the formable transform exists, then

R [αu (t) + βv (t)] (s) = αR [u (t)] + βR [v (t)] (s) ,

where α and β are nonzero constants.

Property 2. If F (s, u) and G (s, u) are the formable integral transforms of the functions f and g,
respectively, then we have

R [f (t) ∗ g (t)] = u
s

F (s, u) G (s, u) ,

where f (t) ∗ g (t) is the convolution product defined for f and g by

f (t) ∗ g (t) =
∫ t

0

f (τ ) g (t − τ) dτ .

Property 3. The formable integral transform of the nth derivative of a function g is given by

R
[
g(n) (t)

] = sn

un
B (s, u) −

n−1∑
k=0

( s
u

)n−k

g(k) (0) , n = 1, 2, . . .

Property 4. The formable integral transform of a constant and polynomials are given by

R [c] = c.

R [tn] =
(u

s

)n

n! , n ∈ N.
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R [tα] =
(u

s

)α

� (α + 1) , α > 0

Property 5. The formable integral transform of the partial derivatives of the function u (x, t) is
given by

R
[
∂u (x, t)

∂x

]
= ∂U (x, u, s)

∂x
,

R
[
∂2u (x, t)

∂x2

]
= ∂2U (x, u, s)

∂x2
,

where R [u (x, t)] = U (x, u, s) is the formable transform of the function u (x, t) with respect to the
variable t.

3 The Formable Transform of Mittag-Leffler Function and Fractional Integrals

In this section, we discuss new results associated with the formable integral transform of the
Mittag-Leffler function, the Riemann–Liouville fractional integral and the Caputo fractional as
follows.

Theorem 3.1. The formable integral transform of the Mittag-Leffler function is given by

B (s, u) =
∞∑

k=0

λk
(u

s

)αk+β−1

.

Proof. By applying the formable transform to the Mittag-Leffler function (5), we get

B (s, u) = R
[
tβ−1Eα,β (λtα)

] = s
u

∫ ∞

0

e− st
u tβ−1

∞∑
k=0

(λtα)
k

� (αk + β)
dt

=
∞∑

k=0

λk

� (αk + β)

s
u

∫ ∞

0

e− st
u tβ−1tαkdt

=
∞∑

k=0

λk

� (αk + β)

s
u

∫ ∞

0

e− st
u tαk+β−1dt

=
∞∑

k=0

λk
(u

s

)αk+β−1

.

Theorem 3.2. Let g be a piecewise continuous function defined on [0, ∞). Then, the formable
integral transform of the Riemann–Liouville fractional integral of order α > 0 of the function g is
given by

R
[
Iα

t g (t)
] =

(u
s

)α

B (s, u) . (6)

Proof. First, let the Riemann–Liouville fractional integral of the function g be expressed in the
form

Iα

t g (t) = 1
� (α)

(
g (t) ∗ tα−1

)
. (7)
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Then, by applying the formable integral transform to both sides of Eq. (7) and taking into account
the properties 2 and 4 of the formable transform, we obtain

R
[
Iα

t g (t)
] = u/s B (s, u) R [tα ] =

(u
s

)α

B (s, u) .

Here, it is worth mentioning that the formable transform of the Riemann–Liouville fractional
integral exists when Iαg (t) is of exponential order.

Theorem 3.3. Let g be a piecewise continuous function on the interval [0, ∞). Then, the formable
integral transform of the Caputo fractional derivative of order α, n − 1 < α ≤ n, of the function g is
given by

R [Dαg (t)] =
( s

u

)α

(
B (s, u) −

n−1∑
k=0

(u
s

)k

g(k) (0)

)
. (8)

Proof. By considering the Caputo fractional derivative of the function g, we write

Dα

t g (t) = 1
� (n − α)

∫ t

0

g(n) (τ )

(t − τ)
α+1−n dτ . (9)

By employing the formable integral transform to both sides of Eq. (9), we get

R
[
Dα

t g (t)
] = 1

� (n − α)

s
u

∫ ∞

0

e− st
u

(∫ t

0

g(n) (τ )

(t − τ)
α+1−n dτ

)
dt.

Hence, by invoking the properties 2 and 4 of the transform it gives

R
[
Dα

t g (t)
] = 1

� (n − α)
R

[
g(n) (t) ∗ tn−α−1

] = 1
� (n − α)

u
s

R
[
g(n) (t)

]
R

[
tn−α−1

]
.

Therefore, considering property 3 of the integral transform reveals

R
[
Dα

t g (t)
] =

(u
s

)n−α ( s
u

)n

R [g (t)] −
(u

s

)n−α
n−1∑
k=0

( s
u

)n−k

g(k) (0)

=
( s

u

)α
(

B (s, u) −
∑n−1

k=0

(u
s

)k

g(k) (0)

)
.

Here, we declare that the formable transform of the Caputo fractional derivative exists provided
the fractional derivative Dα

t g (t) is of exponential order.

4 Methodology and Analysis of the FTDM Method

In this section, we apply the method FTDM to derive approximate solutions for the nonlinear
time-fractional Klein-Gordon equation. For, let us consider the nonlinear time-fractional Klein-
Gordon equation

Dα

t v (x, t) = ∂2v (x, t)
∂x2

+ av (x, t) + bv2 (x, t) + cv3 (x, t) , (10)

with the ICs

v (x, 0) = φ1 (x) , vt (x, 0) = φ2 (x) , (11)
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where Dα

t is the Caputo fractional derivative, v (x, t) is the unknown function, and 1 < α ≤ 2, t > 0.
Assume that v (x, t) is bounded (i.e., there exists M > 0 such that ‖v (x, t) ‖ < M).

To get the solution by the method FTDM, we apply the formable integral to both sides of Eq. (10)
to yield

R
[
Dα

t v (x, t)
] = R

[
∂2v (x, t)

∂x2
+ av (x, t)

]
+ R

[
bv2 (x, t) + cv3 (x, t)

]
. (12)

By using Theorem 3.3 and the ICs (11), Eq. (12) can be read as

R [v (x, t)] = φ1 (x) + u
s
φ2 (x) +

(u
s

)α

R
[
v (x, t) + av (x, t) + bv2 (x, t) + cv3 (x, t)

]
. (13)

Therefore, by operating the inverse formable transform on Eq. (13) we derive

v (x, t) = R−1
[
φ1 (x) + u

s
φ2 (x)

]
+ R−1

[(u
s

)α

R
[
v (x, t) + av (x, t) + bv2 (x, t) + cv3 (x, t)

]]
. (14)

Then, the solution as an infinite series can be presented in the form

v (x, t) =
∞∑

l=0

vl (x, t) , (15)

whereas the nonlinear term in Eq. (14) can be decomposed as

N [v (x, t)] = bv2 (x, t) + cv3 (x, t) =
∞∑

l=0

Al (v0, v1, . . . , vl) , (16)

where

Al (v0, v1, . . . , vl) = 1
l!

(
∂ l

∂λl
N

( ∞∑
k=0

λkvk

))∣∣∣∣∣
λ=0

. (17)

Hence, invoking Eqs. (15) and (16) in Eq. (17) implies
∞∑

l=0

vl (x, t) = R−1
[
φ1 (x) + u

s
φ2 (x)

]
+ R−1

[(u
s

)α

R

[ ∞∑
l=0

(
∂2vl (x, t)

∂x2
+ avl (x, t) + Al

)]]
. (18)

From the comparison noticed in Eq. (18), we write

v0 (x, t) = R−1
[
φ1 (x) + u

s
φ2 (x)

]
= �1 (x) + t�2 (x)

v1 (x, t) = R−1

[(u
s

)α

R
[
∂2v0 (x, t)

∂x2
+ av0 (x, t) + A0

]]

v2 (x, t) = R−1

[(u
s

)α

R
[
∂2v1 (x, t)

∂x2
+ av1 (x, t) + A1

]]
...

vl+1 (x, t) = R−1

[(u
s

)α

R
[
∂2vl (x, t)

∂x2
+ avl (x, t) + Al

]]
, l = 1, 2, . . .

Finally, we may express the FTDMC solution as follows:

vC (x, t) = v0 (x, t) + v1 (x, t) + v2 (x, t) + · · · (19)
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5 Numerical Examples

In this section, we propose several numerical examples to obtain approximate FTDM solutions.
The computational results demonstrate the applicability and efficiency of our method compared with
the other numerical techniques.

Example 4.1. Consider the following nonlinear fractional Klein-Fock-Gordon equation (FKFG)

Dα

t v (x, t) = vxx (x, t) − v2 (x, t) , (20)

with the ICs

v (x, 0) = 1 + sin x and vt (x, 0) = 0 1 < α ≤ 2. (21)

Solution. Firstly, we apply the formable integral transform to both sides of Eq. (20) to yield

R
[
Dα

t v (x, t)
] = R

[
vxx (x, t) − v2 (x, t)

]
.( s

u

)α

R [v (x, t)] −
( s

u

)α

v (x, 0) −
( s

u

)α+1

vt (x, 0) = R
[
vxx (x, t) − v2 (x, t)

]
. (22)

Upon using the ICs (21), Eq. (22) can be read as( s
u

)α

R [v (x, t)] =
( s

u

)α

(1 + sin x) + R
[
vxx (x, t) − v2 (x, t)

]
.

R [v (x, t)] = 1 + sin x +
(u

s

)α

R
[
vxx (x, t) − v2 (x, t)

]
. (23)

By allowing the inverse formable integral transform to act on Eq. (23), it reduces to

v (x, t) = R−1 [1 + sin x] + R−1
[(u

s

)α

R [L [v (x, t)] − N [v (x, t)]]
]

, (24)

where L [v (x, t)] = vxx (x, t) and N [v (x, t)] = v2 (x, t) are the linear and the nonlinear operators,
respectively. Decompose the nonlinear operator as

N [v (x, t)] = v2 (x, t) =
∞∑

l=0

Al. (25)

Assume that the solution of Eq. (20) has the following series representation

v (x, t) =
∞∑

l=0

vl (x, t) . (26)

Then, substitute the series expansions (25) and (26) in Eq. (24) to imply
∞∑

l=0

vl (x, t) = R−1 [1 + sin x] + R−1

[(u
s

)α

R

[
∂2

∂x2

[ ∞∑
l=0

vl (x, t)

]
−

∞∑
l=0

Al

]]

= 1 + sin x + R−1

[(u
s

)α

R

[ ∞∑
l=0

(vlxx (x, t) − Al)

]]
.

Hence, we have obtained the first two terms in the series solution (26)

v0 (x, t) = 1 + sin x,
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v1 (x, t) = R−1
[(u

s

)α

R [v0xx (x, t) − A0]
]

.

Then, to determine the Al’s, we make use of Eq. (17) to have

A0 = 1
0!
N [v0 (x, t)] = N [1 + sin x] = (1 + sin x)

2 ,

v1 (x, t) = R−1
[(u

s

)α

R
[
v0xx − (1 + sin x)

2]] = R−1
[(u

s

)α

R
[− sin x − 1 − 2 sin x − sin2 x

]]
= − tα

� (α + 1)

(
1 + 3 sin x + sin2 x

)
.

To find v2 (x, t) , we have

v2 (x, t) = R−1
[(u

s

)α

R [L [v1 (x, t)] − A1]
]

,

A1 = d
dλ

(
N

[
1∑

k=0

λkvk (x, t)

])∣∣∣∣∣
λ=0

= v1 (x, t)N ′[v0(x,t)]

= − tα

� (α + 1)

(
1 + 3 sin x + sin2 x

) (
(1 + sin x)

2) ′

= − 2tα

� (α + 1)

(
1 + 3 sin x + sin2 x

)
(1 + sin x) cos x,

v2 (x, t) = R−1

[(u
s

)α

R
[
− sin x + 2tα

� (α + 1)

(
1 + 3 sin x + sin2 x

)
(1 + sin x) cos x

]]

= − tα

� (α + 1)
sin x

+ t2α

� (2α + 1)

(
2 cos x + 7 cos x sin x + 5 cos x sin2 x + cos x sin3 x

)
.

We obtain the FTDM solution by substituting v0 (x, t) , v1 (x, t) , . . . in Eq. (26), to get

v (x, t) ≈ 1 + sin x − tα

� (α + 1)

(
1 + 3 sin x + sin2 x

) − tα

� (α + 1)
sin x

+ t2α

� (2α + 1)

(
2 cos x + 7 cos x sin x + 5 cos x sin2 x + cos x sin3 x

) + · · · .

Table 1 compares the FTDM solutions given in Example 4.1 and the solutions obtained from
other methods, such as Adomian decomposition method (ADM) [29], variational iteration method
(VIM) [30], Differential transform method (DTM) [31] and Q-homotopy analysis transform method
(Q−HATM) [32].

From this table, we can see that the simulated solutions from this method are very close to that
obtained from other numerical techniques.
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Fig. 1 explores the numerical solutions of the FTDM for diverse values of α of Example 4.1. (a)
FTDM solution for α = 2, (b) FTDM solution for α = 1.75, (c) FTDM solution for α = 1.5 and (d)
FTDM solution for α = 1.25.

Table 1: Comparison of the FTDM solutions with the ADM, VIM, DTM and Q−HATM with t = 0.1
and α = 2 of Example 4.1

x FTDM ADM VIM DTM Q-HATM

0.0 0.995000025 0.994999986 0.995000024 0.995000000 0.995000025
0.1 1.093291179 1.093291132 1.093291179 1.093336821 1.093291179
0.2 1.190503087 1.190502988 1.190503087 1.190602734 1.190503087
0.3 1.285668848 1.285668610 1.285668848 1.285829872 1.285668848
0.4 1.377844710 1.377844211 1.377844710 1.378073322 1.377844710
0.5 1.466119218 1.466118315 1.466119219 1.466420573 1.466119218
0.6 1.549621939 1.549620480 1.549621939 1.550000812 1.549621939
0.7 1.627531694 1.627529538 1.627531694 1.627994045 1.627531694
0.8 1.699084244 1.699081273 1.699084244 1.699640074 1.699084244
0.9 1.763579355 1.763575490 1.763579356 1.764245622 1.763579355
1.0 1.820387215 1.820382425 1.820387216 1.821201388 1.820387215

FTDM solution, = 2. FTDM solution, = 1.75

FTDM solution, = 1.5 FTDM solution, = 1.25

Figure 1: FTDM solutions of different values of α in Example 4.1
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Example 4.2. Consider the nonlinear FKFG equation

Dα

t v (x, t) = vxx (x, t) − 0.75v (x, t) + 1.5v3 (x, t) , (27)

with the ICs

v (x, 0) = −sech x and vt (x, 0) = 0.5sech x tanh x. (28)

The exact solution of the ordinary form of Eq. (27) can be obtained by putting α = 2 is v (x, t) =
−sech (x + 0.5t) .

Solution. Applying the formable transform on both sides of Eq. (27) reveals

R[Dα

t v (x, t)] = R[vxx (x, t) − 0.75v (x, t)] + R[1.5v3 (x, t)] (29)

Using the ICs (28) and running the formable transform on Eq. (29) give( s
u

)α

R [v (x, t)] −
( s

u

)α

(−sech x) −
( s

u

)α−1

(0.5 sech x tanh x)

= R
[
vxx (x, t) − 0.75v (x, t) + 1.5v3 (x, t)

]
R [v (x, t)] = −sech x + u

s
(0.5 sech x tanh x)

+
(u

s

)α

R
[
vxx (x, t) − 0.75v (x, t) + 1.5v3 (x, t)

]
. (30)

Applying the inverse formable transform to Eq. (30) implies

v (x, t) = −sech x + 0.5t (sech x tanh x)

+ R−1
[(u

s

)α

R
[
vxx (x, t) − 0.75v (x, t) + 1.5v3 (x, t)

]]
. (31)

Now, decompose the nonlinear term

N [v (x, t)] = v3 (x, t) =
∞∑

l=0

Al, (32)

and assume the solution of Eq. (27) have the following series representation

v (x, t) =
∞∑

l=0

vl (x, t) . (33)

Hence, substituting the series expansions (32) and (33) in Eq. (31) suggests to have
∞∑

l=0

vl (x, t) = −sech x + 0.5t (sech x tanh x)

+ R−1

[(u
s

)α

R

[ ∞∑
l=0

(vlxx (x, t) − 0.75vl (x, t) + 1.5Al)

]]
. (34)

From Eq. (34), we have

v0 (x, t) = −sech x + 0.5t (sech x tanh x) .
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To find v1 (x, t), we find the first component of the Adomian polynomial A0,

A0 = N [v0 (x, t)] = (v0 (x, t))3 = (−sech x + 0.5t (sech x tanh x))
3

v1 (x, t) = R−1
[(u

s

)α

R [v0xx (x, t) − 0.75v0 (x, t) + 1.5A0]
]

= R−1

[ (u
s

)α

R
[
sech3x − sech x tanh2 x − 0.75 (−sech x + 0.5t sech x tanh x)

+ 1.5 (−sech x + 0.5t sech x tanh x)
3

+0.5t
(−4sech3x tanh x + tanh x

(−sech3x + sech x tanh2 x
))] ]

= sech x
(

0.75
tα

� (α + 1)
− 0.375

tα+1

� (α + 2)
tanh x − tα

� (α + 1)
tanh2 x

+ 0.5
tα+1

� (α + 2)
tanh3x

+ sech2x
(

−0.5
tα

� (α + 1)
− 0.25

tα+1

� (α + 2)
tanh x − 2.25

tα+2

� (α + 3)
tanh2x

+1.125
tα+3

� (α + 4)
tanh3x

))
...

We obtain the FTDM solution by substituting v0 (x, t) , v1 (x, t) , . . . , in Eq. (33), as

v (x, t) ≈ 1
2

sech x (t tanh x − 2) + tαsech x
8� (α + 1)

(3 − cos h2x)

+ tα+1 tanh xsech x
2� (α + 2)

(
tanh2 x − sech2x

2
− 3

4

)

− 9tα+2 tanh2 xsech3x
4

(
1

� (α + 3)
− t tanh x

2� (α + 4)

)
+ · · · .

Table 2 presents the simulated outcomes for various values of α and the variables x and t using
the FTDM. The table shows that when α increases from 1.5 to 2 the solution converges to the exact
solution and when t increases, the absolute error decreases.

Fig. 2 explores the numerical solutions of FTDM for diverse values of α in Example 4.2. (a)
FTDM solution for α = 2, (b) FTDM solution for α = 1.75, (c) FTDM solution for α = 1.5 and (d)
FTDM solution for α = 1.25.

We can see that as α increases from α = 1.25 to α = 2 the graph of v (x, t) coincides with the exact
solution obtained when α = 2.

In Fig. 3, we present the graph of the FTDM solution obtained in Example 4.2, in 2D plots. It
helps us to understand the behavior of the simulated outcomes of the model for distinct values of time.
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Table 2: The absolute errors with different values of α for the FTDM solutions of the FKFG equation
in Example 4.2 with diverse values of x and t

x t α = 1.50 α = 1.75 α = 2

1 0.25 2.51942 × 10−3 9.7533 × 10−4 7.71437 × 10−5

2 3.48322 × 10−3 1.32191 × 10−3 6.86873 × 10−6

3 1.44983 × 10−3 5.49147 × 10−4 4.56013 × 10−7

4 5.42076 × 10−4 2.05266 × 10−4 3.3661 × 10−7

5 1.99855 × 10−4 7.56754 × 10−5 1.32385 × 10−7

1 0.50 9.59256 × 10−3 4.59597 × 10−3 1.20808 × 10−3

2 7.73655 × 10−3 3.35412 × 10−3 1.0517 × 10−4

3 3.05818 × 10−3 1.30494 × 10−3 7.25455 × 10−6

4 1.13543 × 10−3 4.83387 × 10−4 5.26292 × 10−6

5 4.18219 × 10−4 1.77992 × 10−4 2.06748 × 10−6

1 0.75 2.45393 × 10−2 1.38757 × 10−2 5.97787 × 10−3

2 1.15884 × 10−2 5.57544 × 10−3 5.09887 × 10−4

3 4.16066 × 10−3 1.90596 × 10−3 3.64837 × 10−5

4 1.52289 × 10−3 6.92062 × 10−4 2.60443 × 10−5

5 5.59836 × 10−4 2.54129 × 10−4 1.02202 × 10−5

1 1 5.18541 × 10−2 3.32012 × 10−2 1.84465 × 10−2

2 1.49969 × 10−2 8.04374 × 10−3 1.54418 × 10−3

3 4.55065 × 10−3 2.19442 × 10−3 1.14475 × 10−4

4 1.61783 × 10−3 7.63302 × 10−4 8.04886 × 10−5

5 5.92309 × 10−4 2.78571 × 10−4 3.15523 × 10−5

FTDM, = 2.
FTDM, = 1.75

Figure 2: (Continued)
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FTDM, = 1.5 FTDM, = 1.25

Figure 2: FTDM solutions of different values of α in Example 4.2

(a) FTDM, t = 0. (b) FTDM, t = 1

(c) FTDM, t = 3 (d) FTDM, t = 5

= 1.5, = 1.75 , = 2

Figure 3: Nature of FTDM solution of Example 4.2 at: (a) t = 0, (b) t = 1 (c) t = 3 and (d) t = 5 for
distinct values of α
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Example 4.3. Consider the nonlinear FKFG equation

Dα

t v (x, t) = 5
2

vxx (x, t) − v (x, t) − 3
2

v3 (x, t) ,

with the ICs

v (x, 0) =
√

2
3

tan

(
10
3

√
2

111
x

)
and vt (x, 0) =

sec2

(
10
3

√
2

111
x

)

9
√

37
.

The exact solution of the ordinary differential equation can be obtained by putting α = 2 and

v (x, t) =
√

2
3

tan

(
10
3

√
2

111

(
t

20
+ x

))
.

Solution. By employing the FTDM, we get

v0 (x, t) =
t sec2

(
10
3

√
2

111
x

)

9
√

37
+

√
2
3

tan

(
10
3

√
2

111
x

)
and

v1 (x, t) =
sec6

(
10
3

√
2

111
x

)

2661336

⎛
⎜⎜⎜⎜⎝

6
√

37tα+1

� (α + 2)
− 24

√
37tα+3

� (α + 4)
+

4
√

37tα+1 cos

(
20
3

√
2

111
x

)

� (α + 2)

−
2
√

37tα+1 cos

(
40
3

√
2

111
x

)

� (α + 2)
+ 222

√
6 sin

(
20
3

√
2

111
x

) (
t − 6tα+2

� (α + 3)

)

+ 111
√

6t sin

(
40
3

√
2

111
x

)⎞
⎟⎟⎟⎟⎠ .

Therefore, we obtain the FTDM solution by substituting v0 (x, t) , v1 (x, t) , . . . in Eq. (15), to yield

v (x, t) ≈
t sec2

(
10
3

√
2

111
x

)

9
√

37
+

√
2
3

tan

(
10
3

√
2

111
x

)

+
sec6

(
10
3

√
2

111
x

)

2661336

⎛
⎜⎜⎜⎜⎝

6
√

37tα+1

� (α + 2)
− 24

√
37tα+3

� (α + 4)
+

4
√

37tα+1 cos

(
20
3

√
2

111
x

)

� (α + 2)
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−
2
√

37tα+1 cos

(
40
3

√
2

111
x

)

� (α + 2)
+ 222

√
6 sin

(
20
3

√
2

111
x

)(
t − 6tα+2

� (α + 3)

)

+ 111
√

6t sin

(
40
3

√
2

111
x

)⎞
⎟⎟⎟⎟⎠ .

Table 3 presents the simulated outcomes for various values of α and the variables x and t using
the FTDM. The table shows that when α increases from 1.5 to 2 the solution converges to the exact
solution and when t increases, the absolute error decreases.

Fig. 4 explores the numerical solutions of the FTDM for diverse values of α in Example 4.3. (a)
FTDM solution for α = 2, (b) FTDM solution for α = 1.75, (c) FTDM solution for α = 1.5 and (d)
FTDM solution for α = 1.25. We can see that as α increases from α = 1.25 to α = 2 the graph of
v (x, t) coincides with the exact solution obtained when α = 2.

Table 3: The absolute errors with different values of α for the FTDM solutions of the FKFG equation
in Example 4.3 with diverse values of x and t

x t α = 1.50 α = 1.75 α = 2

1 0.25 1.04618 × 10−4 1.05055 × 10−4 1.05269 × 10−4

2 5.57967 × 10−4 5.63576 × 10−4 5.66351 × 10−4

3 1.24158 × 10−2 1.36915 × 10−2 1.43294 × 10−2

4 1.35608 × 10−2 5.87212 × 10−4 1.6227 × 10−2

5 5.78767 × 10−4 7.56754 × 10−5 5.91509 × 10−4

1 0.50 1.68563 × 10−4 1.73409 × 10−4 1.76288 × 10−4

2 8.32512 × 10−4 8.89897 × 10−4 9.24172 × 10−4

3 4.46461 × 10−3 7.78248 × 10−3 1.51305 × 10−2

4 8.77853 × 10−3 6.92825 × 10−3 1.64146 × 10−2

5 8.49375 × 10−4 9.21069 × 10−4 9.6452 × 10−4

1 0.75 1.72587 × 10−4 1.90548 × 10−4 2.02481 × 10−4

2 6.08612 × 10−4 8.16547 × 10−4 9.5519 × 10−4

3 9.44222 × 10−2 5.07868 × 10−2 2.1617 × 10−2

4 1.18204 × 10−1 6.41816 × 10−2 2.78572 × 10−2

5 5.87533 × 10−4 8.30912 × 10−4 9.949 × 10−4

1 1 9.12006 × 10−5 1.34749 × 10−4 1.66106 × 10−4

2 3.9738 × 10−4 1.01246 × 10−4 4.6123 × 10−4

3 3.15579 × 10−1 2.11601 × 10−1 1.36416 × 10−1

4 3.8026 × 10−1 2.54694 × 10−1 1.63356 × 10−1

5 4.96212 × 10−4 6.68229 × 10−5 4.76886 × 10−4
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FTDM, = 2. FTDM, = 1.75

FTDM, = 1.5 FTDM, = 1.25

Figure 4: FTDM solutions of different values of α in Example 4.3

6 Conclusions

In this research, we have applied the formable transform to the Riemann–Liouville fractional
integral operator and the Caputo fractional derivative. These new formulas are implemented to con-
struct the approximate solutions of certain fractional differential equations in a series representation.
The new technique is presented in the algorithm, and it integrates the formable integral operator with
the ADM method to get a series solution of the fractional differential equations. Three interesting
examples of the TFKGE are presented and solved by the new technique. Efficiency and applicability
of the FTDM method, certain numerical simulations and comparisons with other methods were
presented and illustrated as examples. The motivation of this research has simplified the procedure of
finding the approximate solutions with fewer efforts and calculations. In the future, we intend to solve
time fractional partial differential equations with initial and boundary conditions, as stated in [39,40].
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