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ABSTRACT

The metaheuristic algorithms are widely used in solving the parameters of the optimization problem. The marine
predators algorithm (MPA) is a novel population-based intelligent algorithm. Although MPA has shown a talented
foraging strategy, it still needs a balance of exploration and exploitation. Therefore, a multi-stage improvement
of marine predators algorithm (MSMPA) is proposed in this paper. The algorithm retains the advantage of multi-
stage search and introduces a linear flight strategy in the middle stage to enhance the interaction between predators.
Predators further away from the historical optimum are required to move, increasing the exploration capability of
the algorithm. In the middle and late stages, the search mechanism of particle swarm optimization (PSO) is inserted,
which enhances the exploitation capability of the algorithm. This means that the stochasticity is decreased, that
is the optimal region where predators jumping out is effectively stifled. At the same time, self-adjusting weight
is used to regulate the convergence speed of the algorithm, which can balance the exploration and exploitation
capability of the algorithm. The algorithm is applied to different types of CEC2017 benchmark test functions and
three multidimensional nonlinear structure design optimization problems, compared with other recent algorithms.
The results show that the convergence speed and accuracy of MSMPA are significantly better than that of the
comparison algorithms.
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1 Introduction

Metaheuristic Algorithms are studied relying on the combination of stochastic algorithms and
local search algorithms. They can search globally and find similar solutions to the optimal solutions.
These intelligent algorithms can be applied to solve real-life optimization problems [1]. Some of the
intelligent algorithms are genetic algorithm (GA) [2], particle swarm optimization (PSO) [3], grey
wolf optimizer (GWO) [4], artificial fish-swarm algorithm (AFSA) [5], artificial bee colony algorithm
(ABC) [6], marine predators algorithm (MPA) [7] and so on. Compared to classical optimization
algorithms, these algorithms have the advantages of being flexible, derivative independent as well
as fast and efficient in dealing with discrete variables. The marine predators algorithm (MPA) is
an intelligence algorithm inspired by the predatory behavior of marine species and was proposed
by Faramarzi et al. in 2020 [7], which is a new algorithm that has recently attracted attention. In
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MPA, marine species can be in the two logical states of predator and prey at the same time. And
this parallel mode improves the efficiency and accuracy of the optimization search. Currently it has
been successfully applied to engineering optimization design, medical diagnosis, system optimization
design etc.

The advantage of MPA over other algorithms is that the predator performs multiple motions
depending on the behavior of the prey. According to the strategy of the best encounter, the predator
can choose Levy motion or Brownian motion, which ensures the connection between predator and
prey. Specifically, the Levy strategy is used by the predator when the number of prey in the area is
low and on the contrary, the predator performs Brownian motion. The MPA is divided into three
stages based on the speed score. The predator’s action pattern is regulated by using a segmented search
strategy. At low velocity ratios (v = 0.1), the predator performs Levy motion in order to search for
the prey. At the same time the prey is in Brownian or Levy motion; at unit speed ratio (v = 1), the
predator chooses the appropriate strategy according to the movement of the prey. If the prey is stalking
in the marine through Levy motion, Brownian motion by the predator is the best choice; at high speed
ratio (v ≥ 10), the best strategy for the predator is to be at rest, when the prey is in Brownian or Levy
motion. In other words, the movement of the predator is determined by the concentration of the prey
in the marine environment. Also, MPA has to take into account the influence of other factors in the
environment, both natural and anthropogenic, which can change the behavior of predators and prey
to affect the efficiency of the algorithm.

Although the global search capability of MPA is stronger than that of algorithms such as particle
swarm optimization, it still suffers from weak convergence and easily falls into local optimum. In order
to improve the performance of MPA in the search for optimization, many scholars have conducted
a series of research on it. Houssein et al. [8] combined reinforcement learning (RL) with MPA and
proposed a new method Deep-MPA. A new variant of the marine predator algorithm is called MPAmu
[9]. The exploitation of MPA is enhanced by using an additional variant operator. A novel improved
MPA (IMPA) [10] was proposed by Sowmya et al. It uses an opposition-based learning scheme and
increases the diversity of populations. In addition, a modified MPA was investigated that was using
chaotic reverse learning and adaptive update equations [11]. Both methods increased the diversity of
populations and improved the efficiency of the algorithm operation. Elaziz et al. combined quantum
theory with the algorithm and reprogrammed the multi-stage search strategy, which improved the
exploration and exploitation of the algorithm [12]. Also, they applied the algorithm to the problem
of multilayer image segmentation and obtained good results. In order to overcome the disadvantage
of MPA, [13] proposed a Golden-Sine Dynamic Marine Predator Algorithm (GDMPA). Logistic-
Logistic (L-L) cascade chaos and Golden-Sine facto were used to achieve a better balance between
exploration and exploitation. Additionally, an enhanced marine predators algorithm, which is termed
NMPA [14], with the neighborhood-based learning strategy and the adaptive population size strategy
is proposed by Hu et al. A novel image segmentation algorithm based on the improved marine
predators algorithm (MPA) is proposed. HMPA [15] is applied the linearly increased worst solutions
improvement strategy (LIS) and ranking-based updating strategy (RUS), which could find better
solutions efficiently.

The core of metaheuristic algorithms is exploration and exploitation. Although MPA is a
novel algorithm, it still has an imbalance between exploration and exploitation. Over-emphasis on
exploration can lead to species moving too fast. Obviously, this approach tends to miss optimal
solutions; over-emphasis on exploitation can lead to aggregation and stagnation of population, which
can trap the algorithm in local optimal solutions. Balancing exploration and exploitation is the key
to solving the algorithmic problems. No single algorithm can be suitable for all problems, or even for
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different stages of a problem. Drawing on the advantages of other algorithms and then combining
MPA is also a popular research.

In this paper, we introduce the linear flight strategy and PSO search mechanism into MPA.
The multi-stage search mechanism of MPA is retained, which is an irreplaceable advantage of other
algorithms. In the first stage we keep the original Brownian motion, and the marine species are evenly
and randomly spread over the search area. During the second stage, the first half of predators carry
out a linear flight strategy and use it at a distance from the prey, thus increasing the chance of re-
employment. The second half uses the search mechanism of PSO, which adds interaction between
individuals and enhances the predator’s exploitation ability. The third stage also uses this mechanism
to speed up the convergence of the algorithm. In addition, this paper also uses self-adjusting weight
updates to adjust the parameters, so that the performance of the algorithm can be improved.

This paper is organized as follows. Section 2 reviews the classical marine predators algorithm.
Then, the innovative aspects of the MSMPA proposed in this paper are presented in Section 3. We
describe the CEC2017 test functions and experimental setup which are used to analyze its experimental
study and compared its performance with other algorithms in Section 4. It is also applied to a
multidimensional nonlinear structural design optimization problem in Section 5. Finally, a short
conclusion is given in Section 6, which contains a description of the MSMPA and a vision for the
future.

2 Marine Predators Algorithm
2.1 Brownian Motion

Brownian motion is a common type of irregular motion that is manifested by cluttered and
disordered particles. The particles in life are usually suspended in a liquid or gas. Mathematically,
Brownian motion is a random variable that follows a normal distribution, and it is also a Markov
process. Its step size is a probability function defined by a Gaussian distribution. The control density
function of the point of motion x is given by

fB (x; μ, σ) = 1√
2πσ 2

exp
(

−(x − μ)
2

2σ 2

)

= 1√
2π

exp
(

−x2

2

)
where the mean μ is 0 and the unit variance σ 2 is 1.

The trajectories of Brownian motion in 2D and 3D space are depicted in Fig. 1. Fig. 1b shows
the 2D trajectories of Brownian motion and 3D space is showed in Fig. 1c. From the figures, we can
see that Brownian motion is random and extensive in space, which has uniform and controllable step
lengths. This means that Brownian motion is more suitable for the pre-path of marine creatures and it
is easy to expand the range of random positions of predators and prey in the region.
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(a) Brownian Motion (b) Brownian motion in 2D (c) Brownian motion in 3D
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Figure 1: Brownian motion

2.2 Levy Motion
Levy flight was proposed by the French mathematician Levy [16] as a stochastic wandering

model. It is a Markov process like Brownian motion. Levy flight is characterized by stochastic large
probability short-distance exploration and small probability long-distance exploration. The trajectory
of Levy process is shown in the Fig. 2. It was shown in [17,18] that Levy movement is used as a foraging
and light-seeking strategy for many animals in nature, including marine species.

Figure 2: Levy motion

fLevy = η

|v|−γ
(1)

The parameter γ = 1.5 is the power-law component; η and v obey the normal distribution.{
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Levy flight is considered to be the best search pattern for the algorithm when the number of prey
in the environment is less in [19].

2.3 Update Strategies
At the beginning of the MPA, an Elite Matrix and a Prey Matrix are constructed. The Elite Matrix

is used to store information about the best predators with the purpose of monitoring prey location
information and finding other prey. The Elite Matrix is represented as follows:

Elite =
⎡
⎢⎣

X l
1,1 · · · X l

1,D
...

. . .
...

X l
N,1 · · · X l

N,D

⎤
⎥⎦

N×D

(4)

where
−→
X l is the elite predator vector. Unlike other intelligent algorithms, the population in the marine

predators algorithm is composed of both predators and prey, of which there is an interchangeable
relationship between predators and prey. If there is a better predator in the foraging process, the elite
predator in the matrix will be replaced.

The prey is defined as another Prey matrix. The position of the predator is updated according
to its formulation. Initializing the initial prey, where the predator constitutes the elite. The predator
matrix is expressed as follows:

Prey =
⎡
⎢⎣

X l
1,1 · · · X l

1,D
...

. . .
...

X l
N,1 · · · X l

N,D

⎤
⎥⎦

N×D

(5)

The MPA relies mainly on the update of the position information of these two matrices to complete
the optimization process. The movement of the predator and prey in the MPA is divided into three
phases with different velocities. The specific steps are as follows:

Algorithm 1: Multi-stage improvement of marine predators algorithm
1: Initialize the parameters of the MSMPA, including Prey and Elite;
2: Calculate the fitness value f (Preyi), where i = 1, . . . ,N;
3: Storing the best predators Elite;
4: Using Eq. (14) to calculate marine memory and FADs, update position Preyt+1 and fitness value

f (Preyt+1);
5: while t < Max_Iter do
6: % the first stage %

7: if t <
1
3

Max_Iter then

8: for i = 1, . . . , N do
9: Update the position Preyt+1 using Eq. (6) to control sequence;
10: end for
11: end if
12: % the second stage %

13: if
1
3

Max_Iter < t <
2
3

Max_Iter then

(Continued)
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Algorithm 1: Continued

14: for i = 1, . . . ,
N
2

do

15: Update the position Preyt+1 using Eqs. (10) and (11);
16: end for
17: for i = N

2
, . . . , n do

18: Update the position Preyt+1 using Eqs. (12);
19: end for
20: end if
21: % the third stage %

22: if t >
2
3

Max_Iter then

23: for i = 1, . . . , N do
24: Update the position Preyt+1 using Eq. (12);
25: end for
26: end if
27: Update the best predators Elite and update the fitness value f (Preyt+1);
28: Using Eq. (14) to calculate marine memory and FADs, update position Preyt+1 and fitness value

f (Preyt+1);
29: t = t + 1;
30: end while

1. The high speed ratio occurs mainly in the initial stage. And in order to coordinate the speed
of the predator and prey, the best strategy for the predator is to be at rest in the case of a high
speed ratio v ≥ 10 or when the prey is moving faster than the predator. Specifically, as follows,
improving the exploration ability of the population becomes a priority at this time.

While t <
1
3

Max_Iter

−−−−−→
Stepsizei = −→

RB ⊗
(−−→

Elitei − −→
RB ⊗ −−→

Preyi

)
i = 1, . . . , n (6)

−−→
Preyi = −−→

Preyi + P · −→
R ⊗ −−−−−→

Stepsizei

where t denotes the current number of iterations and Max_Iter denotes the maximum number
of iterations.

−→
RB denotes Brownian motion, and is a vector of random numbers based on

a normal distribution. ⊗ represents the term-by-term multiplication and
−→
RB is multiplied

with the prey to simulate the motion of the prey. P is a vector of uniform random numbers
with a constant of 0.5 and

−→
R is a vector of uniform random numbers between [0, 1]. Step 1

uses Brownian motion while increasing randomness. At this point the marine environment is
expanded and the foraging chances of predators are greatly increased.

2. With a unit speed ratio, predators and prey move at essentially the same speed. At this stage,
creatures need to both maintain diversity and enhance interactivity. Both exploration and
exploitation are key factors influencing predation. The prey is also a predator, so the prey is
responsible for exploitation and the predator is responsible for exploration. According to the
movement pattern of the species, at v/approx1, the Levy strategy is used by the prey to move,
while at the same time Brownian movement is called the best strategy for the predator. So half
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of the population at this stage is represented as follows:

While
1
3

Max_Iter ≤ t ≤ 2
3

Max_Iter

−−−−−→
Stepsizei = −→

RL ⊗
(−−→

Elitei − −→
RL ⊗ −−→

Preyi

)
i = 1, . . . ,

n
2

−−→
Preyi = −−→

Preyi + P · −→
R ⊗ −−−−−→

Stepsizei (7)

where
−→
RL represents Levy motion, a vector of random numbers based on the Levy distribution.−→

RL ⊗ −−→
Preyi simulates the prey movement, and this part is responsible for the exploitation. The

second half of the population in this stage is expressed as follows:
−−−−−→
Stepsizei = −→

RB ⊗
(−→

RB ⊗ −−→
Elitei − −−→

Preyi

)
i = n

2
, . . . , n

−−→
Preyi = −−→

Elitei + P · CF ⊗ −−−−−→
Stepsizei

CF =
(

1 − Iter
Max_Iter

)(
2× Iter

Max_Iter

)
(8)

where CF is an adaptive parameter that controls the movement step of the predator,
−→
RB ⊗ −−→

Elitei

indicates that the trajectory of the predator is a Brownian motion and the prey updates its
position according to the movement of the predator.

3. When the movement of the population reaches a low velocity ratio, it is necessary to improve
the proximity search capability of the algorithm. So Levy motion is performed at the final
stage in MPA.

While t >
2
3

Max_Iter

−−−−−→
Stepsizei = −→

RL ⊗
(−→

RL ⊗ −−→
Elitei − −−→

Preyi

)
i = 1, . . . , n

−−→
Preyi = −−→

Elitei + P · CF ⊗ −−−−−→
Stepsizei (9)

where
−→
RL ⊗ −−→

Elitei simulates the movement of the predator to help update the position of
the prey.

3 Multi-Stage Improvement of Marine Predators Algorithm
3.1 Update Strategies

According to the movement strategy of the predator, the main idea of the algorithm is to be mainly
responsible for the exploration in the early stage. The search space of the solution is expanded in
the first stage. In the middle stage, exploration is gradually replaced by exploitation, where they are
performed simultaneously. The later stage is mainly responsible for exploitation to avoid the predator
moving too fast and so missing the global optimal solution. In this paper, we still use segmented
processing to balance exploration and exploitation capabilities.

When marine species i is in the first half of the iterative process, the Brownian motion can cover the
region with uniform and controlled steps. So all species in this stage simulate the prey for the original
Brownian motion.
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During the first half of the second stage, in order to enhance the interaction between species, we
used the strategy of linear flight to guide they to move. There are two cases of linear flight: predators
that are far from some prey will swim in a line towards the prey, that is, predators that are far from the
global optimal position will move in a straight line. The formula is as follows:
−−→
Preyi = λ ·

(−−→
Preyi + φ ·

(−−→
Elitei − −−→

Preyi

))
(10)

Another case is that if the predators move to a terminal position beyond the optimal search area,
the position is represented as
−−→
Preyi = λ ·

(−−→
Preyi + 1

φ
·
(−−→

Elitei − −−→
Preyi

))
(11)

where φ is the acceleration factor to control the convergence velocity. We set it to the golden ratio. λ

is the scale factor, which is a standard uniformly distributed random number. The probability of the
two linear motion cases is 0.5.

The second half of the search method of the predator transitions to exploitation, and the
algorithm’s position update strategy differs for different search strategies and different iteration stages
of the step. If the prey only performs Levy moves, it may lead to a similar behavior of all individuals
falling into local optimal. When a predator stagnates and cannot leave this space using the random
wandering strategy of Levy, it means that it cannot jump out of the local minimum using the position
of the neighboring individuals, and then the population diversity decreases substantially, which is not
conducive to population search. Therefore, in the other half of the second stage and the third stage,
we use the search mechanism of PSO, which has a strong local merit-seeking ability.

C = (c1 − c2) · Max_Iter − Iter
Max_Iter

+ c2

ξ = 1 − Iter
Max_Iter

−−−−−→
Stepsizei = ξ · −−→

Preyi + C · −−→
rand ·

(−−→
Elitei − −−→

Preyi

)
−−→
Preyi = −−→

Elitei + P · CF · −−−−−→
Stepsizei (12)

where c1 = 2.5, c2 = 0.5. C is reduced as the number of iterations is increased, which means that the
population is progressively less influenced by individual optimality in the later stages of evolution. ξ

is a weight factor. Similarly, the weight of
−−−−−→
Stepsize is gradually reduced as it evolves. At this point Prey

gradually gathers around Elite and moves in small increments to find the optimal solution.

3.2 Self-Adjusting Weight
The search mechanism of PSO is utilized to reduce the randomness and uncertainty of marine

species movement during the exploitation phase and accelerate the convergence of the algorithm.
Meanwhile, we use self-adjusting weight for P to control the position update. The exploration
capability of the algorithm is increased in the early stage, and the exploitation capability of the
algorithm is enhanced in the later stage.

P = exp
(

tan
(

−π

4
· exp

Iter
Max_Iter

))
(13)



CMES, 2023, vol.136, no.3 3105

In summary, this paper provides a phased improvement of MPA. The Brownian motion in the
pre-phase is still adopted to provide a comfortable predatory environment for marine species. The
middle phase is carried out in two stages. In order to prevent predators and prey from overgathering
or overdispersing, half of the species adopt a linear flight strategy. The PSO search mechanism with a
very high level of interactivity is accepted by the other half. At the later stage, the creatures gather and
roam around the prey, in search of the best prey. The PSO search mechanism is still adopted in order
to search in the vicinity of the best individual in a small area, which allows the algorithm to converge
well. At the same time, the constant P is replaced by self-adjusting weight. Updating the P parameter
according to the state of the predation process can be better integrated into the predation process.

3.3 Vortex Formation and Fish Aggregation Devices (FADs) Effects
For the way of movement of marine creatures, the influence of the surrounding environment on it

also needs to be considered. In the MPA algorithm, FADs are considered as the local optimal solution,
which is needed to be found out. In the algorithm FADs effect is used to prevent the organisms from
stopping their movement. It allows the fish to make longer distance jumps to make they active again.
So the FADs are expressed as follows:

−−→
Preyi =

⎧⎨
⎩

−−→
Preyi + CF

[−→
Xmin + −→

R ⊗
(−−→

Xmax − −→
Xmin

)]
⊗ −→

U if r ≤ FADs
−−→
Preyi + [FADs (1 − r) + r]

(−−−→
Preyr1 − −−−→

Preyr2

)
if r > FADs

(14)

where r is a random number, FADs is a constant that affects the optimization process, and usually
FADs = 0.2. r1 and r2 are two random subscripts of Prey, 1 ≤ r1, r2 ≤ n. U is a binary vector
containing 0 and 1, such that random is a random number between [0, 1] and each element of Ui can
be defined as

Ui =
{

0 if random ≤ FADs
1 if random > FADs (15)

3.4 Marine Memory
Marine memory is used to update the elite matrix. First, the fitness is calculated for the prey

matrix. If the fitness of the prey is better than the corresponding result in the elite matrix, the individual
is replaced, that is, the elite matrix is updated. Then the fitness of all individuals in the elite matrix is
calculated to find the best individual. If it meets the requirements, the algorithm stops, otherwise it
continues to iterate.

The pseudo-code for the MSMPA algorithm is given in Algorithm 1 and flowchart of MSMPA is
shown in Fig. 3.
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Figure 3: Flowchart of MSMPA

4 Experimental Verification and Analysis
4.1 Baseline Test Functions

In this paper, CEC2017 benchmark functions [13] are used to evaluate the performance of
MSMPA. Among the 30 functions, 29 functions are selected for testing in this paper. F2 is excluded
because it has strong instability, especially in multidimensional and high-dimensional problems. The
benchmark functions of CEC2017 are divided into four main classes, including unimodal functions
(F1–F3), simple multimodal functions (F4–F10), hybrid functions (F11–F20), and composition
functions (F21–F30). In this regard, unimodal functions exhibit narrow ridge characteristics and they
are non-separable and smooth. These features mainly assess the exploitation ability of the algorithm;
simple multimodal functions have many bumps, which are often referred to as local optima. They
can be used to test the exploration ability of the algorithm; hybrid functions have minimal deviation
values between local and global optima. They are used to test the balance between exploration and
exploitation; composition functions have all the properties of the above functions and are aimed at
testing the whole performance of the algorithm. Compared with other test functions, CEC2017 has a
larger number of functions that are more beneficial than others in reflecting the performance of the
algorithm.

4.2 Algorithms for Comparison and Parameter Settings
All algorithms are implemented in the MATLAB 9.10 (R2021a) programming language. To

evaluate the performance of the MSMPA algorithm, we selected two MPA-related recent algorithms
and three advanced others. Their corresponding parameters and literature are shown in Table 1. The
population size is 100. The dimensionality is set to 30 with the number of iterations corresponding to
2000. All algorithms are run 30 times independently on each benchmark function, being calculated as
mean (Mean) and standard deviation (Std). The starting search points are randomly generated within
the same initialization range. To reduce the influence of extraneous variables, the same parameters
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and settings are used uniformly in all algorithms. In addition, the best results from the experiments
are indicated in bold.

Table 1: Parameter settings of the algorithms

Algorithm Parameter settings Year Refs.

MPAmu γ ∈ [0, 2] 2022 [9]
MPA P = 0.5, R = 0∼1 2020 [20]
HFPSO ω = 0.9∼0.5, c1 = c2 = 1.49445 2018 [21]
HGWOP a = 2∼0, r1 = 0∼1, r2 = 0∼1, Fr = 0∼2 2020 [22]
HPSOBOA c = 0.01, z (0) = 0.315, μ = 2 2020 [23]

The Wilcoxon signed-rank test in statistics is used to compare the differences of the experiments
and make the results more credible. It compares the performance of MSMPA with other algorithms. At
the “+”, “−” and “=” significance levels, MSMPA is significantly better than, significantly lower than
and consistent with the algorithms being compared. The published parameters of these algorithms are
kept identical in the paper without any changes.

4.3 30-D Experimental Results
In this section, the number of function evaluations can be expressed as

FES = N ∗ Max_Iter ∗ 1 = 200000. (16)

where N is the size of population and Max_Iter is the number of iterations. The final results in the
30-D function search are shown in the Tables 2 and 3.

Table 2: Computation results of the algorithms for the 30-D CEC2017 function (F1–F15)

MSMPA MPAmu MPA HFPSO HGWOP HPSOBOA

F1 Mean 1.02E+03 1.09E+03= 1.51E+03+ 2.77E+03+ 1.38E+03+ 6.03E+10+
Std 9.62E+02 1.53E+03 1.08E+03 2.52E+03 1.30E+03 5.86E+09
Rank 1 2 4 5 3 6

F3 Mean 1.26E−03 1.80E−03+ 3.41E−02+ 7.25E−02+ 1.75E+00+ 9.27E+04+
Std 1.51E−03 1.27E−03 1.86E−02 1.14E−01 2.53E+00 5.87E+03
Rank 1 2 3 4 5 6

F4 Mean 8.29E+01 8.13E+01= 8.45E+01+ 7.97E+01− 1.15E+02+ 2.05E+04+
Std 6.34E+00 8.61E+00 4.45E+00 1.52E+01 2.74E+00 2.73E+03
Rank 3 2 4 1 5 6

F5 Mean 5.94E+01 6.31E+01+ 5.68E+01= 8.86E+01+ 3.37E+01− 5.03E+02+
Std 9.93E+00 1.04E+01 1.58E+01 2.03E+01 1.04E+01 2.69E+01
Rank 3 4 2 5 1 6

(Continued)
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Table 2 (continued)

MSMPA MPAmu MPA HFPSO HGWOP HPSOBOA

F6 Mean 4.01E−01 4.34E−01+ 3.96E−01= 5.10E−01+ 5.51E−06− 1.11E+02+
Std 3.79E−01 3.32E−01 2.11E−01 5.23E−01 1.07E−05 9.52E+00
Rank 3 4 2 5 1 6

F7 Mean 9.44E+01 9.59E+01+ 7.55E+01− 1.06E+02+ 4.94E+01− 8.07E+02+
Std 9.67E+00 1.47E+01 1.20E+01 2.99E+01 1.77E+01 4.23E+01
Rank 3 4 2 5 1 6

F8 Mean 6.50E+01 6.60E+01+ 7.34E+01+ 8.14E+01+ 2.43E+01− 4.21E+02+
Std 1.23E+01 1.12E+01 1.61E+01 1.29E+01 9.11E+00 2.57E+01
Rank 2 3 4 5 1 6

F9 Mean 1.75E+01 1.95E+01= 1.21E+01− 1.33E+01− 1.14E−14− 1.91E+04+
Std 1.20E+01 1.07E+01 1.05E+01 1.67E+01 3.60E−14 3.82E+03
Rank 4 5 2 3 1 6

F10 Mean 2.64E+03 2.61E+03= 2.77E+03+ 3.08E+03+ 2.08E+03− 9.15E+03+
Std 4.14E+02 3.46E+02 4.99E+02 5.36E+02 4.17E+02 4.68E+02
Rank 3 2 4 5 1 6

F11 Mean 2.93E+01 2.79E+01= 2.45E+01− 1.17E+02+ 7.34E+01+ 7.97E+03+
Std 1.16E+01 9.39E+00 1.58E+01 6.07E+01 3.27E+01 1.54E+03
Rank 3 2 1 5 4 6

F12 Mean 1.17E+03 1.13E+03= 1.27E+03+ 1.60E+05+ 2.69E+04+ 1.70E+10+
Std 3.17E+02 3.25E+02 2.73E+02 2.10E+05 2.23E+04 2.73E+09
Rank 2 1 3 5 4 6

F13 Mean 7.77E+01 7.38E+01− 8.87E+01+ 1.86E+04+ 1.42E+04+ 1.66E+10+
Std 1.20E+01 1.36E+01 1.30E+01 2.85E+04 1.14E+04 5.38E+09
Rank 2 1 3 5 4 6

F14 Mean 3.01E+01 3.17E+01+ 4.20E+01+ 7.34E+03+ 4.23E+03+ 6.27E+06+
Std 3.21E+00 4.38E+00 5.69E+00 7.49E+03 3.95E+03 3.62E+06
Rank 1 2 3 5 4 6

F15 Mean 1.94E+01 1.95E+01+ 3.44E+01+ 6.56E+03+ 2.76E+03+ 9.04E+08+
Std 3.78E+00 3.49E+00 5.86E+00 7.96E+03 4.71E+03 4.43E+08
Rank 1 2 3 5 4 6

The experimental results we obtained are shown in Tables 2–4. In unimodal functions, the optimal
average value of MSMPA gets the first place in both. As shown by the Fig. 4, for F1, the MPA series
of algorithms all have similar characteristics. Its disadvantage is that it cannot reach near the optimal
point quickly in the early stage, and the advantage is also obvious that the biodiversity remains active
in the late stage. It can be seen from the Fig. 4a that HFPSO and HGWOP gather near the optimum
value quickly, but they cannot reach a well effect. In F3, except for HPSOBOA, the experimental results
do not differ much. The stability of MSMPA is also excellent, and its variance reaches 1.51E−03.
In Simple multimodal functions, all the MPA algorithms do not perform as well as the PSO series,
indicating that different functions correspond to different algorithms.
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Table 3: Computation results of the algorithms for the 30-D CEC2017 function (F16–F30)

MSMPA MPAmu MPA HFPSO HGWOP HPSOBOA

F16 Mean 4.16E+02 3.59E+02= 3.38E+02− 7.55E+02+ 5.04E+02+ 5.95E+03+
Std 1.46E+02 1.43E+02 1.42E+02 2.18E+02 1.97E+02 9.46E+02
Rank 3 2 1 5 4 6

F17 Mean 7.14E+01 7.30E+01+ 6.51E+01= 1.94E+02+ 2.14E+02+ 4.36E+03+
Std 2.04E+01 2.28E+01 2.65E+01 8.01E+01 1.36E+02 2.57E+03
Rank 2 3 1 4 5 6

F18 Mean 2.81E+01 2.79E+01= 3.40E+01+ 1.39E+05+ 1.16E+05+ 1.44E+08+
Std 2.62E+00 2.72E+00 3.83E+00 8.13E+04 8.24E+04 1.21E+08
Rank 2 1 3 5 4 6

F19 Mean 1.91E+01 1.79E+01= 2.14E+01+ 1.23E+04+ 6.43E+03+ 1.28E+09+
Std 2.88E+00 2.07E+00 3.00E+00 1.08E+04 4.69E+03 5.36E+08
Rank 2 1 3 5 4 6

F20 Mean 1.15E+02 1.15E+02+ 8.27E+01− 2.44E+02+ 2.12E+02+ 1.48E+03+
Std 5.24E+01 5.48E+01 5.31E+01 1.52E+02 5.72E+01 1.69E+02
Rank 2 3 1 5 4 6

F21 Mean 1.77E+02 1.98E+02+ 1.94E+02+ 2.82E+02+ 2.26E+02+ 7.34E+02+
Std 7.85E+01 7.60E+01 7.82E+01 1.76E+01 8.10E+00 4.92E+01
Rank 1 3 2 5 4 6

F22 Mean 1.00E+02 1.00E+02= 1.00E+02= 9.84E+02+ 1.00E+02= 8.30E+03+
Std 1.72E−02 4.45E−01 1.70E−01 1.44E+03 2.40E-13 6.97E+02
Rank 1 1 1 5 1 6

F23 Mean 3.41E+02 3.40E+02= 2.90E+02− 4.87E+02+ 3.75E+02+ 1.46E+03+
Std 1.13E+02 1.10E+02 1.37E+02 3.98E+01 6.43E+00 1.59E+02
Rank 3 2 1 5 4 6

F24 Mean 4.67E+02 4.58E+02− 4.63E+02= 5.66E+02+ 4.32E+02− 1.77E+03+
Std 1.20E+01 5.04E+01 1.23E+01 6.10E+01 5.79E+00 2.14E+02
Rank 4 2 3 5 1 6

F25 Mean 3.85E+02 3.85E+02= 3.85E+02= 3.93E+02+ 3.95E+02+ 3.37E+03+
Std 1.63E+00 1.61E+00 1.64E+00 1.75E+01 5.49E+00 5.04E+02
Rank 1 1 1 4 5 6

F26 Mean 3.00E+02 3.00E+02= 3.01E+02+ 1.62E+03+ 4.85E+02+ 9.65E+03+
Std 1.65E−02 1.32E−02 1.90E−01 9.86E+02 5.58E+02 6.82E+02
Rank 1 1 3 5 4 6

F27 Mean 4.98E+02 4.97E+02= 4.96E+02= 5.28E+02+ 5.71E+02+ 2.31E+03+
Std 6.24E+00 6.78E+00 6.73E+00 1.82E+01 2.12E+01 4.66E+02
Rank 3 2 1 4 5 6

F28 Mean 3.10E+02 3.11E+02+ 3.45E+02+ 4.00E+02+ 3.86E+02+ 5.26E+03+
Std 2.87E+01 2.78E+01 4.08E+01 4.13E+01 1.40E+01 6.78E+02
Rank 1 2 3 5 4 6

(Continued)
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Table 3 (continued)

MSMPA MPAmu MPA HFPSO HGWOP HPSOBOA

F29 Mean 5.41E+02 5.34E+02= 5.18E+02− 7.66E+02+ 5.14E+02− 9.78E+03+
Std 5.80E+01 7.56E+01 5.54E+01 1.81E+02 5.50E+01 6.26E+03
Rank 4 3 2 5 1 6

F30 Mean 2.13E+03 2.13E+03= 2.23E+03+ 1.52E+04+ 6.94E+03+ 2.49E+09+
Std 1.02E+02 6.70E+01 1.23E+02 1.86E+04 1.88E+03 1.27E+09
Rank 1 1 3 5 4 6

Table 4: The results of Wilcoxon Signed-Rank Test for the 30D CEC2017 function

MSMPA MPAmu MPA HFPSO HGWOP HPSOBOA

avg.Rank 2.172414 2.206897 2.37931 4.655172 3.206897 6
totalRank 1 2 3 5 4 6
+/=/− 11/16/2 15/7/7 27/0/2 20/1/8 29/0/0

In hybrid functions, MSMPA is particularly effective in finding the best results for F14 and F15.
The second ranking among the ten functions reaches five times. In the Figs. 4c and 4d, not only the
convergence speed but also the computational accuracy are well shown. It can be seen that MSMPA use
the linear flight strategy and PSO search strategy, which is ahead of other algorithms in performance.

In the composition functions, the optimal average of functions F21, F22, F25, F26, F28 and
F30 is represented by MSMPA, which obtains the most optimal values among all algorithms. In the
computation of these functions, MPA performs better than MPAmu. This indicates that the multi-
stage improvement mechanism of MSMPA as well as the self-adjusting weight work well for them.
The connection between the pre-stage organisms is strengthened by the linear flight strategy, which
increases the information transfer. The movement patterns of the later stage organisms are exploited
by the PSO search mechanism, which is used to find the optimal prey.

In fact, MPA-related algorithms all have similar convergence curves. How to find a better
convergence curve in the similarity is the direction of improvement in this paper. As can be seen
from the table, MSMPA has significantly better computational accuracy for the three metaheuristics
HFPSO, HGWOP and HPSOBOA. Likewise, it is excellent in the comparison with the two MPAs.
It indicates that the population diversity is improved after using the linear flight strategy and self-
adjusting weight. However, in the convergence graph, the convergence speed of MSMPA is not
significant and only slightly faster than that of MPAs. This means that MSMPA has improved
the convergence speed and population diversity compared with the comparison algorithms, but its
convergence could still be improved in the future.
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Figure 4: Convergence curves of algorithms on CEC2017 30D
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5 Structural Design Optimization Problems
5.1 Problem Description

In this section, the algorithm in this paper focuses on the analysis of three engineering optimization
problems. Of course problems have been solved by other algorithms as well, so we can compare and
analyze the practical applications of MSMPA. To eliminate randomness and variability, we choose
the conventional 20 ∗ D to bring into the problem and perform 30 independent trials. The D is
the dimension, and then we calculate the obtained best value, worst value, optimal mean, standard
deviation, and median, respectively. The termination condition of the gear train design for engineering
optimization problem is set to a maximum number of 1000 iterations or a relative error of 10E−6.

Table 5: Statistical results of the pressure vessel problem (NA means not available)

Methods Best Worst Median Mean Std

Sandgren [24] 8129.1036 NA NA NA NA
Gandomi et al. [25] 6059.714 6495.3470 NA 6447.7360 502.693
Coello Coello et al. [26] 6059.7208 7544.4925 6257.5943 6440.3786 448.4711
He et al. [27] 6059.7143 NA NA 6289.92881 305.78
Akay et al. [28] 6059.714339 NA NA 6245.308144 205
Hassanien et al. [29] 6059.606944 6061.034418 6059.606944 6059.844857 0.0582763
MSMPA 5930.69992 6166.632401 5981.6469 5988.2459 58.424

5.2 Design of Pressure Vessel
The design problem of pressure vessel was first introduced by Kannan et al. [30]. The main shape

of a pressure vessel is a cylindrical vessel which is capped at both ends by a hemispherical shaped head
as shown in Fig. 5. It has a working pressure of 2000 psi and a maximum volume of 750 ft3. The main
objective of the problem is to minimize the manufacturing cost of the pressure vessel, which mainly
includes the cost of material, forming and welding. Four main variables are included: the thickness
of the pressure vessel (Ts), thickness of the head (Th), inner radius of the vessel (R) and length of the
vessel without heads (L). The first two variables are integer multiples of 0.0625. Separately, let the four
variables be x1, x2, x3, x4. This equation is shown as Eq. (17).

Minimize f (X) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

s.t. g1 (X) = −x1 + 0.0193x3 ≤ 0

g2 (X) = −x2 + 0.0095x3 ≤ 0

g3 (X) = −πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0

g4 (X) = x4 − 240 ≤ 0

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625; 10 ≤ x3, x4 ≤ 200 (17)

There are also many algorithms that solve the problem, such as [24,25,29]. In Table 5, the objective
function value of MSMPA is 5884.27383, which is much better than that of the comparison algorithms.
In the Table 6, the optimal solution corresponding to the objective function value of each algorithm is
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listed, and the optimal solution of MSMPA is X = [0.8066, 0.3971, 41.7911, 180.4828], which
does not exceed the range of the constraints.

Figure 5: Pressure vessel structure diagram

Table 6: Comparison of the best solution for the pressure vessel problem by different methods

Method x1 x2 x3 x4 F (x)

Sandgren [24] 1,125000 0.625000 47.700000 117.701000 8129.1036
Gandomi et al. [25] 0.812500 0.437500 42.0984456 176.6365958 6059.7143348
Coello et al. [26] 0.812500 0.437500 42.098400 176.6372000 6059.7208
He et al. [27] 0.812500 0.437500 42.098445 176.6365950 6059.7143
Akay et al. [28] 0.812500 0.437500 42.098446 176.636596 6059.714339
Hassanien et al. [29] 0.812500 0.437500 42.100204 176.614800 6059.606944
MSMPA 0.8066 0.3971 41.7911 180.4828 5930.69992

5.3 Welded Beam Design Problem
The welded beam design optimization problem is a commonly used engineering optimization

problem with the structure shown in Fig. 6. It was first proposed by Coello Coello [31] in order to
find the minimum manufacturing cost of welded beams. This cost problem is mainly influenced by
the constraints of shear stress (τ ), bending stress in the beam (θ ), buckling load on the rod (PC),
deflection at the beam end (δ) and lateral restraint. There are four optimization variables, which mainly
include: weld thickness (h), connection beam length (l), beam height (t) and beam thickness (b). The
mathematical model of the welded beam design problem is shown below:

Minimize f (X) = 1.10471x2
1x2 + 0.04811x3x4 (14 + x2)

s.t. g1 (X) = τ (X) − τmax ≤ 0
g2 (X) = θ (X) − θmax ≤ 0
g3 (X) = x1 − x4 ≤ 0
g4 (X) = 0.125 − x1 ≤ 0
g5 (X) = δ (X) − 0.25 ≤ 0
g6 (X) = P − PC (X) ≤ 0
g7 (X) = 0.10471x2

1 + 0.04811x3x4 (14 + x2) − 5 ≤ 0
0.1 ≤ x1 ≤ 2; 0.1 ≤ x2 ≤ 10; 0.1 ≤ x3 ≤ 10; 0.1 ≤ x4 ≤ 2

(18)

where x1, x2, x3, x4 correspond to four variables, τmax is the maximum allowable shear stress in the weld
= 13600psi, δmax is the maximum allowable bending stress in the beam = 30000 psi, and P = 6000 lb
is the load. The two components of the shear stress are the principal stress τ1 and the secondary stress τ2.
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Figure 6: Welded beam structure diagram
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M and J (X) are known as moments and polar moment of inertia, respectively.

R =
√

x2
2

4
+

(
x1 + x3

2

)2

; θ (X) = 6PL
x4x2

3

; P = 6000 lb

δ (X) = 6PL3

Ex3
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4.013E

√
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6
4

36
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2L

√
E

4G

)

G = 12 × 106 psi, E = 30 × 106 psi, L = 14 in

(21)

The calculation results of different algorithms for this problem are shown in Table 7. The
table shows that the best objective function value of MSMPA is 1.6954599, whose optimization
ability is greatly improved. The optimal solutions of all algorithms are organized in Table 8.
The optimal solution corresponding to the value of the objective function of MSMPA is X =
[0.20531, 3.26054, 9.03670, 0.20573] within the corresponding constraint.

Table 7: Statistical results of the welded beam problem (NA means not available)

Methods Best Worst Median Mean Std

Coello Coello [31] 1.748309 1.785835 NA 1.771973 0.01122
Dimopoulos [32] 1.731186 NA NA NA NA
He et al. [33] 1.72802 1.782143 NA 1.748831 0.012926

(Continued)
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Table 7 (continued)

Methods Best Worst Median Mean Std

Mezura-Montes et al. [34] 1.724852 NA NA 1.725 1.00E−15
Gandomi et al. [35] 1.7312065 2.3455793 NA 1.878656 0.2677989
Mehta et al. [36] 1.724855 1.72489 1.724861 1.724865 NA
Akay et al. [28] 1.724852 NA NA 1.741913 0.031
Feng et al. [37] 1.695505466 1.87392175 1.700841829 1.724051281 0.047618
MSMPA 1.69546 NA 1.7032 NA NA

Table 8: Comparison of the best solution for the welded beam problem by different methods

Method x1 x2 x3 x4 F (x)

Coello Coello [31] 0.2088 3.4205 8.9975 0.21 1.748309
He et al. [33] 0.202369 3.544214 9.04821 0.205723 1.728024
Mezura-Montes et al. [34] 0.20573 3.470489 9.036624 0.20573 1.724852
Gandomi et al. [35] 0.2015 3.562 9.0414 0.2057 1.73121
Mehta et al. [36] 0.20572885 3.47050567 9.03662392 0.20572964 1.724855
Akay et al. [28] 0.20573 3.470489 9.036624 0.20573 1.724852
Kai Feng et al. [37] 0.205692017 3.254453177 9.036360313 0.205753289 1.695505
MSMPA 0.20531 3.26054 9.03670 0.20573 1.69546

5.4 Gear Train Design
The gear train design problem was first presented by Sandgren [24] as an unconstrained opti-

mization problem. The problem is solved by minimizing the gear ratio cost of the gear train. The four
decision variables defining the gear ratio are X = (Td, Tb, Ta, Tf ) = (x1, x2, x3, x4) and the mathematical
model of the problem is

Minimize f (X) =
(

1
6.931

− x1x2

x3x4

)2

12 ≤ x1, x2, x3, x4 ≤ 60; x′
is ∈ Z+ (22)

The solutions of the problem by MSMPA algorithm and other algorithms are shown in Tables 9
and 10. The table shows that the accuracy of the MSMPA algorithm is higher than the other
algorithms, and the objective function value, variance and standard deviation are smaller than the
other algorithms. A linear flight strategy in the middle term and a strong development strategy in the
middle and late term escort MSMPA to find the optimal gear ratio cost of the gear train. The optimal
solution obtained by MSMPA is X = [12.7940, 19.1888, 60, 28.3595], and the corresponding
objective function value is 6.4396e−15.

In summary, MSMPA has been effective in improving the exploration and exploitation capabilities
of MPAs. The experiments for engineering optimization problem are also fruitful. Its efficiency in
finding the optimal solutions has been greatly improved.
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Table 9: Statistical results of the gear train problem (NA means not available)

Methods Best Worst Median Mean Std

Sandgren [24] 5.712e−06 NA NA NA NA
Kannan et al. [30] 2.146e−08 NA NA NA NA
Deb et al. [38] 2.701e−12 NA NA NA NA
Gandomi et al. [25] 2.701e−12 2.3576e−09 NA 1.9841e−09 3.5546e−09
Garg [39] 2.7006e-12 3.2999e−09 9.9215e−10 1.2149e−09 8.7787e−10
MSMPA 6.4396e−15 9.6490e−13 5.0074e−14 4.56886e−14 1.794e−13

Table 10: Comparison of the best solution for the gear train problem by different methods

Method Td (x1) Tb (x2) Ta (x3) Tf (x4) Gear ratio F (x)

Sandgren [24] 18 22 45 60 0.146667 5.712e−06
Kannan et al. [30] 13 15 33 41 0.144124 2.146e−08
Deb et al. [38] 19 16 49 43 0.144281 2.701e−12
Gandomi et al. [25] 19 16 43 49 0.144281 2.701e−12
Garg [39] 19 16 43 49 0.14428096 2.70085e−12
MSMPA 12.7940 19.1888 60 28.3595 0.1443 6.4396e−15

6 Conclusions

Marine predators algorithm is a new algorithm proposed in 2020 and applied to many fields.
Since MPA, like other intelligent algorithms, suffers from unbalanced exploration and exploitation, we
improve it. In this paper, we proposed a new multi-stage improvement of marine predators algorithm.
Firstly, the original Brownian motion is still used in the first stage, and the predation space is well
expanded up. In the middle stage, the linear motion, which is more conducive to communication
between creatures, is used to facilitate the fast movement of creatures far away from the prey. In
the middle and late stages, the search mechanism of PSO is adopted, which effectively increases
the exploitation ability of the creatures. At the same time, the constant P was changed to self-
adjusting weight, thereby adapting more to the whole algorithmic process. The proposed MSMPA
has been fully evaluated on CEC2017 functions and compared with established related optimization
The experimental results show that MSMPA achieves competitive or even better performance on most
functions, especially on composition. Also, in the engineering optimization problem, MSMPA has
better objective function values compared to other algorithms and the resulting optimal solutions
do not exceed the constraints. This indicates that the MSMPA algorithm can be well applied to
engineering optimization problems.

In the future, we will continue to improve the algorithm and increase its performance. As the
analysis of the experiment, we found that the convergence speed of MSMPA can still be improved and
we can continue to experiment in this area at a later time. In addition, the predators model is a general
optimization framework that can be applied to other metaheuristic algorithms, such as differential
evolution (DE), genetic algorithm (GA), and artificial bee colony algorithm (ABC).
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