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ABSTRACT

Effective constrained optimization algorithms have been proposed for engineering problems recently. It is common
to consider constraint violation and optimization algorithm as two separate parts. In this study, a pbest selection
mechanism is proposed to integrate the current mutation strategy in constrained optimization problems. Based
on the improved pbest selection method, an adaptive differential evolution approach is proposed, which helps the
population jump out of the infeasible region. If all the individuals are infeasible, the top 5% of infeasible individuals
are selected. In addition, a modified truncated ε-level method is proposed to avoid trapping in infeasible regions.
The proposed adaptive differential evolution approach with an improved ε constraint process mechanism (IεJADE)
is examined on CEC 2006 and CEC 2010 constrained benchmark function series. Besides, a standard IEEE-30 bus
test system is studied on the efficiency of the IεJADE. The numerical analysis verifies the IεJADE algorithm is
effective in comparison with other effective algorithms.
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1 Introduction

Numerous real-world engineering optimization problems, such as the milling process [1] and
design problems of the car sides [2], are typical constrained optimization problems (COPs). A set of
constraints and the objective function are needed to meet at the same time. The mathematical model
can be presented in the following way:

min f
(→

X
)

subject to

gl

(→
X

)
≤ 0, l = 1, 2, . . . , Q

hk

(→
X

)
≤ 0, k = 1, 2, . . . , K

Lj ≤ xj ≤ Uj, j = 1, 2, . . . , D

(1)
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where
→
X = [x0, x1, . . . , xD]T is the D dimensional vector of decision variables. f

(→
X

)
denotes the

objective function. gl

(→
X

)
stands for the l-th inequality constraints, hk

(→
X

)
represents the k-th equality

constraints. Lj and Uj are used to specify the lower and upper bounds of the j-th decision variable.

In the literature, traditional mathematical programming-based approaches and computational
intelligence algorithms are applied to tackle COPs. Traditional methods, such as the gradient-based
approaches, often require a priori knowledge of the mathematical properties of the model. While
computational intelligence methods do not rely on that a priori knowledge, but can still present more
robust and better solutions than traditional methods.

Evolutionary algorithms, e.g., the differential evolution (DE) algorithm, are effective ways to
deal with the COPs. DE algorithm is effectively used as the search engine. Since the first proposal of
Storn et al. [3], many scholars have contributed continuously to improve it. Zhang et al. [4] introduced
the adaptive DE algorithm, JADE, by proposing an effective mutation strategy and adaptive control
parameter generation method. Gong et al. proposed a series of essential and effective improvements to
JADE [5]. A strategy adaption mechanism and a crossover rate repairing technique are presented. The
researches show that the improvements of JADE are competitive compared with other algorithms.

Combined with the constraint handling techniques, DE can be utilized in COPs [6–9]. The
most effective ones are penalty function method [10], multi-objective-based method [11], ε constraint
handling technique [12], stochastic ranking (SR) [13], and so on. As a classical constraint handling
technique, penalty function method requires appropriate penalty parameters to get better results. The
superiority of feasible solutions (SF) [14] is embedded in the selection phase, which gives priority
to ensuring all solutions are feasible, and then optimizes the objective function values. However,
promising infeasible solutions should be retained at the beginning of the iteration to help the
population move to a better region. Fu et al. [9] proposed the hyperspace dynamic region to store
infeasible solutions, which can improve the performance of the algorithm.

ε constraint handling technique is a promising method proposed nowadays, which accepts the
promising constraint violation individuals at first, and then accepts those feasible solutions at the end
of the evolution process. Takahama et al. [12] first introduced the ε constraint method into DE algo-
rithm (εDE). The feasible solutions can be obtained quickly, and better objective values are achieved as
well. Then they brought in a revised εDE via the kernel regression-based approximation [15]. Unfortu-
nately, this method is time-consuming due to its approximation procedure. Wang et al. [16] integrated
both SF and ε constraint handling technique into composite differential evolution. Its comprehensive
performance is better than those using only one constraint handling method. Zhang et al. [17]
presented an adaptive ε control heuristic method in place of using exponential function to control
ε value. Stanovov et al. [18] integrated a selective pressure technique in DE, which takes function
values, constraint violations measured by ε-constraint level into consideration simultaneously. Aiming
to the multipath estimation in non-Gaussian noise problem, Ni et al. [19] integrated ε-constrained
method into differential evolution. Duc Nguyen et al. [20] integrated differential evolution in Adaptive-
Network-based Fuzzy Inference System. The experiment results prove the method is better than
Reduced Error Pruning Trees and Decision Stump. Yi et al. [21] presented an improved version of
ε-constrained method with adaptive differential evolution.

ε constraint method can adjust the feasible region adaptively in a more effective way. And the
ε-level control method plays an important role in balancing exploration and exploitation. Hence, an
improved version of ε constraint method is proposed in this paper.
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The main purpose of the paper is to design an effective constraint technique and optimization
algorithm for COPs. Therefore, the following two innovations are made:

1) First, the pbest selection mechanism is proposed. Rather than selecting the individuals with
respect to the objective values, the individuals are chosen based on constraint violation and
fitness.

2) Second, an improved ε constraint method is proposed. The reasonable setting of ε is important.
Hence, a novel truncated setting is proposed to ensure that.

The framework of the paper can be summarized as below. Section 2 presented the proposed
algorithm, with an improved top pbest individual selection mechanism in JADE for COPs. In
Section 3, the improved ε constrained method is presented. In Section 4, the proposed algorithm
is compared with several DE variants via benchmark testing problems. In Section 5, the standard
IEEE-30 bus test system is used to test the efficiency of the proposed algorithm. And Section 6
concludes the paper.

2 Adaptive Differential Evolution for COPs

An improved JADE that tackles the COPs is proposed. The pbest selection mechanism will be
introduced.

2.1 DE/Current-to-pbest/2 Strategy
DE/current-to-pbest/2 strategy is:

vi,G+1 = xi,G + Fi

(
xp

best,G − xi,G

) + Fi

(
xr1,G − xr2,G + xr3,G − xr4,G

)
(2)

where xr3, xr4 are two randomly selected individuals in population.

In JADE, the archive is used to collect unsuccessful solutions, and it can serve to improve the
global search capability. The difference vector can point to the better area by archive set. The archive
can be helpful in exploitation, which can also be harmful in investing unpromising areas. Emphasis on
the exploration, the archive is not included in our paper. To give a vivid description on the proposed
strategy, Function 8 with two-dimensional variables in CEC 2006 benchmark [22] is used as an example
to illustrate our idea. The objective function, constraint violation and the mutation vector generation
with the proposed strategy diagram are drawn as Figs. 1 and 2.

Figure 1: Constraint violation of F08 in CEC 2006
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Figure 2: Objective function value of F08 in CEC 2006

We can see from Fig. 3, the proposed strategy can guide the target vector moving towards
the promising area, and moving away from the more constraint violation area. In this way, more
exploration can be made within the promising area.

Figure 3: Illustration of the proposed strategy in F08

2.2 Parameter Adaption Strategy
Control parameters Fi and CRi are from various distribution and mean values. In this way, they

can move towards the promising areas.

The CRi generation in JADE [4] is given as:

CRi = randni (μCR, 0.1) (3)

where μCR is mean value; 0.1 is standard deviation; randni (x, y) indicates a random value sampled from
a uniform distribution.

The Fi is similar to CRi generation with following formula:

Fi = randci (μF , 0.1) (4)

where randci (x, y) is based on Cauchy distribution with location x and scale y.{
Fi,G = rand
CRi,G = rand , ∀i, G (5)
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3 ε Constrained Algorithm

Fitness and constraint violation are both vital in COPs. ε constrained algorithm is effective in
dealing with the two indexes. The improved ε setting will be given in the following part.

3.1 ε Comparison Strategy
In-line equations/expressions are embedded into the paragraphs of the text. For example, E = mc2.

In-line equations or expressions should not be numbered and should use the same/similar font and size
as the main text.

Constraint violation φ (x) is the maximum or the sum of all constraints.

φ = max
{
max {0, gi (x)} ,

∣∣hj (x)
∣∣} , i ∈ {1, . . . , q} , j ∈ {1, . . . , m} (6)

φ (x) =
q∑

i=1

‖max {0, gi (x)}‖p +
m∑

j=q+1

∥∥∣∣hj (x)
∣∣∥∥p

(7)

where ‖‖p represents p-norm. Without loss of generality, the maximum of all the constraints is applied
and is denoted as φ (x) in the proposed algorithm.

Based on the concept of constraint violation, COPs can be presented as follows:

min f (x)

s.t. φ (x) ≤ 0 (8)

In usual comparison strategy, x is defined as feasible when φ (x) = 0. The comparison on the ε

level yields the compact constraints by tuning from 0 to parameter ε. That is, x is named ε-feasible, if
φ (x) is not bigger than ε. Then, comparison can be presented by the formula below:

(f1, φ1) ≤ε (f2, φ2) ⇔
⎧⎨
⎩

f1 ≤ f2, if φ1, φ2 ≤ ε

f1 ≤ f2, if φ1 = φ2

φ1 ≤ φ2, otherwise
(9)

where (f1, φ1) is the objective value and constraint violation of x1.

3.2 ε-Level Setting
ε-level setting is vital in ε constrained method [21,23]. Above researches show that ε should be

larger at first and decrease along with constraint violation.

Static ε control method was firstly proposed [12] and it uses exponent function control the decrease
of ε-level:⎧⎪⎨
⎪⎩

ε (0) = φ (xθ )

ε (t) =
{
ε (0)

(
1 − G

T

)cp
, 0 < G < T

0, G ≥ T

(10)

where xθ means the θ th constraint violation value among the population. During the iteration, along
with the increase of G, ε-level is reduced to 0; cp and T are control parameters;

Truncated ε-level method uses the maximum and minimum constraint violation in the population
to calculate ε-level:

ε =
{

0, ϕap×NP = 0
[ap × ϕmin, ap × ϕmax] , else (11)
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where ϕmin and ϕmax indicate the least and most constraint violation of the current population,
respectively; NP is the size of the population; ap is control parameter. So, in truncated ε-level method,
if a defined percent of the population is feasible, ε is assumed to be 0; Otherwise, a random value is
generated as based on ϕmin and ϕmax.

Using static ε control method, the ε-level is related to the initial constraint violation during the
generation, excluding current information of population. If the initial violation value is too large, it
will slow down the convergence speed and lean to be stuck in the local optimum within the infeasible
region. Although the truncated ε-level method exploits the information of the present population,
for complicate equality constraints, the strategy may lead the population trapping into the infeasible
region.

In this paper, an improved ε-level setting is presented as follows:{
ε′ (t) = ε

(
1 − G

T

)cp
, if 0 < G < T

ε (t) = r [min (ϕmax, ε′ (t)) , max (ϕmax, ε′ (t))]
(12)

A proper setting of ε is proposed as follows:

ε =
{
ε (0) , if ε (0) ≤ ε∗

ε (t) , else (13)

A revised truncated strategy is implemented. ϕmin is replaced by ε′ (t). ε is generated between ϕmax

and ε′ (t), which multiplied by an important coefficient r. In the proposed strategy, the following
formula is used:

r = 0.9 + 0.1 ∗ rand (14)

3.3 pbest Selection Method
Fitness value and feasibility are both vital in COPs. Feasibility often is more important than fitness

value. A selection strategy for pbest individuals with respect to the constraint violation is presented.
If two individuals are both infeasible, the one with less constraint violation is better. If they are both
feasible, their objective function values are compared instead.

Based on the above analysis, the pseudocode of the proposed algorithm is shown in Fig. 4.

Figure 4: Pseudocode of the proposed improved adaptive differential evolution with modified ε

constrained method
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4 Experiment Results

To examine the performance quantitatively, two benchmark function sets are used: CEC 2006 and
CEC 2010, where D = 10, 30 are analyzed. For simplicity’s sake, the detailed forms of the test functions
are omitted. The details can be referred in Liang et al. [22] and Mallipeddi et al. [24], respectively.

It is worth mentioning that the CEC 2010 benchmark functions with 10D have twelve functions
which feasible region ratio less than 10E−06, and thirteen functions with 30D benchmark func-
tions. Referring to the feasible region ratio, it is more difficult to solve the CEC 2010 benchmark
functions than CEC 2006 series.

4.1 Parameter Setting
For the proposed algorithm, the parameters are set as below:

• population size: 80 (CEC 2006), 20 (10D, CEC 2010), 50 (30D, CEC 2010);

• crossover rate: CRi = randni (μCR, 0.1);

• scaling factor: Fi = randci(μF , 0.1);

• ε setting control parameter: cp = 5; r ∈ [0.9, 1];

• maximum number of fitness evaluations: 500,000; D ∗ 20,000 (CEC 2010);

where μCR indicates mean value. 0.1 is standard deviation; randni (x, y) is randomly generated from the
uniformly distribution. μF indicates the expected value, and the standard deviation is assumed to be
0.1; randci (x, y) stands for Cauchy distribution with location x and scale y. D in the maximum number
of fitness evaluations stands for dimension in CEC 2010, which are 10 and 30, respectively.

4.2 Performance on CEC 2006
Three state-of-the-art algorithms APF-GA [25], Cultural CPSO [26] and AIS [27] are used as the

baselines to measure the performance of the proposed IεJADE method. Since all the three algorithms
cannot guarantee feasibility for functions G20 and G22, the comparisons on these two benchmark
functions are omitted. The experimental results of APF-GA, Cultural CPSO and AIS are from
Zhang et al. [23].

We can conclude from Table 1, the APF-GA method converges to the most desirable results in 16
functions, which are G01, G03-04, G06-09, G11-14, G16, G18 and G24 in terms of the “Best” and
“Mean” indexes. The Cultural PSO algorithm can attain the best outcome in 17 out of 22 functions,
which are G01, G03-12, G14, G16, G18, G21 and G23-24 referring to the “Best” and “Mean” indexes.
7 out of 20 functions can obtain the most desirable results for AIS algorithm with respect to the
“Best” and “Mean” indexes, which are G01, G08, G11-12, G15-16 and G19. The proposed IεJADE
algorithm secure the best solution in 13 out of 22 functions, which are G02, G04-G14 and G16. The
proposed IεJADE algorithm rivals the APF-GA and Cultural-CPSO algorithm, and outperforms
the AIS algorithm with respect to the overall performance. In particular, APF-GA algorithm attains
the best outcome in G05 and G10 in terms of the “Best” index without a tie. Similarly, Cultural-PSO
reaches the best results in G02 and G03, AIS in G02, G04-05, G07, G09-10, G14, G18, G21 and
G23, IεJADE in G03, G15, G17-18, G21 and G23. As for the “Best” index, the IεJADE algorithm
shows superior performance than APF-GA and Cultural-CPSO algorithms. To sum up, the proposed
IεJADE is an effective algorithm in solving the CEC 2006 benchmark functions.
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Table 1: Statistical results for solving 22 benchmark functions from CEC 2006

CEC 2006 APF-GA Cultural CPSO AIS IεJADE

G01 Best −15.0000 −15.0000 −15.0000 −15
Mean −15.0000 −15.0000 −15.0000 −15
std 0.0E+00 0.0E+00 0.0E+00 0.0E+00

G02 Best −0.803601 −0.8036191 −0.803619 −0.803619
Mean −0.803518 −0.8016532 −0.802193 −0.803619
std 1.00E−04 4.68E−03 5.19E−10 1.6E−06

G03 Best –1.001 −1.0005 −1.0005 −1.0005
Mean –1.001 −1.0005 −1.0005 −1.0004
std 0.0E+00 3.68E−13 1.77E−11 6.7E−04

G04 Best −30665.539 −30665.5387 −30665.53867 −30665.53867
Mean −30665.539 −30665.5387 −30665.53866 −30665.53867
std 1.00E−04 1.79E−16 3.69E−13 3.7E−12

G05 Best 5126.497 5126.4967 5126.4967 5126.4967
Mean 5127.5423 5126.4967 5126.4981 5126.4967
std 1.43E+00 6.09E−12 1.7E−02 2.8E−12

G06 Best −6961.814 −6961.8139 −6961.81385 −6961.813875
Mean −6961.814 −6961.8139 −6961.81385 −6961.813875
std 0.0E+00 3.81E−11 1.9E−12 0.0E+00

G07 Best 24.3062 24.3062 24.306209 24.306209
Mean 24.3062 24.3062 24.35572 24.306209
std 0.0E+00 1.37E−12 8.2E−03 1.0E−11

G08 Best −0.0958250 −0.09582504 −0.0958250 −0.095825
Mean −0.0958250 −0.09582504 −0.0958250 −0.095825
std 0.0E+00 7.81E−11 0.0E+00 1.5E−17

G09 Best 680.630 680.630057 680.630057 680.630057
Mean 680.630 680.630057 680.650308 680.630057
std 0.0E+00 5.88E−17 1.2E−08 3.2E−13

G10 Best 7049.24802 7049.2480 7049.248020 7049.24802
Mean 7077.6821 7049.2480 7049.570318 7049.24802
std 5.12E+01 4.68E−17 4.5E−04 2.1E−06

G11 Best 0.7499 0.7499 0.749999 0.7499
Mean 0.7499 0.7499 0.749999 0.7499
std 0.0E+00 4.68E−17 1.4E−08 1.1E−16

G12 Best −1.0000 −1.0000 −1.0000 −1
Mean −1.0000 −1.0000 −1.0000 −1
std 0.0E+00 1.76E−14 0.0E+00 0.0E+00

(Continued)
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Table 1 (continued)

CEC 2006 APF-GA Cultural CPSO AIS IεJADE

G13 Best 0.053942 0.053941514 0.05393852 0.053941514
Mean 0.053942 0.053941519 0.05394037 0.053941514
std 0.0E+00 1.54E−07 7.8E−10 1.6E−17

G14 Best −47.76479 −47.7649 −47.764888 −47.764888
Mean −47.76479 −47.7649 −47.764881 −47.764888
std 1.00E−04 6.78E−11 1.0E−12 5.0E−13

G15 Best 961.71502 961.715022 961.71502 961.71502
Mean 961.71502 961.715022 961.71502 963.72618∗
std 0.00E+00 2.66E−16 0.0E+00 3.0E+00

G16 Best −1.905155 −1.905155 −1.905155 −1.905155
Mean −1.905155 −1.905155 −1.905155 −1.905155
std 0.00E+00 3.96E−13 0.0E+00 4.5E−16

G17 Best 8853.5398 8853.5397 8853.53967 8853.53387
Mean 8888.4876 8853.5397 8853.53967 8905.09808
std 29.0347 1.53E−11 1.9E−09 8.5E+01

G18 Best −0.866025 −0.86602540 −0.8660254 −0.8660254
Mean −0.865925 −0.86602540 −0.8660253 −0.8367392
std 1.00E−04 8.09E−14 1.3E−15 1.0E−01

G19 Best 32.655593 32.6556 32.655592 32.655593
Mean 32.655593 32.6556 32.655592 32.655593
std 0.00E+00 5.91E−12 0.0E+00 1.2E−08

G21 Best 196.63301 193.7245 193.72451 193.72451
Mean 199.51581 193.7245 196.72451 240.87671
std 2.3565 4.65E−05 1.1E+00 6.4E+01

G23 Best −399.7624 −400.0551 −400.05509 −400.0551
Mean −394.7627 −400.0551 −399.87432 −385.5666
std 3.8656E+00 6.23E−11 2.0E+00 6.0E+01

G24 Best −5.508013 −5.5080 −5.5080132 −5.5080133
Mean −5.508013 −5.5080 −5.5080132 −5.5080133
std 0.00E+00 5.88E−15 0.0E+00 9.1E−16

4.3 Performance on CEC 2010
For comprehensive comparison, AIS and εDEg are chosen to compare with IεJADE. εDEg [28] is

ranked first in the competition at CEC 2010, while the AIS algorithm is recently proved to be effective
for COPs. And the best outcome of all the three algorithms is written in bold. The experimental results
of CEC 2010 on 10D and 30D are given in Tables 2 and 3, respectively.
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Table 2: Statistical results for solving 18 benchmark functions from CEC 2010 at 10D

CEC 2010 10D Best Median Mean Worst Std

C01 IεJADE −0.74731 −0.74731 −0.74704 −0.74056 1.35E−03
AIS −0.74731 −0.74731 −0.74705 −0.74357 1.30E−03
εDEg −0.74731 −0.74731 −0.74704 −0.74055 1.32E−03

C02 IεJADE −2.27771 −2.1754 −2.1839 −2.1134 4.39E−02
AIS −2.27771 −2.2755 −2.2748 −2.2709 2.00E−03
εDEg −2.27771 −2.2695 −2.2588 −2.1744 2.38E−02

C03 IεJADE 8.8756E+00 8.8756E+00 8.8756E+00 8.8756E+00 1.57E−10
AIS 0.00E+00 1.1772E−10 3.7472E−09 2.1342E−08 4.81E−04
εDEg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C04 IεJADE −1.000E−05 −1.000E−05 −1.000E−05 −1.000E−05 3.55E−16
AIS −1.000E−05 −9.9867E−06 −9.9712E−06 −9.9322E−06 4.28E−03
εDEg −9.9923E−06 −9.9773E−06 −9.9185E−06 −9.2823E−06 1.54E−07

C05 IεJADE −483.6106 −483.6106 −483.6106 −483.6106 3.48E−13
AIS −483.6110 −483.5293 −479.9600 −460.1242 6.3E+00
εDEg −483.6106 −483.6106 −483.6106 −483.6106 3.89E−13

C06 IεJADE −577.1759 −577.1759 −577.1759 −577.1759 9.28E−14
AIS −579.9984 −579.9843 −579.9514 −579.7358 7.3E−08
εDEg −578.6581 −578.6533 −578.6528 −578.6448 3.62E−03

C07 IεJADE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
AIS 0.00E+00 1.1279E−11 1.1735E−08 0.21778 2.7E+00
εDEg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C08 IεJADE 0.00E+00 0.00E+00 3.6969E+00 1.0941E+01 4.83E+00
AIS 5.55E−12 1.2416 4.0919 9.4817 1.46E+00
εDEg 0.00E+00 10.94154 6.727528 15.37535 5.56E+00

C09 IεJADE 0.00E+00 0.00E+00 1.3575E+01 3.3747E+02 6.75E+01
AIS 5.201E−08 2.506E−03 2.698E+01 2.9953E+02 7.50E+01
εDEg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C10 IεJADE 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
AIS 2.684E−17 3.379E−13 1.620E+03 2.5737E+03 5.0E+02
εDEg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C11 IεJADE −1.52271E−03 −8.7342E−02∗ −8.0476E−02∗ −8.7342E−02∗ 2.37E−02
AIS −1.52272E−03 −1.52272E−03 −9.19953E−04 1.39717E−03 8.23E−04
εDEg −1.52271E−03 −1.52271E−03 −1.52271E−03 −1.52271E−03 6.34E−11

C12 IεJADE −1.9925E−01 −8.9092E+02∗ −7.3483E+02∗ −8.9092E+02∗ 3.34E+02
AIS −570.1992 −452.6516 −435.7736 −255.3529 6.02E+01
εDEg −570.0899 −423.1332 −336.734 −198.9129 1.78E+02

(Continued)
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Table 2 (continued)

CEC 2010 10D Best Median Mean Worst Std

C13 IεJADE −68.42937 −68.42937 −67.2830 −42.4097 5.20E+00
AIS −68.4298 −68.2759 −67.8735 −67.0705 3.11E−01
εDEg −68.42937 −68.42936 −68.42936 −68.42936 1.02E−06

C14 IεJADE 0.00E+00 0.00E+00 1.5946E−01 3.9866E+00 7.97E−01
AIS 1.5314E−14 1.0720E−12 1.2213E−04 2.2116E−04 2.9E−08
εDEg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

C15 IεJADE 8.8596E+07 5.9227E+09 3.5738E+11 6.6612E+12 1.34E+12
AIS 2.5265E−20 2.2083E−09 5.1855E−09 2.8151E−08 1.1E−08
εDEg 0.00E+00 0.00E+00 0.1799 4.4974 8.81E−01

C16 IεJADE 9.0457E−02 5.1530E−01 4.9625E−01 9.4367E−01 2.39E−01
AIS 7.2556E−20 9.6902E−18 9.9593E−18 1.9631E−18 6.27E−15
εDEg 0.00E+00 0.2820 0.2702 1.0183 3.71E−01

C17 IεJADE 7.8210E−02 3.6965E−01 5.5203E−01 1.9225E+00 4.78E−01
AIS 1.4250E−09 4.6817 2.9340 4.7120 2.29E+00
εDEg 1.4632E−17 5.6533E−03 0.1250 0.7302 1.93E−01

C18 IεJADE 0.00EE+00 2.4289E−28 1.0678E−26 2.4632E−24 4.92E−26
AIS 1.2521E−18 2.6675E−13 1.6590 6.6334 1.27E+00
εDEg 3.7314E−20 4.0979E−19 9.6788E−19 9.2270E−18 1.81E−18

Note: ∗ means infeasible solutions.

In contrast with the two other algorithms in 10D problems, the proposed IεJADE algorithm
obtains the best results of index “Best” in 9 out of 18 functions, which are C01-02, C04, C07-10, C14
and C18. As for the “Median”, “Mean” and “Worst” indexes, the proposed IεJADE algorithm obtains
best outcome in 10, 6, and 6 out of 18 functions, respectively. AIS attains the best result in 10, 5, 6,
and 6 out of 18 functions, as for the indexes of “Best”, “Median”, “Mean” and “Worst”. The εDEg
algorithm achieves 11, 9, 9, 9 out of 18 functions referring to “Best”, “Median”, “Mean” and “Worst”
indexes. In summary, the εDEg approach outperforms the other algorithms in 10D problems.

Table 3: Statistical results for solving 18 benchmark functions from CEC 2010 at 30D

CEC 2010 30D Best Median Mean Worst Std

C01 IεJADE −0.8218844 −0.8218843 −0.8216994 −0.8179475 2.43E−03
AIS −0.8219648 −0.8217607 −0.8201145 −0.7577310 3.25E−04
εDEg −0.8218255 −0.8206172 −0.8208687 −0.7405572 7.10E−04

C02 IεJADE −2.1557118 −2.0920230 −2.0938590 −2.0494674 3.01E−02
AIS −2.2244440 −2.2222491 −2.2125155 −2.2027971 2.84E−03
εDEg −2.169248 −2.152145 −2.174499 −2.117096 1.20E−02

(Continued)
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Table 3 (continued)

CEC 2010 30D Best Median Mean Worst Std

C03 IεJADE 28.67347 28.67347 88.0271 2033.3647 4.05E+03
AIS 8.537446E−05 2.920680E−04 66.75758 89.20102 4.26E+02
εDEg 28.67347 28.67347 28.83785 32.78014 8.0E−01

C04 IεJADE 3.4933E−05 9.9704E−01 3.8790E+00 1.9365E+01 6.90E+00
AIS −2.07820E−02 2.3197E−03 1.9761E−03 1.29167E−02 1.61E−03
εDEg 4.6981E−03 6.9476E−03 8.1630E−03 1.7779E−02 3.06E−03

C05 IεJADE −483.6106 −483.6106 −483.6106 −483.6106 1.95E−10
AIS −483.3385 −458.0834 −436.1129 −425.0065 2.51E+01
εDEg −453.1307 −450.0404 −449.5460 −442.1590 2.89E+00

C06 IεJADE −530.6248 −530.6164 −530.6127 −530.5953 8.56E−03
AIS −530.3266 −528.1700 −454.2575 −424.5415 4.79E+01
εDEg −528.5750 −528.0407 −527.9068 −526.4539 4.74E−01

C07 IεJADE 0.0000E+00 0.0000E+00 4.7839E−01 3.9866E+00 1.32E+00
AIS 1.7096E−15 1.3074E−12 1.0730051 2.3370275 1.61E+00
εDEg 1.1471E−15 2.1144E−15 2.6036E−15 5.4819E−15 1.23E−15

C08 IεJADE 0.0000E+00 0.0000E+00 6.0348E+00 1.0614E+02 2.27E+01
AIS 9.7601E−17 2.2556E−15 1.6530908 3.5832882 6.41E−01
εDEg 2.51869E−14 6.51151E−14 7.83146E−14 2.57811E−13 4.85E−14

C09 IεJADE 0.0000E+00 0.0000E+00 3.5203E−01 4.4004E+00 1.22E+00
AIS 8.91564E−20 1.5713E−12 1.565417 2.418812 1.96E+00
εDEg 2.7707E−16 1.1246E−08 1.0721E+01 1.0528E+02 2.82E+01

C10 IεJADE 0.0000E+00 3.4940E−26 3.2925E+00 2.6644E+01 6.29E+00
AIS 2.18338E−05 2.21765456 1.7847E+01 5.5992E+01 1.88E+01
εDEg 32.5200 33.2890 33.2617 34.6324 4.54E−01

C11 IεJADE −3.9234E−04 −3.9234E−04 3.4203E−03 1.8671E−02∗ 7.78E−03
AIS −1.6409E−04 −3.214E−04 −1.579E−04 −1.793E−04 4.67E−05
εDEg −3.2684E–04 −2.8432E−04 −2.8638E−04 −2.2363E−04 2.71E−05

C12 IεJADE −1.9926E−01 −1.9926E−01 −1.9926E−01 −1.9926E−01 5.89E−09
AIS −1.96415E−01 −6.07923E−02 4.28807E−06 6.19328E−06 4.52E−04
εDEg −1.9914E−01 5.3371E+02∗ 3.5623E+02 5.4617E+02∗ 2.89E+02

C13 IεJADE −65.071846 −63.287401 −63.331724 −61.198101 1.04E+00
AIS −68.428779 −67.956008 −66.235783 −66.002354 2.27E−01
εDEg −66.42473 −65.31507 −65.35310 −64.29690 5.73E+01

C14 IεJADE 0.0000E+00 0.0000E+00 6.3785E−01 3.9866E+00 1.49E+00
AIS 6.7351E−15 5.9906E−12 8.6828E−07 1.5555E−06 3.14E−07
εDEg 5.01586E−14 1.35930E−13 3.08940E−13 2.92351E−12 5.61E−13

(Continued)
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Table 3 (continued)

CEC 2010 30D Best Median Mean Worst Std

C15 IεJADE 0.0000E+00 0.0000E+00 3.3720E−01 4.2150E+00 1.17E+00
AIS 1.9950E−09 1.8800E−10 3.4128E+01 7.2308E+01 3.82E+01
εDEg 2.1603E+01 2.1603E+01 2.1603E+01 2.1604E+01 1.10E−04

C16 IεJADE 2.2177E−01 5.8719E−01 5.7947E−01 8.6939E−01 1.61E−01
AIS 3.9634E−11 6.20829E−10 8.20616E−02 5.474569E−01 1.12E−01
εDEg 0.0E+00 0.0E+00 2.1684E−21 5.4210E−20 1.06E−20

C17 IεJADE 3.7691E+01 1.0063E+02 1.1696E+02 3.3964E+02 7.40E+01
AIS 4.1942E−07 3.06839E−06 3.60514123 8.94521185 2.54E+00
εDEg 2.16571E−01 5.315949 6.326487 18.89064 4.99E+00

C18 IεJADE 7.1943E−21 1.0099E−17 1.3517E−07 3.3792E−06 6.76E−07
AIS 1.98864E−08 1.54857008 4.015246E+01 6.264366E+01 1.80E+01
εDEg 1.226054 26.79497 87.54569 737.5363 1.66E+02

Note: ∗ means infeasible solutions.

Compared with two competitive algorithms in 30D problems, the proposed IεJADE algorithm
attains the best results in terms of “Best”, “Median”, “Mean”, and “Worst” in 11, 13, 8, and 7 out of 18
functions. The AIS algorithm reaches 6, 5, 4, and 5 best results out of 18 functions in the above indexes.
εDEg algorithm obtains 1, 1, 5, and 5 best results in the “Best”, “Median”, “Mean”, and “Worst”
indexes, respectively. It is worth mentioning that the proposed IεJADE algorithm demonstrates
superior capabilities in handling the 30D problems, in comparison with the other two algorithms.

To conclude, the proposed algorithm has potential in solving complex and high dimensional
problems while the performance in low dimensional problems is acceptable when compared with the
two competitive algorithms.

4.4 Convergence Curve of ε-Level
The convergence curves of the 10 functions with 30 dimensions are given as follows. From Fig. 5,

it is observed that the IεJADE algorithm can achieve convergence with a rapid speed. The convergence
curves of ε-level also indicate that the proposed setting can be convergent to the original feasible region
rapidly with a small number of fitness evaluations.

5 Case Study

A standard IEEE-30 bus test system is utilized to evaluate the effectiveness of the IεJADE
algorithm. As one of the leading cases in power systems optimization, optimal power flow (OPF)
aims to obtain the optimal solutions and minimize the objective function. Equality and inequality
constraints are two different optimal objectives in this system, which are described in following
subsection.
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Figure 5: (Continued)
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Figure 5: The curve of convergence w.r.t. ε-level

5.1 Equality Constraints
In OPF, typical load flow equations can be illustrated as follows:

PGi = PDi + Vi

NB∑
j=1

Vj

[
Gij cos

(
δi − δj

) + Bij sin
(
δi − δj

)]
, i = 1, . . . , NB (15)

QGi = QDi + Vi

NB∑
j=1

Vj

[
Gij cos

(
δi − δj

) + Bij sin
(
δi − δj

)]
, i = 1, . . . , NB (16)

where PGi and QGi are the active power generation and reactive power generation, respectively. PDi and
QDi are the active power demand and reactive power demand, respectively. Vi and Vj are the voltages
of ith and jth bus, respectively. Gij, Bij and δij are the conductance, susceptance and phase difference of
voltages between bus i and bus j, respectively.

5.2 Inequality Constraints
The inequality constraints are as follows:

Pmin
Gi

≤ PGi ≤ Pmax
Gi

, i = 1, . . . , NG (17)
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Qmin
Gi

≤ QGi ≤ Qmax
Gi

, i = 1, . . . , NG (18)

V min
Gi

≤ VGi ≤ V max
Gi

, i = 1, . . . , NG (19)

Qmin
Cj

≤ QCj ≤ Qmax
Cj

, j = 1, . . . , NC (20)

Tmin
k ≤ Tk ≤ Tmax

k , i = 1, . . . , NT (21)

V min
Lm

≤ VLm ≤ V max
Lm

, m = 1, . . . , NL (22)

Sln ≤ Smax
ln

, n = 1, . . . , nl (23)

where QCj , Tk, VLm , Sln are VAR injection of jth shunt compensator, transformer tap settings, load
voltage of mth unit and apparent power flow of nth branch, respectively.

5.3 Optimal Objectives
Two single optimal objectives, minimization of emission and minimization of real power loss are

studied. Emission in traditional electrical power system have been concerned as it emits harmful gases
including SOx, NOx. The equation of minimization of emission is given by [29]:

fEmission =
NG∑
i=1

αi + βiPGi + γiP2
Gi

+ 
ie(
φiPGi) (24)

where fEmission is emission of test system. αi, βi, γi, ρ and φi are ith generator emission coefficients. The
settings are listed in Table 4. The details can be referred in [29].

Table 4: Coefficient values of generators [30]

Generator Bus α β � 
 φ

(t/h) (t/p.u.MWh) (t/p.u.MW2h) ($/h) (p.u.MW-1)

G1 1 4.091 −5.554 6.49 0.0002 2.857
G2 2 2.543 −6.047 5.638 0.0005 3.333
G3 5 4.258 −5.094 4.586 0.000001 8
G4 8 5.326 −3.55 3.38 0.002 2
G5 11 4.258 −5.094 4.586 0.000001 8
G6 13 6.131 −5.555 5.151 0.00001 6.667

The power loss is unavoidable but it can be reduced by adjusting voltage and voltage angle. The
equation of real power loss is expressed as:

fPloss =
nl∑

i=1

nl∑
i �=j

Gij

[
V 2

i + V 2
j − 2ViVj cos

(
δi − δj

)]
(25)

5.4 Experimental Results
The standard IEEE-30 bus system is used and four optimization objectives, including fuel cost,

emission, fuel cost with valve-point effect and voltage deviation are considered. The ACDE [29],
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ECHT-DE [30], SF-DE [30], and SP-DE [30] are compared with the proposed approach. The results
are given in Table 5.

Table 5: Statistical analysis outcome for the IEEE-30 bus system test

Case# Algorithm Min Max Mean Std

ECHT-DE 0.2048 0.2048 0.2048 0.0000
SF-DE 0.2048 0.2048 0.2048 0.0000

Case 1 SP-DE 0.2048 0.2048 0.2048 0.0000
ACDE 0.2048 0.2048 0.2048 0.0000
IεJADE 0.2048 0.2048 0.2048 0.0000

ECHT-DE 3.0850 3.0871 3.0858 0.0005
SF-DE 3.0845 3.0857 3.0849 0.0003

Case 2 SP-DE 3.0844 3.0854 3.0848 0.0003
ACDE 3.0840 3.0862 3.0845 0.0005
IεJADE 3.0842 3.0851 3.0845 0.0003

The best results are in bold. It can be concluded that the proposed IεJADE algorithm has
competitiveness in this application. In Case 1, the proposed algorithm can obtain the best results as
other state-of-the-art algorithms. In Case 2, the proposed algorithm can achieve the best Max, Mean
and Std values, which means IεJADE has the most stable performance than other algorithms.

In the IEEE 30-bus system, the load bus voltage has its limits [0.95−1.05 p.u.] [29]. Fig. 6 shows
the load bus voltages are within the permissible range.

Figure 6: The voltage of load bus by IεJADE

6 Concluding Remarks

To effectively tackle the constraints in COPs, an improved pbest selection mechanism and an adap-
tive ε setting are presented. The effectiveness of the proposed algorithm is tested on benchmark test
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functions in CEC 2006, CEC 2010, and the standard IEEE 30-bus test system. The numerical results
illustrate that the proposed IεJADE algorithm is effective in tackling the constrained benchmark test
functions and real-world applications. The proposed pbest selection mechanism presents a way to select
and compare the infeasible and feasible individuals, which is effective to tackle them as integrity rather
than two separate parts.

The improved pbest selection mechanism focus on finding feasible solution first. Therefore, it is
more suitable for solving problems with smaller feasible domains. If a feasible solution can be easily
found, the pbest strategy which directly optimizes the objective function is more suitable.

It is challenging to obtain suitable ε values. The proposed ε setting can be improved by machine
learning and other self-learning ways. Historical information can be used to obtain the values. IεJADE
algorithm can be used to tackle more complex engineering-based constrained optimization problems
[31–33] in the future. Besides, more optimal objectives in IEEE 30-bus test system can be considered
in further research.
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