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ABSTRACT

The multi-skill resource-constrained project scheduling problem (MS-RCPSP) is a significant management science
problem that extends from the resource-constrained project scheduling problem (RCPSP) and is integrated with
a real project and production environment. To solve MS-RCPSP, it is an efficient method to use dispatching
rules combined with a parallel scheduling mechanism to generate a scheduling scheme. This paper proposes an
improved gene expression programming (IGEP) approach to explore newly dispatching rules that can broadly solve
MS-RCPSP. A new backward traversal decoding mechanism, and several neighborhood operators are applied in
IGEP. The backward traversal decoding mechanism dramatically reduces the space complexity in the decoding
process, and improves the algorithm’s performance. Several neighborhood operators improve the exploration of
the potential search space. The experiment takes the intelligent multi-objective project scheduling environment
(iMOPSE) benchmark dataset as the training set and testing set of IGEP. Ten newly dispatching rules are discovered
and extracted by IGEP, and eight out of ten are superior to other typical dispatching rules.
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1 Introduction

Resource-constrained project scheduling problem (RCPSP) is an important problem in project
management, which is widely used in the modern management system and industrial production
management, such as production planning, inventory management, and transportation management.
Since the 1960s, many researchers have been studying on RCPSP, all precedence relationships of tasks
in this problem can be described by the activity-on-arrow network [1]. Meanwhile, resource constraints
restrict the total resource consumption every time during the duration. This problem minimizes project
completion time, cost, or resource equilibrium by sequencing tasks and assigning resources.
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With the advent of the intelligent era, more and more practitioners are engaged in the Internet
Technology (IT) industry. To improve their job competitiveness, most IT engineers are proficient in
various skills, such as web front-end development, web back-end development, database construction,
etc. Due to the different preferences and emphases, these skills and experience may also vary for each
engineer, and this is a kind of common multi-skills human resource issue.

MS-RCPSP has been proven to be an NP-hard problem. Exact algorithms can often get the
optimal solution relatively quickly for solving small-scale problems. But it generally takes a long time
to obtain feasible solutions for large-scale problems, which is unacceptable to managers. When solving
large-scale problems, meta-heuristic algorithms can often get near-optimal solutions in an acceptable
time. However, the results of most meta-heuristic algorithms are highly uncertain.

Nowadays, rule-based heuristic approaches are usually used to generate scheduling schemes
with priority to deal with resource-constrained problems [2]. Gene expression programming (GEP)
algorithm is a search algorithm based on biological evolution mechanisms. Via fitting the linear
relationship of attribute values, GEP algorithm can obtain dispatching rules combining multiple
attribute values. A calculated value can be accurately obtained to establish the priority of the task.

This paper uses a backward traversal gene expression programming algorithm (IGEP) to generate
newly dispatching rules. Some of the contributions from this paper are listed below:

1) IGEP improves the decoding process of the basic GEP algorithm and adds several efficient
neighborhood search operators. It can dramatically improve the efficiency of exploring the
high-quality dispatching rules. The newly dispatching rules have superior performance and
can easily be applied to the real project and production environment.

2) The dispatching rules combined with the parallel scheduling mechanism solves MS-RCPSP to
obtain a scheduling scheme that minimizes project completion time.

3) The backward traversal decoding method can significantly reduce the space complexity of the
IGEP algorithm.

4) The IGEP algorithm with the merit of artificial intelligence and unsupervised learning is
effective for MS-RCPSP.

The rest of this paper can be described as follows: Section 2 introduces some related literature
review. Section 3 describes the motivation for this research. Section 4 introduces the multi-skill
resource constrained project scheduling problem in detail. And a mathematical model is given. In
Section 5, the design of the IGEP algorithm is introduced. And there is a systematic description of the
encoding and decoding process, evolution strategy, and fitness function. Section 6 presents the results
and comparative analysis. In this section, the data of the benchmark case set iMPOSE data set is used
to show the calculation results of the dispatching rule obtained by training and compare them with
several typical rules. The calculation results of dispatching rules based on the benchmark case set are
compared and analyzed. Section 7 concludes the paper.

2 Literature Review

Multi-skilled resource-constrained project scheduling problem (MS-RCPSP) is a kind of problem
that is very worthy of in-depth study, which is derived from the real-world production situation when
considering human resources or machines with multiple capabilities. However, compared to the MS-
RCPSP with the RCPSP, there is a lack of sufficient datasets to research the problem. For this reason,
Myszkowski et al. [3] created a set of iMOPSE datasets for multi-skill resource-constrained project
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scheduling problems in 2015, and which later researchers used as a benchmark dataset to study this
problem. After that, Myszkowski et al. [4] tried to solve MS-RCPSP with a greedy randomized adaptive
search procedure (GRASP).

There are many meta-heuristic algorithms those can to solve multi-skill resource-constrained
project scheduling problems, such as genetic algorithm (GA) [5–7], ant colony optimization (ACO)
[8–10], taboo search (TS) [11–13], simulated annealing (SA) [14,15], particle swarm optimization
(PSO) [5,16–18], migrating birds optimization (MBO) [19,20], etc. Machine learning has an excellent
performance in solving real-world problems. Wen et al. [21–23] applied convolutional neural networks
to fault classification. Cheng et al. [24] used Q-learning to solve multi-objective hybrid workshop
scheduling, and achieved outstanding results. Zhou et al. [25] proposed a hybrid genetic algorithm
to solve the multi-execution mode and multi-resource constrained project scheduling problem, and
applied it to the internal scheduling process of ocean engineering construction.

Myszkowski et al. [26] introduced the hybrid ant colony algorithm to solve MS-RCPSP. A
new multi-skill multi-mode resource constrained project scheduling problem with three objectives
is studied by Maghsoudlou et al. [27] in 2016. A variable neighborhood search approach for the
resource-constrained had proposed by Cui et al. [28] in 2020. Li et al. [29] presented a multi-
objective discrete Jaya (MODJaya) algorithm to address the MS-RCPSP in 2021. In the same year,
Zhu et al. [30] proposed an efficient decomposition-based multi-objective genetic programming hyper-
heuristic (MOGP-HH/D) approach for the multi-skill resource constrained project scheduling prob-
lem (MS-RCPSP) with the objectives of minimizing the makespan and the total cost simultaneously.
However, due to its complexity, meta-heuristic algorithms are rarely used to solve real MS-RCPSP
problem.

According to the parallel scheduling mechanism, a large number of dispatching rules have been
proposed, such as the shortest processing time (SPT), the minimum slack time (MSLK), and the
earliest job deadline (ODD) [31], etc. These dispatching rules can often obtain some scheduling
schemes in the shortest time. Although these scheduling schemes are not optimal, most of them can
bring near-optimal, and are easily used by managers. Almeida et al. [32] applied dispatching rules
to solving MS-RCPSP in 2016. They proved that using activity dispatching rules to solve project
scheduling problems can successfully adapt to multi-skill resource-constrained project scheduling
problems.

At the end of the 20th century, Portuguese biologist Ferreira [33] first proposed the concept of gene
expression programming (GEP) based on genetic algorithm (GA) and genetic programming (GP) [34].
As soon as it was proposed, it attracted widespread attention. More and more scholars and scientific
researchers have invested a lot of energy in this field. That is widely used in practical areas, such as
mathematics, physics, biology, chemistry, military industry, microelectronics, and economics. Many
related theories and research results have emerged.

In 2013, Peng et al. [35] proposed an improved gene expression programming algorithm for
solving symbolic regression problems. In 2017, Zhong et al. [36] summarized the development of
gene expression programming in coding design, evolutionary mechanism design, adaptive design, co-
evolutionary design, parallel design, theoretical research, and application in recent years. The research
result of applying GEP in supervised machine learning shows that it is very suitable for solving
the problems of classification and complex functional relationship discovery. An optimal scheduling
scheme can be obtained by the priority of each task, which is a problem of complex functional
relationship discovery. Therefore, using GEP to train meta-heuristic dispatching rules for solving MS-
RCPSP is an efficient option.
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Zhang et al. [37–41] conducted a more in-depth exploration of the dispatching rule of the
production scheduling, and provided a lot of research materials. Dispatching rules are also widely used
in the real MS-RCPSP problems. Zhang et al. [42] proposed an eGEP algorithm, which optimizes
the scheduling process of the job shop by extracting attributes. That significantly impacts energy
consumption, reducing the workshop’s energy consumption. Zhang et al. [43] proposed a hybrid
feature gene expression programming algorithm, which applies non-destructive reverse engineering
to the chip with bypass detection data.

3 Motivations
3.1 Solve Practical Problems

In the last two decades, the software industry has developed rapidly. There are numerous Internet
companies that rise and fail every year. How to scientifically manage the personnel allocation in the
process of Internet project development has become a decisive point in the current fierce competition.
Compared with the uncertain factors of resources allocation management in the real economy,
personnel allocation management for Internet companies has natural advantages. The time cost is
only related to the technology and experience of employees, and it is not necessary to consider the
project delay caused by uncontrollable factors due to the source of raw materials, and the labor hours
of each task in the software development process can be accurately estimated. Therefore, accurately
assigning tasks to employees with different skills in a team can greatly improve efficiency, and this
problem belongs to MS-RCPSP.

Recently, a company plan to develop a project for customer. The project can divide into 5 tasks,
they can be described as follows:

T 1: Database construction.

T 2: The function of background business logic.

T 3: Web terminal development.

T 4: Data upload and storage function.

T 5: Mobile terminal development.

There is predecessor relationship among the five tasks, such as task 4 cannot begin before task 2
is completed. These five tasks will be completed independently by 3 employees, and the employees
performing them must meet the skill needs of the task. Relevant information about all tasks and
employees is shown in Table 1.

Table 1: A project example of the MS-RCPSP

Resource ID Skills, proficiency level Task ID Duration Skills, proficiency level Predecessors

1 S2, 1 and S3, 2 1 2 S2, 1 -
2 S1, 1 and S3, 1 2 1 S1, 2 -
3 S1, 2 and S2, 2 3 3 S3 2 -
- - 4 3 S1, 1 T 2

- - 5 1 S3, 1 -



CMES, 2023, vol.136, no.3 2819

Fig. 1 shows a feasible solution for the project, which will vary in the completion time of the
whole project due to the different employees be assigned to task 5. A good dispatching scheme is of
great value.
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Figure 1: The Gantt chart of a feasible solution

3.2 Dispatching Rules Have Targeted
Dispatching rules have been widely used to solve resource constraints project scheduling problems.

However, it is found that few researchers have applied dispatching rules to solve MS-RCPSP. Table 2
shows the Cmax values obtained by four typical dispatching rules for six small-scale MS-RCPSP
instances. Each instance has differences in the number of resources, predecessor relationships, and
types of skills. The four typical dispatching rules are LPT (longest processing time), SPT (shortest
processing time), LRCP (longest of the remaining critical path), and LLFT (latest finishing time).

Table 2: Cmax values of four typical dispatching rules

No. Instance LPT SPT LRCP LLFT

1 10_3_5_3 109 109 130 128
2 10_5_8_5 84 84 84 84
3 10_7_10_7 104 104 104 104
4 15_3_5_3 230 230 230 230
5 15_6_10_6 104 114 102 102
6 15_9_12_9 117 97 94 94

As shown in Table 2, these four dispatching rules obtain the best solution for the instances
10_5_8_5, 10_7_10_7, and 15_3_5_3. But LPT and SPT obtain the best solution for the instance
10_3_5_3. LRCP and LLFT obtain the best solution for the instance 15_6_10_6 and 15_9_12_9. This
may be caused by the different inherent properties of each dispatching rule. According to no free lunch,
each dispatching rule cannot play the best performance for every instance. Therefore, it is a valuable
research direction to explore the newly dispatching rule for this problem.
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4 Multi-skill Resource Constrained Project Scheduling Problem
4.1 Problem Description

The Multi-skill resource-constrained project scheduling problem can be described as a project
which contains a task set T = {0, 1, 2, . . . , J, J + 1}. Each task j (j = 0, 1, 2, . . . , J, J + 1) has a
starting time sj and duration dj. Where tasks 0 and J + 1 are virtual tasks. Virtual tasks with duration
dj = 0 represent the first and the last tasks in precedence constraints.

Each task j should be assigned once and can start to be assigned when all its predecessor tasks are
finished. These precedence relationships of all tasks are presented as a priority relationship matrix H.
Each value Pij (i, j = 0, 1, 2, . . . , J, J + 1) in the matrix H is a 0–1 value. If task i is the predecessor
of task j, Pij is set to 1; otherwise, Pij is set to 0. There are K resources {1, 2, . . . , K} with N skills {1,
2, . . . , N}. Gkn (Gkn = 0, 1, . . . , Q) represents the proficiency level of resource k at skill n. A large Gkn

value indicates the high proficient level of resource k at skill n. Each task j consumes a resource k and
must satisfy the inequality Gkn � ηjn, ηjn (ηjn = 0, 1, . . . , Q) denotes the minimum proficiency level of
skill n of resource k when task j is assigned to resource k. Moreover, each resource can be assigned at
most one task at a time. This paper aims to minimize the project completion time Cmax.

4.2 Problem Formulation
The notations of the MS-RCPSP are shown in Table 3. In this paper, the objective is to minimize

the project completion time Cmax, which can be expressed as follows:

min Cmax = max fj, ∀j (1)

Table 3: The notations for the MS-RCPSP

i, j Index for tasks where i, j∈{0, 1, . . . , J, J + 1}
k Index for resources where k∈{1, 2, . . . , K}
t Index for time t∈[0, +∞)
n Index for skills where n∈{1, 2, . . . , N}
Q The maximum number of the skill’s proficiency level
M The infinite value
dj Duration of task j
sj Starting time of task j
fj Finishing time of task j
ηjn The required proficiency level of skill n for task j, ηjn∈{0, 1, . . . , G}
Gkn The level that resource k master skill n, Gkn∈{0, 1, . . . , G}
Pij The value to express whether task i is the predecessor of task j, Pij∈{0, 1}
xjk Binary variable to determine whether task j is assigned resource k, xjk∈{0, 1}
yjkt Binary variable to determine whether task j is assigned resource k at time t, yjkt∈{0, 1}

Temporal constraints: Constraint (2) ensures that each task is continuous and cannot be inter-
rupted. Constraints (3) and (4) ensure that the executed time ranges of each task j in sj to fj, sj, and fj

are starting time and finishing time of task j, respectively. Constraint (5) ensures values of the starting
time and duration for each task j are a nonnegative number.

fj = sj + dj, ∀j (2)
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yjktt ≥ sj, ∀j, k, t (3)

yjktt ≤ fj, ∀j, k, t (4)

sj ≥ 0, dj ≥ 0, ∀j (5)

Predecessor constraints: If task i is the predecessor task of task j, the starting time sj of task j must
not be less than the finishing time fi of task i. It can be expressed as follows:

Pij

(
sj − fi + 1

M

)
> 0, ∀i, j (6)

Resource constraints: Constraint (7) expresses the proficient level of resource k at skill n must be
the required proficiency level of skill n for task j. Constraint (8) ensures each task j only needs one
resource. Constraint (9) expresses each resource k can be assigned at most one task at a time.∑

k

xjkGkn ≥ ηjn, ∀j, n, k (7)

∑
k

xjk = 1, ∀j, k (8)

∑
j

yjkt ≤ 1, ∀j, k, t (9)

Binary variable constraints: There are two binary variables xjk and yjkt. Their ranges of values are
shown in Eqs. (10) and (11), respectively.

xjk =
{1, task j is assigned to resource k

0, other
∀j, k (10)

yjkt =
{1, task j is assigned to resource k at time t

0, other
∀j, k, t (11)

5 Rules-Mining Framework Using the IGEP Algorithm

GEP is an efficient evolutionary algorithm that inherits the advantages of genetic algorithm
(GA) and genetic programming (GP). It has the simplicity of the ‘fixed-length linear string’ of GA,
and the searchability of the ‘dynamic tree structure’ of GP. Like GA and GP, the GEP training
process includes evolution operators, such as initialization, fitness evaluation, selection, mutation,
and crossover (recombination). In addition, GEP has its unique transposition operator, and the rules
mining perturbation operator is also designed and added to the IGEP algorithm in this paper. The
fitness evaluation process of GEP is similar to that of GP, which is based on the value obtained by
converting a binary tree into an ORF expression and then calculating it. The goal of GEP is to find
the individual (chromosome) with the highest fitness value.

This paper applies the IGEP algorithm to explore dispatching rules with high fitness to solve MS-
RCPSP. The basic idea of the IGEP algorithm is to generate an initial population. Each individual in
the population represents a dispatching rule. Then iterate through importing the training set data to
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evolve the initial population. Each iteration is an evolutionary selection process. Finally, a dispatching
rule with high fitness can be obtained.

5.1 Encoding and Decoding
5.1.1 Encoding

The heuristic algorithm based on dispatching rules has the characteristics of simplicity, practi-
cality, and high computing efficiency. Therefore, it is often used to solve resource-constrained project
scheduling problems. In the IGEP algorithm, the dispatching rule is used to select a task from the task
set π k

∗, and the set π k
∗ contains all the tasks that can be assigned at the current moment.

This paper extract attributes from Myszkowski et al.’s research [3] and several typical dispatching
rules [32,44] to form attribute set V . The elements in set V can be described as follows:

1) Task duration (pt(j)), it represents the duration of the task j (j = 1, 2, . . . , J), that is, pt(j) = dj.

2) The number of immediate predecessor tasks (pn(j)), it represents the number of immediate
predecessors of task j.

3) The number of immediate successor tasks (sn(j)), it represents the number of immediate
successors of task j.

4) The total number of predecessor tasks (pa(j)), it represents the number of total predecessors of
task j.

5) The total number of successor tasks (sa(j)), it represents the number of total successors of task
j.

6) Minimum proficiency level requirements (sg(j)), it represents the minimum proficiency level
required for task j.

7) The remaining critical path length (cpl(j)), it represents the path length with the longest duration
in subsequent task paths of task j in the task network diagram.

8) The number of tasks on the remaining critical path (cpn(j)), it represents the number of tasks
on the path with the longest duration in the subsequent task paths of task j in the task network
diagram.

9) The latest finishing time (lf (j)), it represents the latest finishing time of task j.

10) Slack time (tw(j)), it represents the difference between the latest finishing time lf (j) and the
earliest finishing time ef (j) of task j, that is, tw(j) = lf (j) − (es(j) + dj).

11) The number of optional resources (rn(j)), it represents the number of resources that can be
assigned to task j, that is, rn (j) =

∑
k∈R

(
Gkn ≥ njn

)
, ∀j, k, n.

The population of the IGEP algorithm is represented as a collection of genotype-encoded
individuals, that is, the chromosome with multiple linear strings. This paper defines the attribute set
containing V = {pt, pn, sn, pa, sa, sg, cpl, cpn, lf , tw, rn} the above 11 attributes. The function set
F = {+, −, ∗, /, Q, max, min} contains 7 basic function operators.

The encoding process generates an initial population A∗ with popsize chromosomes. Where popsize
is the population size, each chromosome is composed of two parts: the head and the tail. The gene of
the head is randomly selected from the function set F and the attribute set V . But the gene of the tail
only be chosen randomly from the attribute set V . The length of each chromosome l is determined by
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the head length h and the maximum number of child nodes mmax of the function operator.

l = h × (mmax + 1) − 1 (12)

Fig. 2 shows an initial population A∗, whose population size is popsize = n and the length of head
h = 5.

Figure 2: An initial population

5.1.2 Decoding

A feasible solution is usually represented as a genotype-encoded individual. Each chromosome
has a corresponding expression tree and ORF expression. As shown in Fig. 3, the chromosome is
chrom = {+, ∗, pt, Q, /, cpl, sa, pn, sn, pt, pt}. Its corresponding expression tree is shown as the binary
tree, and its ORF expression is f = √

cpl × (sa/pn) + pt. The time complexity is O(h), and the space
complexity is (h × mmax + 1) × mmax = S(h).

Figure 3: Individual 3 manifestations of basic GEP

In order to reduce the complexity, a backward traversal decoding mechanism is proposed in
IGEP. The backward traversal decoding method needs to read the gene of chromosomes one by one.
But different from the basic GEP decoding traversal tree building, the backward traversal decoding
places the elements in a two-level list before reading the gene. All elements of each sub-list in the list
correspond one-to-one with all elements of each depth of the expression tree. The calculation process
of backward traversal decoding adopts the calculation-deletion method, that is, the child nodes are
deleted when a root node is calculated.
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The total time complexity O(h)
∗ of the backward traversal decoding mechanism equals the total

time complexity O(h) of the basic GEP decoding process. However, because the elements in the list
gradually decrease, the space complexity S(h)

∗ is much smaller than S(h) .

Taking a chromosome chrom as an example, its length of chrom is l, and its length of the head is
h. i (i = 0, 1, 2, . . . , l − 1) represents the i-th gene of chrom. Ec and Em are two lists containing contain
the same amount of sub-list that stored loci-related information of the effective length Lmax of chrom.
The index value of each sub-list corresponds to the tree depth. Pc

(j, k) = chrom(i) and Pm
(j, k) = mi express

chrom(i) and mi are the k-th element in the j-th sub-list of list Ec and Em respectively, which can be
expressed as position information of the gene chrom(i), that is, the position in the expression tree is the
k-th element with a tree depth of j, and the number of child nodes is mi.

The decoding process of chrom can be shown in the pseudo-code of Procedure 1, which adopted
the breadth-first approach.

The decoding procedure of the IGEP algorithm is shown in Procedure 1. K (j+1) represents the
number of elements with a depth of j + 1 in the expression tree. count1 is the count of the depth of the
current element in the calculation process. count2 is a count used to match the expression tree position
of each function’s child node. When the function value of a root node is calculated each time, the child
node corresponding to the root node is also deleted. The next depth’s first element corresponds to each
root node’s first root node in the current depth. f(PC

(j,count1)) is the function expression corresponding to
the root node. (Pc

(j+1, 0), . . . , Pc
(j+1, count2)) is the parameter value set of all branch nodes corresponding
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to f(PC
(j,count1)). The calculation process of function value is a process of gradually evaluating from the

maximum depth to the minimum depth of the root node, then replacing the original function symbol
of the node with the function value. It is used as the input parameter value of the function expression
corresponding to a root node of the previous depth. Finally, the value of the initial root node Pc

(1, 1)

is equal to the value calculated by the ORF expression of chrom and is used as the priority value of
the task.

The decoding process has the prototype of the building expression tree. It is only necessary to
substitute each element Pc

(j, k) in the traversed list Ec into the k-th node of the tree depth j. Connecting
nodes of adjacent depths according to the value of Pm

(j, k), an expression tree can be drawn.

5.2 Evolutionary Approach
The main idea of the IGEP algorithm is as follows. First, the initial population is randomly gen-

erated. Then, the population evolved. Finally, an optimal chromosome is obtained, that is, an optimal
dispatching rule. In the iterative process, the IGEP algorithm adopts several evolution operators:
selection and replication, perform mutation operation, IS-transposition, RIS-transposition, one-point
crossover, and two-point crossover [36]. In addition, the rule mining perturbation mechanism is added
to avoid falling into the local optimum.

S1: selection and replication. The IGEP algorithm uses the roulette selection method. Based on
the fitness values of chromosomes in population A, a new population Anew with the same scale as
population A is generated. Chromosome with high fitness values in A is more likely to appear in Anew.
Chromosomes with high fitness values usually appear multiple times in Anew to replace chromosomes
with low fitness values in population A.

S2: rule mining disturbance operation. According to the preset rule mining perturbation preset
value d_value, the rule mining perturbation mechanism is triggered if the historical optimal individual
chrom∗

best does not change within d_value iterations. The perturbed chromosome is selected by a certain
perturbation probability. The rule mining perturbation mechanism can effectively break the local
optimum and enrich the gene types in population A.

S3: perform mutation operation. The mutation operation is a very common evolutionary operator
in the intelligent evolutionary algorithm. The mutation operation refers to selecting a chromosome
from population A by a certain mutation probability. A gene chrom(a) is randomly selected and replaced
by a random element in function set F or attribute set V. If chrom(a) is a tail gene, the only element in
the attribute set V can be selected for replacement.

S4 and S5: IS-transposition and RIS-transposition. Both an insertion sequence transposition
(IS-transposition) and a root insertion sequence transposition (RIS-transposition) select chrom by a
certain probability. Then two gene positions a and b are randomly selected, and a head gene position
c is randomly selected. The gene fragment {chrom(a), chrom(a+1), . . . , chrom(b)} are copied and inserted
into the front of gene position c. Meanwhile, all the head genes after position c move backward in
turn. If the gene’s position exceeds the head, the gene should be discarded. The difference between
IS-transposition and RIS-transposition lies in the position of c. The head gene position c of the IS-
transposition in any position in the head except the first position.

S6 and S7: one-point crossover and two-point crossover. The crossover operator refers to selecting
two parents (chrom1 and chrom2) from population A. In the one-point crossover operation, a position
a is chosen randomly. Then two gene fragments {chrom1(0), chrom1(1), . . . , chrom1(a)} of chrom1 and
{chrom2(0), chrom2(0), . . . , chrom2(a)} of chrom2 are swapped. For the two-point crossover operation,
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two positions a and b are randomly selected. Then two gene fragments {chrom1(a), chrom1(a+1), . . . ,
chrom1(b)} of chrom1 and {chrom2(a), chrom2(a+1), . . . , chrom2(b)} of chrom2 are swapped. Two new
chromosomes chrom1new and chrom2new will be obtained after a one-point crossover or two-point
crossover. The parent chromosomes chrom1 and chrom2 will be replaced with chrom1new and chrom2new.

5.3 Evaluation Function
The objective is to obtain the minimum project completion time minCmax of MS-RCPSP. During

the fitness evaluation process, the project completion time of all instances is calculated as the fitness
value fi of chromosome i in population A. The fitness value fi uses the relative deviation calculation
method and is calculated as follows:

fi =
Ci∑
j=1

(
M −

∣∣∣∣C(i,j) − T(j)

T(j)

× 100

∣∣∣∣
)

(13)

In Eq. (13), M refers to the upper limit of the fitness value. C(i,j) refers to the Cmax value of
the instance j in the i-th chromosome. Because the lower bound of Cmax cannot be obtained, an
unsupervised learning method is used. In Eq. (13), T (j) is a variable that represents the historical
optimal project completion time of instance j. It is used to evaluate the fitness value of each individual
in population A.

5.4 Feasible Solution Generation
Combined dispatching rules with the parallel scheduling mechanism, a fixed scheduling scheme

will be obtained for each instance. Therefore, the specific scheduling process in IGEP does not need
to compile the string encoding. The priority value of each task is determined by the dispatching rule
and its attributes. Then, a scheduling scheme and the Cmax value are obtained.

Procedure 2 is the pseudo-code of the scheduling process for the multi-skill resource-constrained
project scheduling problem. The scheduling process adopts a parallel scheduling mechanism and
divides the entire scheduling process into g stages. The starting time of the first stage is set to ts(1) = 0.
The starting time of each stage is equal to the finishing time of the previous stage, that is, ts(g) = tf(g−1).

Firstly, according to the predecessor constraints and resource constraints, all tasks that can be
allocated are selected from the unallocated task set π , , and stored in the optional task set π ∗ of
the current stage. If task j from π ∗ can be executed by the idle resource k, task j is stored in the set
π k

∗(k = 1, 2, . . . , K) when Gkn ≥ njn. Then, if task j is in π k
∗ with the highest priority value, the idle

resources k should be assigned to task j. It should be noted that each task can be assigned to exactly
one resource and can only be assigned once. Finally, the finishing time tf(g) of each stage is determined
by the completion time of the earliest completed task j in each stage, where tf(g) = sj + dj. Multiple tasks
may be completed simultaneously. The completion time Cmax is the finishing time of the last stage. A
feasible scheduling scheme Tn can be obtained.

Taking the example 10 ∗ 5 ∗ 7 ∗ 5 as an example, the project resource task relationship matrix is
shown in Fig. 4. From Fig. 4, it can be seen which resources can meet the skill requirements of the
task and which tasks can be assigned to the resources. For example, these resources selected by task 1
are {R1, R2, R3, R5}. Resource 3 can only execute task 3. The Gantt chart can be obtained as shown in
Fig. 5.
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R4

R3

R2

R1 S0,3 S1,2 S3,2

S0,2 S1,2 S4,2

S1,1 S2,2 S4,3

S0,2 S3,1 S4,2

S1,3 S3,2 S4,2

S1,1 S1,1 S4,3 S1,3 S4,3
T1 T2 T3 T4 T6Can be assigned

Cannot be assigned

R5

S2,2 S1,3 S3,1 S3,2
T5 T8 T9T7 T10

S1,3

Figure 4: The skill matrix of the instance 10 ∗ 5 ∗ 7 ∗ 5

Figure 5: The Gantt chart of instance 10 ∗ 5 ∗ 7 ∗ 5

Fig. 5 shows the starting time, the finishing time, the resource selection of each task, and so on.
The project completion time is 84.

(Continued)
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5.5 Neighborhood Structures
An efficient neighborhood structure will significantly improve the performance of the IGEP

algorithm. Six neighborhood structures {M1, M2, M3, M4, M5, M6} are proposed. The detail
flowchart of six neighborhood structures in Fig. 6.

Gene swap (M1): A chromosome chrom is selected by a certain probability. Then two different
genes (chrom(a) and chrom(b)) are randomly chosen from chrom to swap. Note: To avoid the generation
of illegal chromosomes, it is necessary to limit position b. If chrom(a) is an element from the function set
F , then chrom(b) can only be selected from individual head genes; otherwise, chrom(b) is selected from
the non-functional genes of the chromosome.

Gene forward inserts (M2): A chromosome chrom is selected by a certain probability. Then two
genes (chrom(a) and chrom(b)) are randomly selected from chrom. The latter gene chrom(b) is inserted
in front of the former gene chrom(a). Note: chrom(a) and chrom(b) both are not the first gene in chrom.
Meanwhile, to avoid the generation of illegal chromosomes, if chrom(a) is the gene at head positions,
and the last gene at the head position is an element from the function set F , then chrom(b) can only
select the gene from head positions.

Gene backward inserts (M3): A chromosome chrom is selected by a certain probability. Then two
genes (chrom(a) and chrom(b)) are chosen randomly. The former gene chrom(a) is inserted in front of the
latter gene chrom(b). Note: chrom(a) and chrom(b) both are not the first gene in chrom. Meanwhile, to
avoid the generation of illegal chromosomes, if chrom(a) is the gene at head positions, then chrom(b) can
only select the gene from head positions.
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M6: Keep the best individual in history

ptcpl+ * pt / sa sn pt ptQ

ptcpl* - pn + sg sg pt ptQ

Chrom1

Chrom *
best

ptcpl+ * pt / sa sn pt ptQChromworst

ptcpl+ * pt / sa sn pt ptQChromn

...

ptcpl+ * pt / sa sn pt ptQChrom1

ptcpl+ * pt / sa sn pt ptQChromn

...

ptcpl* - pn + sg sg pt ptQChrom *
best

replaceA

A

M5: Introduce excellent gene
a

ptcpl+ * pt / sa sn pt ptQ

a

ptcpl* - pn + sg sg pt ptQ

Chrom

Chrom*
best

ptcpl+ * pn / sa sn pt ptQ

a

Chrom

M3: Gene backward inserts
a

ptcpl+ * Q / sa sn pt ptpn

ba

ptcpl+ * pn / sa sn pt ptQ

b

Chrom

Chrom

M4: Gene fragment inverse
a

ptpn+ * cpl Q sa sn pt pt/

b a

ptcpl+ * pn / sa sn pt ptQ

b

Chrom

Chrom

M2: Gene forward inserts
a

pncpl+ * / sa sn pt ptpt Q

b a

pncpl+ * pt / sa sn pt ptQ

b

Chrom

Chrom

M1: Gene swap

Chrom

Chrom

pncplQ+ * pt / sa sn pt pt

a b

ptcpl+ * pn / sa sn pt ptQ

b a

Figure 6: The flowchart of six neighborhood structures

Gene fragment inverse (M4): A chromosome chrom is selected by a certain probability. Then two
genes (chrom(a) and chrom(b)) are chosen randomly. All genes {chrom(a), chrom(a+1), . . . , chrom(b)} are
updated in reversed order. Note: To avoid the generation of illegal chromosomes, if chrom(a) is the gene
at head positions, then chrom(b) can only select the gene from head positions.

Introduce excellent gene (M5): A chromosome chrom is selected by a certain probability. Then a
gene position a is randomly selected. The gene chrom(a) is replaced by chrom∗

best(a) from the historical
optimal individual chrom∗

best. A new chromosome chromnew is generated. If the fitness value of chromnew

is higher than that of chrom, then replace the chrom in the population with chromnew.

Keep the best individual in history (M6): If the historical optimal chromosome is not in the
population, the worst chromosome chromworst is replaced by the historical optimal chromosome
chrom∗

best.
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5.6 IGEP Framework
The proposed IGEP algorithm can be roughly divided into four steps. The first step is to determine

the elements of the function set and terminal set, and to set parameter values, such as chromosome
length, mutation probability, etc. The second step is to divide the data set into the training set and
testing set with a ratio of 2:3. The third step is to train the best individual by the training set data.
The fourth step is to use the testing set data to test the performance and verify the performance of the
IGEP algorithm. Fig. 7 shows the flowchart of the IGEP algorithm.

N

Y

Test dataset

S2: rule mining disturbance operation

S1: selection and replication

S3: perform mutation operation by 
mutation rate

S4:
IS-transposition

S5:
RIS-transposition

S6: one-point 
crossover

S7: two-point 
crossover

M4: Gene fragment inverse

M5: Introduce excellent gene

M6: Keep the best individual in history

Record the best individual

Initialization parameters, 
function set, and terminal set

M1: Gene swap

M2: Gene forward insert

M3: Gene backward insert

Start

Split the project dataset into 
training and test sets

Use the test set to 
evaluate rule 
performance

Training dataset

Meet termination 
conditions?

End

Evolutionary approachs

Neighborhood structures

IGEP training

Population initialization

Fitness evaluation

n=0

n=n+1

Output optimal rule

Figure 7: The flowchart of the IGEP algorithm

6 Computational Results and Analysis

To evaluate the performance of the IGEP algorithm, the benchmark case set (iMOPSE) created
by Myszkowski et al. [2] in 2015 is adopted. The iMOPSE contains 36 instances. The IGEP algorithm
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is implemented in Python 3.10 and operated on a core R7-5800H processor with 3.3 GHz and
16 GB RAM.

6.1 Parameter Setting
In this section, the parameters are determined. The proposed IGEP algorithm with the long

length of the head is easier to obtain excellent dispatching rules. But the computational complexity
will increase significantly. After a series of experiments, when the length of the head h is equal to 7, the
proposed IGEP algorithm can maintain superior performance and low computational complexity.
Otherwise, the parameters such as population size, number of iterations, the preset value of rule
mining disturbance, preset probability of rule mining, and mutation rate also significantly impact the
performance of the proposed IGEP algorithm.

Before the experiment, the results of IGEP algorithm under different combination of numerical
parameters were compared. The comparative method adopts the calculation of relative deviation. The
group of parameters with the smallest relative deviation value was selected as the input parameters of
the experiment. The parameters of the IGEP algorithm are listed in Table 4.

Table 4: The parameters of the IGEP algorithm

Notations Definition Value Notations Definition Value

F Function set, F = {+, −, ∗, /, Q, max,
min}

V Terminal set, V = {pt, pn, sn, pa, sa,
sg, rn, cpl, cpn, lf, tw}

size Population size 20 P_ss IS-transposition rate 0.1
C The upper limit of

iterations
50 p_sr RIS-transposition rate 0.1

M The upper limit of fitness
value

300 P_r1 One-point crossover rate 0.1

h Length of chromosome
head

7 P_r2 Two-point crossover rate 0.1

d_value Set the value of the rule
mining disturbance
operation

3 P_i The rate of gene inverse 0.1

P_dv The rate of the rule mining
disturbance operation

0.3 P_e The rate of gene position
exchange

0.1

P_m The mutation rate 0.1 P_rl The rate of introducing an
excellent gene

0.3

To illustrate the performance of the newly dispatching rule generated by the IGEP algorithm,
this paper selects six relatively typical dispatching rules. These six dispatching rules are described as
follows:

1) Shortest processing time priority rule (SPT) [45], this dispatching rule takes the task duration
pt as the evaluation criterion. The smaller pt value means the higher priority of the task. It is a
typical dispatching rule based on the project network.

2) Longest processing time priority rule (LPT) [45], this dispatching rule is the opposite of the
SPT rule. The task with a large pt value has a higher priority.
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3) Longest of the remaining critical path priority rule (LRCP) [46], this dispatching rule only
considers the task’s remaining critical path length cpl value. And the task with a large cpl value
has a higher priority.

4) Minimum slack time priority rule (MINSLK) [44]. In this rule, the slack time tw of the task is
taken as the evaluation criterion. The task with a smaller tw value is given a higher priority.

5) Latest finishing time priority rule (LLFT), it considers the value of the task’s latest finishing
time lf . The purpose is to assign tasks with smaller lf values as early as possible.

6) The most number of immediate successors priority rule (MIS) [44], this rule gives a higher
priority to a task with a large number of immediate tasks. A task with a large sn value has a
higher priority.

According to different factors considered, dispatching rules can be roughly divided into four
types, such as project network-based dispatching rules (NBR), critical path-based dispatching rules
(CPBR), resource-based dispatching rules (RBR), and hybrid dispatching rules (CR) [44]. The SPT
rule, the LPT rule, and the MIS rule are the project network-based dispatching rules. The LRCP rule,
the MINSLK rule, and the LLFT rule are critical path-based dispatching rules.

6.2 The iMOPSE Benchmark Dataset
The iMOPSE benchmark dataset is selected for multi-skill resource-constrained project schedul-

ing problem research. The dataset contains 36 instances with 100 or 200 tasks and 5, 10, 20, or 40
resources. The number of skill types is 9, 14, or 15. The dataset was created by Myszkowski et al. [2]
in 2015 and can be found on website http://imopse.ii.pwr.edu.pl.

6.3 The Discovered Dispatching Rules via IGEP
The purpose of the IGEP algorithm in this paper is to explore the optimal dispatching rule for

solving the multi-skill resource-constrained project scheduling problem. According to the approximate
ratio of 2:3, 16 instances are randomly selected as the training set. The remaining 20 instances are the
testing set. The training set is used to discover the optimal dispatching rule during the exploration of
the IGEP algorithm. The testing set is used to verify the performance of the optimal dispatching rule.

Fig. 8 shows ten discovered dispatching rules under 10 independent runs of the proposed IGEP
algorithm. Eight discovered dispatching rules positively correlate with the remaining critical path
length cpl. Six discovered dispatching rules positively correlate with the maximum skill level require-
ment sg. This means that the task with large cpl and sg has priority to be allocated resources and to
be started.

It can be seen from the 10 new dispatching rules that pn and sn are completely lost. By analyzing
the case set data, it is found that all tasks have only one direct predecessor task, and the number of
direct successor tasks of most tasks is 0 after statistics. In addition, pa and sa have poor performance
in 10 new dispatching rules. However, both sg and cpl have achieved good performance. Therefore, it
is bold to make an assumption that the relatively simple predecessor relation network of the case leads
to poor performance of the attributes related to the predecessor relation network, which is gradually
replaced by the attribute values related to duration in the iterative process.

http://imopse.ii.pwr.edu.pl
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Figure 8: Ten discovered dispatching rules acquired from 10 independent runs

6.4 Comparison among Ten Discovered Dispatching Rules
One-way analysis of variance (ANOVA) was used to analyze the statistical differences in the per-

formance of 10 dispatching rules. The actual project completion time Cmax has significant differences.
Therefore, the experiment uses the relative percentage deviation (RPD) to measure the performance
of 10 discovered dispatching rules. The computational formula of RPD is shown in expression (14).

RPDj,i = Cj,i − min Cj

max Cj − min Cj

× 100% (14)

where Cj,i represents the Cmax value of the instance j via the dispatching rule i. MaxCmax and minCmax

represent the maximum Cmax value and minimum Cmax value of instance j via all dispatching rules,
respectively. RPDj,i is the RPD value of instance j via dispatching rule i. In the one-way ANOVA of
this experiment, the single factor refers to the discovered dispatching rules. The response variable is
the RPD value. The ANOVA results are shown in Table 5.

Table 5: ANOVA results for ten discovered dispatching rules

Source Degrees of freedom Adj SS Adj MS F-value P-value

Factor 9 7.925 0.8805 8.76 0.000
Error 350 35.191 0.1005
A combined 359 43.115

It can be seen from Table 5 that the P-value is approximately 0. Hence, all dispatching rules have
statistical differences. This shows that the performance of the ten dispatching rules is significantly
different. The pairwise multiple comparisons display the detailed differences among ten dispatching
rules and find the high-quality ones, as shown in Fig. 9. Fig. 9 shows the difference in the performance
of each discovered dispatching rule.
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Figure 9: Pairwise multiple comparisons for ten discovered dispatching rules

It can be seen that the group means of rule1 and rule10 are significantly better than the group
means of other discovered dispatching rules in Fig. 9. The group means of rule3, rule4, rule5, rule7,
rule8, and rule9 are smaller than the group means of rule1 and rule10. The group means of rule2 and
rule6 are significantly larger than the group means of the other eight discovered dispatching rules. The
mean value of RPD for ten discovered dispatching rules are 0.211, 0.636, 0.308, 0.336, 0.265, 0.63,
0.255, 0.406, 0.313, 0.213. The rule1 with 0.211 mean value of RPD is the best discovered dispatching
rule. Meanwhile, the mean value of RPD of rule3, rule4, rule5, rule7, rule8, rule9, and rule10 is
the closest dispatching rule to rule1. To verify the statistical performance of these eight discovered
dispatching rules, One-way analysis of variance (ANOVA) is used to analyze the performance of
rule1, rule3, rule4, rule5, rule7, rule8, rule9, and rule10. To verify the statistical performance of these
eight discovered dispatching rules, One-way analysis of variance (ANOVA) is used to analyze the
performance of rule1, rule3, rule4, rule5, rule7, rule8, rule9, and rule10. As can be seen in Table 6, the
P-value exceeds 0.5. Therefore, this difference was not statistically significant for rule1, rule3, rule4,
rule5, rule7, rule8, rule9, and rule10.

Table 6: ANOVA results for eight discovered dispatching rules

Source Degrees of freedom Adj SS Adj MS F-value P-value

Factor 7 0.0182 0.0026 0.8504 0.5464
Error 280 0.8548 0.0031
A combined 287 0.8729

6.5 Comparison with the Typical Dispatching Rules
In order to verify the effectiveness and excellent performance of the IGEP algorithm, eight

discovered dispatching rules are compared and analyzed with six typical dispatching rules. Table 7
shows the comparison results of the completion time Cmax and the relative percentage deviation value
RPD among the above-mentioned dispatching rules.



CMES, 2023, vol.136, no.3 2835

T
ab

le
7:

T
he

co
m

pa
ri

so
n

re
su

lt
s

of
C

m
ax

an
d

R
P

D
am

on
g

di
sp

at
ch

in
g

ru
le

s

R
ul

e1
R

ul
e3

R
ul

e4
R

ul
e5

R
ul

e7
R

ul
e8

R
ul

e9
R

ul
e1

0
SP

T
L

P
T

L
R

C
P

M
IN

SL
K

L
L

F
T

M
IS

10
0_

10
_2

6_
15

25
9/

0.
23

25
0/

0.
14

25
9/

0.
23

24
9/

0.
13

23
6/

0
25

1/
0.

15
25

9/
0.

23
24

0/
0.

04
33

5/
1

32
1/

0.
86

26
3/

0.
27

28
5/

0.
49

25
7/

0.
21

25
7/

0.
21

10
0_

10
_2

7_
9_

D
2

22
3/

0.
17

21
3/

0.
04

21
5/

0.
07

21
0/

0
22

6/
0.

21
21

6/
0.

08
21

9/
0.

12
21

2/
0.

03
27

3/
0.

84
28

5/
1

24
6/

0.
48

24
1/

0.
41

23
2/

0.
29

25
1/

0.
55

10
0_

10
_4

7_
9

25
7/

0.
08

25
8/

0.
09

27
0/

0.
32

25
7/

0.
08

27
2/

0.
36

25
6/

0.
06

25
3/

0
26

0/
0.

13
30

4/
0.

96
30

6/
1

28
7/

0.
64

26
5/

0.
23

27
5/

0.
42

27
1/

0.
34

10
0_

10
_4

8_
15

24
5/

0
25

0/
0.

09
24

9/
0.

07
24

8/
0.

05
24

8/
0.

05
24

7/
0.

03
25

5/
0.

17
24

5/
0

30
0/

0.
95

30
3/

1
24

9/
0.

07
24

9/
0.

07
26

2/
0.

29
25

7/
0.

21

10
0_

10
_6

4_
9

24
5/

0.
03

24
4/

0.
01

24
8/

0.
07

24
3/

0
24

5/
0.

03
26

7/
0.

32
24

9/
0.

08
26

7/
0.

32
30

8/
0.

88
28

7/
0.

59
25

3/
0.

14
31

7/
1

25
4/

0.
15

24
9/

0.
08

10
0_

10
_6

5_
15

25
1/

0.
04

24
7/

0
25

2/
0.

05
25

2/
0.

05
25

2/
0.

05
25

3/
0.

07
24

9/
0.

02
24

8/
0.

01
33

8/
1

30
8/

0.
67

26
8/

0.
23

26
5/

0.
20

29
9/

0.
57

32
1/

0.
81

10
0_

20
_2

2_
15

13
7/

0.
14

13
5/

0.
10

13
6/

0.
12

13
0/

0
13

2/
0.

04
13

5/
0.

10
13

5/
0.

10
13

4/
0.

08
18

0/
1

16
3/

0.
66

13
0/

0
14

5/
0.

30
14

7/
0.

34
14

2/
0.

24

10
0_

20
_2

3_
9_

D
1

18
0/

0.
13

18
0/

0.
13

18
0/

0.
13

18
0/

0.
13

18
0/

0.
13

17
6/

0.
06

18
0/

0.
13

17
5/

0.
05

17
2/

0
23

5/
1

18
1/

0.
14

17
7/

0.
08

17
4/

0.
03

17
3/

0.
02

10
0_

20
_4

6_
15

21
8/

0.
63

21
8/

0.
63

21
8/

0.
63

18
8/

0.
22

17
3/

0.
01

18
2/

0.
14

18
0/

0.
11

17
2/

0
21

5/
0.

59
20

1/
0.

40
18

8/
0.

22
21

2/
0.

55
24

5/
1

23
6/

0.
88

10
0_

20
_4

7_
9

12
6/

0.
04

14
5/

0.
38

12
6/

0.
04

12
4/

0
12

4/
0

15
1/

0.
49

12
7/

0.
05

14
4/

0.
36

17
0/

0.
84

15
6/

0.
58

16
5/

0.
75

17
9/

1
14

7/
0.

42
16

4/
0.

73

10
0_

20
_6

5_
15

22
6/

0.
21

22
6/

0.
21

25
9/

0.
53

27
4/

0.
68

27
2/

0.
66

23
3/

0.
27

20
5/

0
24

2/
0.

36
21

6/
0.

11
26

0/
0.

54
25

4/
0.

48
30

7/
1

29
5/

0.
88

29
3/

0.
86

10
0_

20
_6

5_
9

12
8/

0.
07

14
0/

0.
48

15
5/

1
12

7/
0.

03
12

6/
0

12
8/

0.
07

12
7/

0.
03

12
6/

0
15

2/
0.

90
15

5/
1

12
9/

0.
10

14
5/

0.
66

14
1/

0.
52

13
8/

0.
41

10
0_

5_
20

_9
_D

3
38

9/
0.

02
39

1/
0.

05
38

8/
0

39
0/

0.
03

39
0/

0.
03

39
2/

0.
06

38
9/

0.
02

39
2/

0.
06

45
2/

1
43

9/
0.

80
39

1/
0.

05
39

0/
0.

03
41

2/
0.

38
41

3/
0.

39

10
0_

5_
22

_1
5

52
3/

0.
48

49
0/

0.
04

51
7/

0.
40

50
1/

0.
19

50
7/

0.
27

49
5/

0.
11

51
2/

0.
33

48
7/

0
56

2/
1

55
6/

0.
92

51
7/

0.
40

51
8/

0.
41

51
7/

0.
40

51
6/

0.
39

10
0_

5_
46

_1
5

53
9/

0
54

8/
0.

07
56

2/
0.

17
55

8/
0.

14
57

0/
0.

23
59

0/
0.

38
54

3/
0.

03
54

7/
0.

06
67

5/
1

58
6/

0.
35

60
0/

0.
45

58
5/

0.
34

59
2/

0.
39

59
0/

0.
38

10
0_

5_
48

_9
49

6/
0.

03
49

8/
0.

05
49

7/
0.

04
49

7/
0.

04
51

9/
0.

25
53

2/
0.

37
49

8/
0.

05
49

3/
0

54
2/

0.
46

52
9/

0.
34

56
4/

0.
67

57
9/

0.
81

58
4/

0.
86

59
9/

1

10
0_

5_
64

_1
5

50
4/

0.
20

51
2/

0.
31

50
4/

0.
20

53
0/

0.
55

52
2/

0.
44

49
9/

0.
13

51
8/

0.
39

48
9/

0
52

7/
0.

51
55

5/
0.

88
54

4/
0.

73
56

4/
1

55
9/

0.
93

56
0/

0.
95

10
0_

5_
64

_9
48

4/
0.

13
48

4/
0.

13
48

1/
0.

03
48

1/
0.

03
48

0/
0

48
9/

0.
29

48
2/

0.
06

48
0/

0
51

1/
1

51
0/

0.
97

48
3/

0.
10

48
5/

0.
16

49
1/

0.
35

49
5/

0.
48

20
0_

10
_1

28
_1

5
47

6/
0.

10
46

8/
0.

03
47

8/
0.

12
47

9/
0.

12
46

4/
0

48
5/

0.
17

49
0/

0.
21

46
5/

0.
01

58
5/

1
55

5/
0.

75
53

6/
0.

60
54

7/
0.

69
56

2/
0.

81
56

4/
0.

83

20
0_

10
_1

35
_9

_D
6

55
4/

0
56

9/
0.

11
56

4/
0.

08
57

4/
0.

15
59

0/
0.

27
58

1/
0.

21
58

5/
0.

24
56

1/
0.

05
62

1/
0.

51
68

5/
1

58
3/

0.
22

57
0/

0.
12

57
3/

0.
15

59
5/

0.
31

20
0_

10
_5

0_
15

50
8/

0.
28

50
2/

0.
20

50
8/

0.
28

49
8/

0.
15

48
9/

0.
04

50
6/

0.
25

53
0/

0.
55

48
6/

0
53

0/
0.

55
54

2/
0.

70
52

2/
0.

45
52

4/
0.

47
56

6/
1

56
1/

0.
94

20
0_

10
_5

0_
9

48
6/

0
48

8/
0.

03
52

9/
0.

61
49

1/
0.

07
48

7/
0.

01
48

9/
0.

04
48

9/
0.

04
48

7/
0.

01
50

4/
0.

26
55

6/
1

50
0/

0.
20

50
4/

0.
26

54
9/

0.
90

53
6/

0.
71

20
0_

10
_8

4_
9

50
9/

0.
03

50
8/

0.
02

50
9/

0.
03

51
0/

0.
05

51
0/

0.
05

51
0/

0.
05

50
7/

0
50

9/
0.

03
53

8/
0.

51
56

8/
1

51
1/

0.
07

51
7/

0.
16

53
6/

0.
48

53
6/

0.
48

20
0_

10
_8

5_
15

47
9/

0.
04

47
7/

0
47

9/
0.

04
47

9/
0.

04
47

7/
0

48
6/

0.
18

48
0/

0.
06

47
7/

0
50

7/
0.

60
50

3/
0.

52
47

9/
0.

04
49

6/
0.

38
52

4/
0.

94
52

7/
1

20
0_

20
_1

45
_1

5
23

5/
0

24
9/

0.
21

23
9/

0.
06

23
8/

0.
04

23
7/

0.
03

24
1/

0.
09

23
8/

0.
04

23
9/

0.
06

28
7/

0.
76

28
6/

0.
75

24
0/

0.
07

30
3/

1
30

2/
0.

99
27

3/
0.

56

20
0_

20
_1

50
_9

_D
5

90
0/

0
90

0/
0

90
0/

0
90

0/
0

90
0/

0
90

2/
0.

25
90

0/
0

90
4/

0.
50

90
0/

0
90

0/
0

90
0/

0
90

0/
0

90
8/

1
90

8/
1

20
0_

20
_5

4_
15

26
1/

0.
03

25
9/

0
26

0/
0.

01
29

2/
0.

45
26

1/
0.

03
26

4/
0.

07
25

9/
0

26
0/

0.
01

32
2/

0.
85

32
9/

0.
95

29
2/

0.
45

31
8/

0.
80

32
3/

0.
86

33
3/

1

20
0_

20
_5

5_
9

24
8/

0
24

9/
0.

02
24

8/
0

24
9/

0.
02

24
8/

0
24

8/
0

25
0/

0.
04

24
9/

0.
02

29
8/

1
28

3/
0.

70
25

1/
0.

06
25

0/
0.

04
26

6/
0.

36
26

8/
0.

40

20
0_

20
_9

7_
15

33
6/

0
33

6/
0

33
6/

0
33

6/
0

33
6/

0
33

6/
0

33
6/

0
33

6/
0

39
1/

1
35

7/
0.

38
33

6/
0

33
6/

0
36

7/
0.

56
36

1/
0.

45

20
0_

20
_9

7_
9

23
9/

0
24

4/
0.

06
24

1/
0.

02
24

2/
0.

04
24

1/
0.

02
24

2/
0.

04
24

3/
0.

05
24

2/
0.

04
27

7/
0.

47
32

0/
1

26
2/

0.
28

26
8/

0.
36

26
5/

0.
32

26
5/

0.
32

20
0_

40
_1

30
_9

_D
4

51
3/

0
51

3/
0

51
3/

0
51

3/
0

51
3/

0
51

3/
0

51
3/

0
51

3/
0

51
3/

0
51

3/
0

51
3/

0
51

3/
0

51
3/

0
51

3/
0

20
0_

40
_1

33
_1

5
13

3/
0

14
1/

0.
11

13
3/

0
13

4/
0.

01
13

4/
0.

01
14

0/
0.

10
13

4/
0.

01
13

8/
0.

07
18

3/
0.

69
20

5/
1

14
2/

0.
12

14
8/

0.
21

14
6/

0.
18

14
8/

0.
21

20
0_

40
_4

5_
15

15
9/

0
15

9/
0

15
9/

0
19

9/
0.

65
15

9/
0

15
9/

0
15

9/
0

15
9/

0
17

5/
0.

26
15

9/
0

22
1/

1
22

1/
1

18
3/

0.
39

18
3/

0.
39

20
0_

40
_4

5_
9

13
5/

0
13

6/
0.

02
13

5/
0

13
7/

0.
04

13
8/

0.
06

13
9/

0.
08

14
5/

0.
20

13
7/

0.
04

16
5/

0.
59

18
6/

1
13

8/
0.

06
13

7/
0.

04
15

1/
0.

31
15

2/
0.

33

20
0_

40
_9

0_
9

13
1/

0
13

1/
0

15
2/

0.
34

13
2/

0.
02

14
8/

0.
27

13
5/

0.
06

14
0/

0.
15

13
3/

0.
03

19
3/

1
18

0/
0.

79
13

5/
0.

06
13

3/
0.

03
14

9/
0.

29
14

8/
0.

27

20
0_

40
_9

1_
15

13
2/

0.
06

13
8/

0.
15

13
0/

0.
03

12
8/

0
12

8/
0

15
2/

0.
36

13
6/

0.
12

13
2/

0.
06

18
3/

0.
82

19
5/

1
12

8/
0

13
7/

0.
13

17
8/

0.
75

15
2/

0.
36

A
ve

ra
ge

32
9.

56
/0

.0
9

33
0.

44
/0

.1
1

33
4.

14
/0

.1
6

33
2.

50
/0

.1
2

33
1.

50
/0

.1
0

33
3.

89
/0

.1
4

33
0.

94
/0

.1
0

32
7.

22
/0

.0
7

37
2.

33
/0

.6
9

37
4.

36
/0

.7
2

34
4.

47
/0

.2
7

35
3.

61
/0

.4
0

35
9.

56
/0

.5
2

35
9.

67
/0

.5
1



2836 CMES, 2023, vol.136, no.3

It can be seen from Table 7, eight discovered dispatching rules obtain the best Cmax than six typical
dispatching rules. 14, 12, and 12 instances of rule1, rule7, and rule10 obtained the best Cmax, respectively.
Six typical dispatching rules with a single attribute have a bad performance. The LRCP rule is the best
one among the six typical dispatching rules. In sum, the discovered dispatching rules play a good
performance in solving MS-RCPSP problem.

To further study the differences in the performance of the dispatching rules, a one-factor analysis
of variance (ANOVA) is performed on 36 instances. The single factor refers to the fourteen dispatching
rules. The response variable is the RPD value. The ANOVA results are shown in Table 8.

Table 8: ANOVA results for fourteen dispatching rules

Source Degrees of freedom Adj SS Adj MS F-value P-value

Factor 13 26.31 2.02389 36.61 0.000
Error 490 27.09 0.05528
A combined 503 53.40

The ANOVA result in Table 8 shows that the P-value is close to 0. This indicates that the statistical
performance of the fourteen dispatching rules is significantly different. To clearly show the difference
among those dispatching rules, the mean square error control chart is applied to describe the difference,
as shown in Fig. 10.

Figure 10: Mean square error control chart

Fig. 10 shows the mean square error values of fourteen dispatching rules, which are 0.088, 0.109,
0.159, 0.117, 0.099, 0.143, 0.101, 0.068, 0.692, 0.725, 0.267, 0.401, 0.52, and 0.514, respectively. rule10
with the smallest mean square error is the best dispatching rule, followed by rule1 and rule7. These
mean square error values of eight dispatching rules mined by the IGEP algorithm are much smaller
than that of six typical dispatching rules. It demonstrates that the dispatching rule trained by the IGEP
algorithm is much better than typical dispatching rules for solving MS-RCPSP.
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7 Conclusion and Future Research

For solving the multi-skill resource-constrained project scheduling problem (MS-RCPSP), this
paper constructs a mix-integer mathematical model and proposes an improved gene expression
programming algorithm (IGEP) with a backward traversal decoding mechanism to explore the newly
dispatching rules. These newly dispatching rules can easily be applied to the real project and production
environment. The experimental analysis shows that the newly discovered dispatching rules play a better
performance than the typical dispatching rules. This illustrates that the proposed IGEP algorithm
with the merit of artificial intelligence and unsupervised learning is effective in exploring the newly
dispatching rules for solving the MS-RCPSP problem. Compared with complex real project scenarios
and existing research, there are many research directions that are worthy of in-depth study in future
research.

1) The skill proficiency of a resource grows with the long operations, which can increase
productivity, and the resource can perform the more demanding tasks. Thus, adding learning
mechanisms to resources is closer to some realistic production and maintenance scenarios.

2) A reasonable resource allocation plan can result in significant cost savings in real project
scenarios. Therefore, having a reasonable resource allocation plan while ensuring the project
completion time is a direction well worth our research.
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