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ABSTRACT

In the environment of smart examination rooms, it is important to quickly and accurately detect abnormal behavior
(human standing) for the construction of a smart campus. Based on deep learning, we propose an intelligent
standing human detection (ISHD) method based on an improved single shot multibox detector to detect the
target of standing human posture in the scene frame of exam room video surveillance at a specific examination
stage. ISHD combines the MobileNet network in a single shot multibox detector network, improves the posture
feature extractor of a standing person, merges prior knowledge, and introduces transfer learning in the training
strategy, which greatly reduces the computation amount, improves the detection accuracy, and reduces the training
difficulty. The experiment proves that the model proposed in this paper has a better detection ability for the small
and medium-sized standing human body posture in video test scenes on the EMV-2 dataset.
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1 Introduction

Generally, standardized tests are divided into several stages (empty examination room, exam
preparation and closing, candidates’ admission, examinations, candidates leaving, etc.). In the auto-
matic invigilation system, the main research is conducted in the middle stage. In the middle stage
of the examinations, with the exception of the invigilator, other personnel with standing postures in
the surveillance video are generally in abnormal circumstances. Therefore, it is important to detect
the standing human posture in the scene frame of exam-room video surveillance for further research
and realization of an automatic invigilation system and smart examination rooms, which is also an
important part of the smart campus.

With the rapid development of cloud computing, IoT, and artificial intelligence technologies [1],
cloud video surveillance (CVS) has attracted considerable interest [2,3], video surveillance systems have
become an important part of security systems in various industries, and it is a comprehensive system
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with strong preventive capability [4]. In the examination supervision scenario, video surveillance
provides indispensable research data, which provides a reliable guarantee for subsequent image and
video research in various examination-based scenarios. This paper focuses on the object detection
model based on the examination room video. The main claim of video abnormal behavior detection
is to monitor the abnormal behavior of certain objects appearing in the video in real time. Object
detection is a very mature technology and can fulfill this requirement very well. In recent years, object
detection methods based on deep learning have rapidly developed and are increasingly linked to IoT
data [5–7], empowering sensing data for infrastructures and information modeling for smart cities
[8], and video surveillance data in smart examination environment are one type of IoT data. The
method of object detection based on deep learning has performed better than the traditional computer
vision method [9,10] and can be divided into two categories [11,12]. The first category is a two-stage
detection algorithm: in the first stage, the region proposals are generated, and in the second stage, these
proposals are put into classification and location neural networks [13–15]. Typical representations of
such algorithms are R-CNN, Fast R-CNN, and Faster R-CNN. The second category is a one-stage
detection algorithm, which does not require candidate region stages and directly generates the category
probability and position coordinate values of objects [16–18]. Typical algorithms are YOLO and SSD
(Single Shot MultiBox Detector).

The R-CNN model proposed by Girshick et al. [19] uses selective search [20], instead of the
sliding window method, to generate approximately 2000 candidate regions and then puts these into a
CNN, which greatly improves the detection speed and accuracy. Girshick [21] proposed Fast R-CNN,
borrowing the concept of the SPP layer [22] and proposing the ROI pooling layer to share the feature
extraction layer and to simultaneously output the fully connected layer. Fast R-CNN is 9 times faster
than R-CNN training. The proposed Faster R-CNN [23] used the RPN (Region Proposal Network),
instead of the selective search algorithm, to make the object detection algorithm end-to-end, which
makes the detection speed reach 5 fps and the detection accuracy increase to 73.2%. YOLO proposed
by Redmon et al. [24] converts the detection task to a regression task, which increases the detection
speed to 45 fps. Liu et al. [25] followed the idea of YOLO, combining the anchor mechanism with
Faster R-CNN, and the SSD network was proposed, which combines the regression idea in YOLO
and the anchor mechanism in Faster-RCNN, and uses multi-scale regions at each position of the full
map for regression, which has great speed and high detection accuracy. However, improvement is still
needed in the detection of small objects [26–28]. In recent years, Kim et al. [29] introduced a simple and
effective data enhancement method Mix/UnMix (MUM) for SSOD (semi-supervised target detection)
framework of blended image block unmixing into feature blocks, which can significantly improve the
performance of SSOD method. Alairaji et al. [30] determined students’ cheating behavior by detecting
their face and hand movements in the examination room surveillance video.

The emergence of the deep learning method makes the detection task increasingly accurate, but
all methods have different focuses. When faced with different application scenarios and different
datasets [31–34], the model still needs to be further optimized and trained to better meet different
detection tasks [35–37]. In this paper, the deep learning method is applied to the examination scene,
and the SSD model is improved according to the morphological characteristics of the standing
human posture in the examination scene. The network model proposed in this paper retains the
advantages of both SSD and MobileNet networks, which simultaneously improve the detection speed
and detection accuracy. The network model also reduces the difficulty of end-to-end training modes
and simple network structures. By reasonably selecting multiple feature maps of different sizes and
fusing multiple antecedent feature maps, the representation and detection of small and medium-sized
objects in specific scenes of examination room video surveillance can be effectively improved. Merging
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a priori knowledge of standing humans reduces redundant calculations and improves the accuracy of
target detection, which effectively mitigates the problem of insufficient exam proctoring datasets by
introducing migration learning. The experiment shows that the ISHD model proposed in this paper has
a stronger detection ability for small and medium-sized objects, such as the standing human posture
in the examination scene. This process is fully automated and forms a very important part of the smart
examination environment.

The contributions of this paper are presented as follows:

ISHD replaces the baseline network VGG16 with a lighter MobileNet network, and its new
detection layer adopts the same depth-level separable convolutional layer [38] as MobileNet, which
greatly reduces the network parameters and training difficulty while maintaining the consistency of
the network.

In the process of selecting the size of the detection layer feature map, the ISHD model moves
the detection layer forward because the standing human body in the examination room has a smaller
picture ratio to reduce the receptive field of the first feature map layer. In addition, by reasonably
selecting multiple feature maps of different sizes and fusing multiple front feature maps, the ISHD
model can effectively improve the expression and detection ability of small and medium-sized objects
with the specific scene of exam-room video surveillance.

In the process of generating the a priori boxes, the ISHD model removes the disproportionate a
priori boxes according to the feature of the aspect ratio of the standing human body in the exam room,
especially the aspect ratio of the sitting body, which reduces the resulting redundant calculations and
improves the accuracy of object detection.

The training process of the ISHD network model adopts a transfer learning strategy. Through
learning pedestrian characteristics and fine-tuning, the expression and detection ability of the standing
human body in the examination room can be specifically improved, effectively solving the problem of
insufficient data in the video dataset in the exam-room video surveillance.

The content of this paper is arranged as follows: Section 1 summarizes the article; Section 2 intro-
duces the ISHD object detection model proposed in this paper; Section 3 introduces the optimization
strategy of the ISHD model; Section 4 conducts experiments and analysis; and Section 5 presents the
summary and prospects of this paper.

2 ISHD Object Detection Model
2.1 ISHD Network Model Based on the Scene Features of Exam-Room Surveillance

The SSD is a classical object detection neural network that uses VGG16 as a baseline network
and has multiple convolutional layers behind the baseline network to obtain different feature maps
for object detection [39]. As a classical convolutional neural network, VGGNet has a traditional
network structure, which is mainly improved for AlexNet in terms of depth and convolution kernel
size. Its excellent performance benefits from many parameters and relies on numerous sample data.
The use of VGG as the baseline network leads to many SSD detection network parameters, numerous
computations, a slow training process, and high requirements on samples and hardware [40].

To mitigate the shortcomings of VGGNet and expand lightweight application scenarios, such as
mobile terminals, Google has proposed a compact and efficient convolutional neural network model
MobileNet [41]. Compared with VGGNet, MobileNet’s parameter quantity and calculation amount
are greatly reduced. Therefore, in this paper, the improved network changes the baseline of the SSD.
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Then, according to the characteristics of test personnel, an a priori box is generated for the specific
posture of test personnel to improve the detection accuracy of the network for test personnel.

First, this paper replaced VGGNet with MobileNet and recorded the model as ISHD_v0, the
initial version of ISHD. The network structure of model is shown in Fig. 1. As the scale of the input
image changes to 300 × 300, the scale of the feature map generated by the convolution layer in the
MobileNet network changes to 150 × 150, 75 × 75, 38 × 38, 19 × 19, and 10 × 10. Similar to
SSD, ISHD_v0 adds 8 convolutional layers after the last convolutional layer Conv 14. In this paper,
8 new convolutional layers are implemented by 4 depthwise separable convolution units to enhance
the network consistency under the condition that the number of newly added convolutional layers
remains unchanged (shown in Fig. 1, where Conv refers to the convolutional layer and Dw refers to
the depthwise separable convolution layer).

Figure 1: The Network structure of ISHD_v0

To improve the ISHD_v0 network’s ability to detect small and medium-sized targets in the
examination scene (detection of the standing human position in the exam room mainly focuses on
the detection of small and medium-sized objects, as shown in Fig. 2), this paper adjusts the ISHD_v0
structure and marks the improved model structure as ISHD_v1.

Figure 2: Examples of standing human in an exam room

ISHD_v1 (shown in Fig. 3) retains the output features of Conv3, Conv5, and Conv11, which can
achieve feature information about small targets. In addition, since large targets are not the focus of
examination room monitoring, ISHD_v1 sets the deep convolution kernel in Conv16 in ISHD_v0 as
5 × 5 and directly reduces the 5 × 5 feature map generated by Conv 15 to a 1 × 1 feature map.
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Figure 3: Network structure of ISHD_v1

Since the object size of the video in exam-room surveillance varies within a certain range, to
improve the detection ability of all objects in a range from medium to small, our paper fuses the
extracted multiscale features to enhance the expression ability of the small to medium-sized object
features. The final structure of the ISHD model is shown in Fig. 4. On the basis of the original 6 scale
feature maps, ISHD fused the features of the middle three scales in pairs, and the newly generated 2
fusion feature maps were also used for detection.

Figure 4: Network structure of the ISHD

ISHD applies pooling operations to fuse feature maps of different scales for detection. Table 1
displays the details of eight feature maps that are selected from different sources and that are divided
into six groups according to the size of the feature map. The feature maps f 1

conv, f 2
conv, f 3

conv, f 4
conv, f 5

conv,
f 6

conv generated by Conv3, Conv5, Conv11, Conv14, Conv15, respectively. The scales of each map are
illustrated in Fig. 4.

Table 1: Feature map of ISHD

Group name Size of the output
feature map

Feature name Layer name

1 75 × 75 f 1
conv Conv3

2 38 × 38 f 2
conv Conv5

3 19 × 19
f 3

conv Conv11
f 2_p_3

conv Conv5_p + Conv 11

(Continued)
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Table 1 (continued)

Group name Size of the output
feature map

Feature name Layer name

4 10 × 10 f 4
conv Conv14

f 3_p_4
conv Conv11_p + Conv14

5 5 × 5 f 5
conv Conv15

6 1 × 1 f 6
conv Conv16

The feature maps generated by Conv5 and Conv11, Conv11, and Conv14 are merged in ISHD.
Taking the feature maps of Conv5 and Conv11 as an example, since the scales of f 2

conv and f 3
conv are 38 ×

38 and 19 × 19, respectively, the maximum pooling operation is performed on f 2
conv, which is denoted

as Conv5_p. Then, the feature map f 2_p
conv generated by Conv5_p is 19 × 19, which is consistent with the

size of f 3
conv. Since the number of feature maps generated by each layer after the Conv 5 layer is 256,

f 2_p
conv is also composed of 256 19 × 19 feature maps. Through the global average pooling operation, the

average values of the feature maps of f 2_p
conv and f 3

conv are sequentially calculated, and the fusion feature
map is obtained as shown in Eq. (1):

f 2_p_3
conv (i) = glo_ave__pool(f 2_p

conv(i), f 3
conv(i)) (i ∈ [1, 256]) (1)

where f 2_p
conv(i) and f 3

conv(i) are the i-th (i ∈ [1,256]) feature maps generated by Conv5_p and Conv11,
respectively; glo_ave__pool is the average pooling operation; and f 2_p_3

conv (i) is the i-th newly generated
feature map. Similarly, the fusion characteristics of the feature maps of Conv11 and Conv14 are shown
in Eq. (2).

f 3_p_4
conv (i) = glo_ave__pool

(
f 3_p

conv (i) , f 4
conv (i)

)
(i ∈ [1, 256]) (2)

ISHD selects 6 groups of feature maps for detection. A series of a priori boxes are generated at
the center of each feature map. The specific size of the map is responsible for monitoring objects of
a certain size in the image. Therefore, the scale ratio of a priori boxes on each feature graph is set as
shown in Eq. (3).

sk = smin + smax − smin

m − 2
(k − 1) , k ∈ [2, m] (3)

where m represents the number of feature map groups, k is the group of the feature map, and smin and
smax are set to 0.2 and 0.9, respectively. The scale ratio of the a priori boxes of the first layer feature
map f 1

conv is individually reset to smin/2. Combining sk with the actual size of the image, the length of a
priori box in each group of feature maps is illustrated in Table 2.

Table 2: Side length of the a priori frame in each feature map

Group name Size of the output
feature map

Feature name Side length

1 75 × 75 f 1
conv 30

2 38 × 38 f 2
conv 60

(Continued)
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Table 2 (continued)

Group name Size of the output
feature map

Feature name Side length

3 19 × 19 f 3
conv 111

f 2_p_3
conv

4 10 × 10 f 4
conv 162

f 3_p_4
conv

5 5 × 5 f 5
conv 213

6 1 × 1 f 6
conv 264

2.2 Setting for the Loss Function
The objective function of the ISHD network consists of two parts, as shown in Eq. (4). The first

part Lconf (x, c) is the calculation of the default box and its target category and the confidence of the
target category. The second part Lloc calculates the regression results for the corresponding location.
The confidence is computed by the Softmax loss function, and the position regression is calculated by
the Smooth L1 loss function.

L (x, c, l, g) = 1
N

(
Lconf (x, c)

) + αLloc (x, l, g) (4)

N represents the number of positive samples and the calculation of Lconf and Lloc is established in
Eq. (5), α is the hyperparameter that adjusts the ratio between confidence loss and location loss.⎧⎨
⎩

Lconf (x, c) = −∑N

i∈Pos xp
ij log

(
ĉp

i

) − ∑
i∈Neg log

(
ĉ0

i

)
Lloc (x, l, g) = ∑N

i∈Pos

∑
m∈{cx,cy,w,h} xk

ijsmoothL1

(
lm
i − ĝm

j

) (5)

Pos is the set of positions, Neg is the set of negative samples, and xp
ij log

(
ĉp

i

)
is the matching

probability of the i-th prediction box and j-th real box with respect to category p. The higher the
matching probability is, the smaller the loss is. ĉp

i indicates that there is no target object in the prediction
box. The higher the background probability is, the smaller the loss is. By the calculation of Softmax,
xk

ij ∈ {0, 1} indicates whether the i-th prediction box and j-th true box match on category k, lm
i is a

prediction box, and ĝm
j is a real box, the four coordinate values of each anchor are dcx

i , dcy
i , dw

i , dh
i . The

specific calculation is shown in Eq. (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĝcx
j = (

gcx
j − dcx

i

)
/dw

i

ĝcy
j = (

gcy
j − dcy

i

)
/dh

i

ĝω

j = log
(

gω

j

dω
i

)

ĝh
j = log

(
gh

j

dh
i

)

ĉp
i = exp

(
cp

i

)
∑

p exp
(
cp

i

)

(6)
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3 Optimization Strategy the of ISHD Model
3.1 Selection of the a Priori Box in the ISHD Network Model

The examination personnel in the video generally have two postures: sitting and standing. For
a human with a standing posture, the outer frame is generally thin and high. Unless the picture is
rotated, the wide and flat state will hardly appear. Therefore, this paper sets the a priori frame aspect
ratio to a_r ∈ {1,1/2,1/3}. Then, the width and height of the a priori box are determined as shown in
Eq. (7):{

widtha
k = sk

√
ar

heighta
k = sk/

√
ar

(7)

When ar = 1, the additional scale ratio s′
k = √

sksk+1 is specified. A total of 4 a prior boxes are set on

each feature map point. The center position of a priori box is
(

i + 0.5
|fk| ,

i + 0.5
|fk|

)
, where |fk| represents

the size of the kth feature map. In addition, for the 5 × 5 and 1 × 1 feature maps, the corresponding
a priori box scale far exceeds the object scale. Therefore, for these two layers, only a priori box is set.
Therefore, the total number of prior boxes is: 75 × 75 × 4 + 38 × 38 × 4 + 19 × 19 × 4 × 2 + 10 × 10 ×
4 × 2 + 5 × 5 × 1 + 1 × 1 × 1 = 22, 500 + 5, 776 + 2, 888 + 800 + 25 + 1 = 31,990.

3.2 Transfer Training Strategy of the ISHD Network Model
When training data are limited, model performance is often poor [42–44], and some scholars

use GAN to alleviate this problem [45]. For the limited video training samples of the examination
room, this paper adopts the transfer learning strategy to fine-tune the ISHD network on the relevant
dataset after training. This paper adopts two transfer learning strategies, as shown in Fig. 5. In the
first strategy, MobileNet adopts a model trained by ImageNet to conduct transfer learning. After
MobileNet is connected to ISHD, fine-tuning is carried out through the large dataset to make ISHD
learn more complex characteristics of people in street view, and then the micro-adjusted ISHD is
transferred to the limited video dataset. In the second transfer learning strategy, the MobileNet
framework is directly connected to ISHD, and the pedestrian characteristics are directly learned by
using the Caltech Pedestrians Datasets. The trained network is then transferred to the small dataset of
video surveillance in the exam room (EMV-2). The experimental part of this paper will compare and
analyze the performance of the two transfer modes.

MobileNet 

Newly-added 
Conv layer

Imagenet Dataset

EMV-2 

Caltech 
Pedestrians 

1.Train 

2.Fine-tunning 

3.Fine-tunning 

MobileNet 

Newly-added 
Conv layer 

1.Train 

Transfer mode 1 Transfer mode 2 

2.Fine-tunning 

Figure 5: Two transfer modes adopted in ISHD

The ISHD models in the two training modes are recorded as ISHD1 and ISHD2. The intermediate
state models in the two training modes, namely, the fine-tuning or training of the Caltech Pedestrians
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Datasets, are MISHD1 and MISHD2. These models are fine-tuned by the real exam-room dataset
EMV-2 to obtain the final ISHD1 and ISHD2 models.

4 Experimental Results and Analysis
4.1 Dataset for Experiments

Targeting the study of standing posture human detection in the exam room, the dataset is derived
from the real standardized exam-room surveillance video. We selected a two-way, 3D convolutional
neural network [46] to classify the scenes of the exam-room surveillance video and established the
test video dataset EMV-1 according to 6 categories: category 1 (empty examination room), category
2 (exam preparation and closing), category 3 (distribution and withdrawing of papers), category 4
(candidates’ admission), category 5 (candidates’ leaving) and category 6 (examinations).

The dataset utilized in this paper is collected from the EMV-1 test video dataset. First, the source
video frame is scaled to 300 × 300, and then positive and negative samples are collected. The samples
in this paper were only collected from categories 2, 3 and 6 of the EMV-1 dataset, including 1666
sample fragments. According to whether there are standing posture personnel and the action range of
standing posture personnel in the sample fragments, these three types of sample fragments are divided
into the following three types: (1) nonstanding posture personnel; (2) stationary standing posture
personnel; and (3) moving standing posture personnel. Fifty video samples of these three types were
selected from 1666 sample fragments in this paper. That is, 150 sample fragments were selected as the
collection source. For sample segments (1) and (2), only the first frame of their images is retained as
the source image, while for sample segments (3), all the frames of images are retained as the source
image. A total of 50 frame images of sample fragments of people without standing posture are reserved,
and 50 + 50 × 72 (frames/sample fragment) of sample fragments of people with standing posture =
3,650. In the third sample segment, not every frame contains moving posture personnel. A total of 854
images containing moving posture personnel were further selected, and 1,006 positive samples were
obtained. Through random sampling in these 854 images, the sampling boxes with positive sample
IoU values less than 0.5 in the current image are retained as negative samples, and the remaining
3,650−854 + 50 = 2,846 sample frames without posture personnel are randomly sampled to generate
negative samples. In addition, some images were randomly selected from the 854 + 2,846 = 3,700
images to be labeled with artificial negative samples. Students with sitting posture, desks and chairs
were labeled negative samples, and 0.5 negative samples with artificial negative samples larger than the
IoU value were randomly generated. Ultimately, a total of 10,000 negative samples were obtained. In
this paper, these 3,700 300 × 300 images and positive and negative samples are labeled according to
the format of VOC2007 and named the EMV-2 dataset (Examination Monitoring Video). In addition,
all the experiments in this section are implemented on a common operating platform (an Intel Core
i9-10940x CPU @ 3.30 GHz and an NVIDIA RTX 2080ti 11 G GPU), using Python for encoding.

4.2 Analysis of the Transfer Strategy Effect
In this paper, two transfer strategies are adopted to train the ISHD network. Under the two

training modes, the Caltech Pedestrian Dataset is fine-tuned to obtain MISHD1 and MISHD2, and
then MISHD1 and MISHD2 are fine-tuned to obtain the final ISHD1 and ISHD2, respectively, on the
EMV-2 test field dataset. Miss Rate-FPPI curves of MISHD1 and MISHD2 in the Caltech Pedestrian
Dataset are shown in Fig. 6, which also compares various traditional methods, such as VJ [47], HOG
[48], LatSVM-V1 [49], MultiFtr+CSS [50], and FPDW [51]. This figure shows that the curves of
MISHD1 and MISHD2 are much lower than those of other traditional methods, which means that
MISHD1 and MISHD2 are greatly improved compared with other traditional methods.
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Figure 6: Comparison of miss rate-FPPI in the test set of the caltech pedestrian dataset

MISHD1 and MISHD2 are transferred to the EMV-2 test dataset for fine-tuning to obtain the
final network ISHD1 and ISHD2. The loss of the fine-tuning process of both on the EMV-2 test
dataset is shown in Fig. 7. ISHD inherits the advantages of good performance of the SSD model.
Both converge and stabilize within 10,000 steps due to the reduction in parameter size. Compared
with ISHD1, ISHD2 converges to a smaller loss value on the EMV-2 dataset.

Figure 7: Fine-tuning loss curves of ISHD1 and ISHD2 in EMV-2 datasets

Fig. 8 displays the precision-recall curves of ISHD1 and ISHD2, and neither has reached a large
recall rate. The corresponding accuracy is high and stable in the early stage. After the recall rate exceeds
0.6, a sharp drop occurs. The sharp drop in ISHD1 was slightly slower than that in ISHD2. The average
accuracy (AP) of ISHD1 on the EMV-2 dataset was also slightly better than that of ISHD2.
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(a) P-R curve of ISHD1 (b) P-R curve of ISHD2 
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Figure 8: Precision-recall curves of ISHD1 and ISHD2

As shown in Table 3, the final ISHD1 and ISHD2 achieved average precisions of 77.23% and
74.21%, respectively. Table 3 compares the APs of ISHD1 and ISHD2 on the Caltech Pedestrian
Dataset. Both achieved an average accuracy greater than 85% and are consistent with the trend on
the EMV-2 pedestrian test set. The ISHD1 result (88.30%) was slightly better than the ISHD2 result
(84.30%). The training of ISHD1 and ISHD2 consists of two steps. The second step of the two models
is fine-tuning on the EMV-2 dataset. The strategy used in the first step is slightly different. The former
is fine-tuned on the Caltech Pedestrian Dataset, while the latter is trained. The time difference between
the two models is mainly reflected in the first step.

Table 3: Average accuracy of ISHD1 and ISHD2 in different datasets

Data set ISHD1 ISHD2

Caltech pedestrian dataset 88.30 84.30
EMV-2 dataset 77.23 74.21

The comparison of the single iteration time between the MISHD1 model and the MISHD2 model
is shown in Table 4. The difference between the two iterations is large. MISHD2 trains the entire ISHD
network structure. Each layer participates in the calculation, while ISHD1 fine-tunes the pretrained
MobileNet on ImageNet and only trains the parameters of the full connection layer of the last layer,
with a sharp decrease in the calculation amount, increasing the training speed.

Table 4: Video frame data distribution in the examination room

Model Single iteration time (ms)

MISHD1 2467
MISHD2 437

In terms of the above comparison of the combined time and detection effect, ISHD1 obtains
higher detection accuracy with a shorter training time than ISHD2. Therefore, this paper implements
the first transfer strategy employed by ISHD1 for subsequent experiments.
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4.3 Comparison with Existing Object Detection Methods
To prove the validity and efficiency of the model, this paper compares ISHD with multiple object

detection methods, including HOG-ALBP+LatSVM, UDN, ACF, CrossTalk, HikSVM, faster R-
CNN, SSD, ISHD_v0, and ISHD_v1, the above comparison models are all commonly used object
detection models nowadays. Table 5 displays the average accuracy of the detection results for each
method on the video dataset of the examination room and the average detection time of a single picture.
Our proposed ISHD achieves the highest average detection accuracy of 77.23% among these methods,
which proves the validity of the test model designed in this paper. In terms of the detection time of
a single image, the traditional method generally takes hundreds of milliseconds. The improved ISHD
series replaces the baseline network VGG with MobileNet, which has a smaller structure and fewer
parameters, thus reducing the detection rate to less than 100 ms. Compared with ISHD_0 and ISHD_1,
the number of detection features of ISHD increases, resulting in a more time-consuming detection
process. Interestingly, the detection rate of a single image is still only 95 ms, which is much lower than
that of other methods. The comprehensive detection of the average accuracy and the time-consuming
test results prove that the ISHD method proposed in this paper has a strong detection capacity for
standing personnel and can quickly realize accurate retrieval of standing personnel and achieve ideal
results.

Table 5: Comparison of the test results of different models on the video dataset in the examination
room

Model AP (%) Testing time (ms)

HOG 31.24 457
CrossTalk 45.12 567
HikSVM 34.40 445
YOLO 68.71 45
Faster R-CNN 72.14 185
SSD 72.25 163
ISHD_0 73.56 89
ISHD_1 75.88 87
ISHD 77.23 95

Fig. 9 compares the results of the SSD detection network derived from the VGG network and the
ISHD network proposed in this paper on the EMV-2 test field dataset. According to the test results
of the SSD network in Fig. 9a, the SSD has a good detection effect on the standing posture personnel
at the front end of the classroom but has missed several people standing at the end of the classroom.
Compared with the standing staff at the front end of the classroom, the proportion of people standing
at the end of the classroom is small in the picture, and the SSD is not sensitive to the detection of small
objects. Conversely, in the improved ISHD network, which is shown in Fig. 9b, ISHD can detect the
invigilator at the end of the classroom. Regardless of whether the standing personnel stands at the end
of the diagonal direction or in front of the camera, ISHD performs perfect detection without missing,
completing accurate detection of objects of various scales. However, ISHD still has some defects. For
example, the teacher who is near the entrance of the examination room at the edge of the screen cannot
be correctly distinguished from the door due to the backlit shooting angle to the teacher, which causes
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the dark area. However, other normal brightness areas do not exhibit this problem. Overall, ISHD has
a good detection effect on the EMV-2 dataset.

Figure 9: (Continued)
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Figure 9: Comparison of SSD and ISHD on EMV-2 test data
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5 Conclusion and Prospect

This paper focuses on the detection of standing posture personnel in the video frame of the test. We
improve the SSD detection network to obtain the ISHD network, which replaces the baseline network
with a lighter MobileNet network and simultaneously improves the detection speed and detection
accuracy. This paper reasonably selects multiple feature maps of different sizes and fuses multiple
antecedent feature maps to effectively improve the representation and detection of small and medium-
sized objects in specific scenes of examination room video surveillance. This paper also optimizes the
ISHD network in the prior frame for the specific aspect ratio, aspect ratio, etc., of the standing posture
personnel in the examination room so that ISHD has stronger abstract expression and detection ability
for the characteristics of small and medium-sized targets. Under the limited test field dataset, the ISHD
network uses the transfer training strategy to train, and after learning many pedestrian characteristics,
it can strengthen the learning of the characteristics of the standing posture of the examination room
to realize the test stand personnel under the limited test video training dataset. Compared with other
multimodel methods, our model has better detection ability for small and medium-sized targets, such
as standing poses in the examination room video, which is important for the construction of a smart
examination environment.

Although the ISHD detection network proposed in this paper has certain effects on the detection
of the standing position in the examination room, it still can be improved. The next step is to
improve the detection ability of small and medium-sized targets and occluded personnel. By designing
appropriate data enhancement methods, the sample data volume of the examination room can be
improved, and the network model and parameters can be further tuned to increase the detection rate
and realize real-time detection.
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