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ABSTRACT

Due to the high inherent uncertainty of renewable energy, probabilistic day-ahead wind power forecasting is
crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities. However,
the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable
local weather prediction and incomplete power generation data. This article proposes a physics-informed artificial
intelligence (AI) surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind
power forecasting performance. The incomplete dataset, built with numerical weather prediction data, historical
wind power generation, and weather factors data, is augmented based on generative adversarial networks. After
augmentation, the enriched data is then fed into a multiple AI surrogates model constructed by two extreme
learning machine networks to train the forecasting model for wind power. Therefore, the forecasting models’
accuracy and generalization ability are improved by mining the implicit physics information from the incomplete
dataset. An incomplete dataset gathered from a wind farm in North China, containing only 15 days of weather and
wind power generation data with missing points caused by occasional shutdowns, is utilized to verify the proposed
method’s performance. Compared with other probabilistic forecasting methods, the proposed method shows better
accuracy and probabilistic performance on the same incomplete dataset, which highlights its potential for more
flexible and sensitive maintenance of smart grids in smart cities.
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Nomenclature

ACE Average coverage error
AI Artificial intelligence
CFD Computational fluid dynamics
CI Confidence intervals
CNN-LSTM Convolutional neural network and long short-term memory
DQR Direct quantile regression
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ELM Extreme learning machines
GAN Generative adversarial network
MAE Mean absolute error
MIQ Mutual information quotient
NN Neural networks
NWP Numerical weather prediction
PDF Probability density function
PI Prediction interval
PICP Prediction interval coverage probability
PINAW Prediction interval normalized average width
PINN Physics-informed neural networks
RMSE Root mean square error
RNN Recurrent neural network
RSS Residual sum of squares
SF Selected factors
SLFN Single hidden layer feedforward neural network
VMD Variational mode decomposition
WGAN Wasserstein generative adversarial network
WRF Weather research forecasting
WWGAN Worm Wasserstein generative adversarial network

1 Introduction

As renewable energy like wind, photovoltaic and tidal power are increasingly incorporated into
smart grids, the stochastic and uncertainty features of which brought additional challenges to the
electricity market and energy system [1,2]. Wind power, the most popular renewable energy, is highly
fluctuating, making accurate wind power forecasting critical in planning and managing energy systems
with wind farms [3]. Various forecasting temporal, horizons exist, from long-term (longer than 1 day)
to very short-term (within 1 h) for specific management tasks in smart grids and buildings approaches
[4]. Among these, the high-resolution (10∼15 min interval) day-ahead probabilistic forecasting can
provide meaningful uncertainty quantification information [5], which is valuable in the reliability/re-
silience modeling and analysis [6,7] for daily operating, controlling, and scheduling maintenance of
smart grids. Thus, it has become one of the latest key research areas in smart and sustainable cities [8].

There are two main difficulties in day-ahead probability forecasting of wind power. First, unlike
conventional power plants, many wind farms, especially the smart wind grids around smart cities, are
newly built, with limited historical power generation data [9], and second, the operation of wind farms
is highly flexible due to the fluctuating wind speed, which means occasional power adjustment or
shutdown [10]. The above difficulties can be summarized as an incomplete dataset with insufficient
data, missing data, and several outliers, which constrained the generalization ability of the forecasting
model trained on it.

Two kinds of improved forecasting approaches can be conducted to tackle the generalization
difficulty: physics-based and data-driven methods [11,12]. Computationally intensive physics-based
methods are more appropriate for long-term forecasting due to their low efficiency and ability to
simulate seasonal and chaotic weather factors. Data-driven methods mainly learn the trend of wind
speed and wind power through autoregression algorithms, which have a non-ignorable shortcoming:
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the forecasting process should be a continuous iteration of prior and posterior data points, so it is
difficult to handle the shutdown situation, i.e., data missing.

Physics-informed neural networks (PINN) were first named by Raissi et al. [13] as a key to joining
physical laws into machine learning to enhance the networks’ ability to solve a high-dimensional
problem with limited training samples [14]. In the broad sense, PINN can also be seen as a neural
network method based on information fusion, except that it fuses physical information [15]. In the
broad sense, PINN can also be seen as a neural network method that fuses physical information to
improve its training efficiency and generalization ability. Hence, enlightened by the idea of PINN,
using physics information such as NWP data to improve the data-driven wind power forecasting model
making it more suitable for incomplete datasets, is promising.

Informed by the literature review (See Section 2), this paper presents a probabilistic forecasting
method based on physics-informed AI surrogates, a regression approach that fused physics informa-
tion into the AI-based forecasting method. Two AI surrogates were built under a Bayesian network
structure. The first surrogate fuses the physics information in raw NWP data and transforms it
into selected factors (SF) highly related to wind power. The second surrogate acts as the response
surface of SFs to wind power generation. The quality of the surrogates’ training set is improved
by comprehensively leveraging the generative adversarial network (GAN) based data augmentation
methods [16] and K-means cluster-based resampling. Therefore, the proposed method can provide
reliable day-ahead probabilistic wind power forecasting with an incomplete dataset. The paper details
how:

1. A multiple AI surrogates regression structure for day-ahead wind power probabilistic forecast-
ing with an incomplete dataset, which infused the physics information from NWP and weather
monitoring data to enhance forecasting accuracy was built.

2. A data augmentation method based on two kinds of GAN corresponding to the multi-
surrogate model, improving the model’s generalization ability, and supporting quantifying the
uncertainty propagation was created.

3. The proposed method’s forecasting and uncertainty quantification abilities were benchmarked
by applying it to a real case dataset from a wind farm together with conventional methods.

The rest of this paper is organized as follows. Section 2 provides the background knowledge used
in this paper. Section 3 delivers the workflow of the proposed multi-surrogate method. The application
procedure with a real wind farm case is delivered in Section 4, together with the discussion to compare
with other methods. Section 5 summarizes this paper.

2 Related Works
2.1 Wind Power Forecasting Methods

The uncertainty of wind power generation has many aspects, from stochastic weather factors to
inconsistent efficiency of wind turbines. Research works for wind power forecasting can be classified
through the materials that are used to quantify the uncertainty: the regression methods based on
physics information from NWP data or simulation and the autoregression method based on monitored
wind speed and power data.

Physics-based methods are generally powered by numerical weather prediction (NWP) data and
computational fluid dynamics (CFD) simulation. Che et al. [17] introduced a multiscale model for
day-ahead wind speed forecasting, which conducted a joint simulation of mesoscale weather research
forecasting (WRF) and microscale CFD models for a specific wind farm, significantly improving the
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wind speed prediction accuracy. Cuevas-Figueroa et al. [18] discussed the accuracy of using the NWP
and WRF to predict the wind farm operating performance and proved the confidence even in complex
terrain. Zhang et al. [19] proposed a tensor-based method that combines Tucker decomposition and
computational fluid dynamics (CFD) to reconstruct three-dimensional wind velocity distributions
for short-term wind speed prediction. However, the scattered areas and complex terrain of wind farms
cause the errors between day-ahead NWP and real near-surface weather factors may not be ignored.
Due to NWP errors, there is a multiple-to-one mapping relationship between NWP data and wind
power generation in the training dataset, making the generalization ability of the forecasting model
trained on it may be constrained. Simply increasing the training sample size will not solve the problem.

Data-driven methods utilize statistical or artificial intelligence (AI) based models to predict
future power generation with historical and online monitoring data [20,21]. These methods mainly
focus on short-term data pattern analysis with decomposition [22], uncertainty inferencing [23], and
data augmentation [24] techniques to tackle the limited and complex signals, which makes them
more flexible and sensitive for minute or hourly trends. Based on direct quantile regression (DQR),
Wan et al. [25] proposed a nonparametric probability forecasting method for wind power. The
prediction performance proved reliable given the fast learning speed of extreme learning machines
(ELM) and DQR’s nonparametric feature that bypassed distribution assumptions. Mehdi et al. [26]
deployed a deep learning-based model for the forecasting of the power output in wind farms,
which employs wind speed, wind direction, and current power output as model inputs. An adaptive
variational mode decomposition (VMD) method and long short-term memory (LSTM) deep neural
networks were combined as the predicting model. Victor et al. [27] proposed a Bayesian dynamical
model for joint modeling the wind speed and wind power that account for temporal dependence,
nonstationary behavior, and truncation of power due to turbine specifications. Boudy et al. [28]
presented an adaptive neuro-fuzzy inference system modeling approach for wind turbine output power
predicting, including the wind speed, turbine rotational speed, and mechanical-to-electrical power
converter’s temperature as model inputs. Data-driven methods may achieve high predicting accuracy
even in day-ahead forecasting scenarios. Nevertheless, its accuracy relies on data preprocessing to
tackle the missing data and outliers and cannot directly handle the forecasting task after wind turbine
rebooting.

Meanwhile, incorporating physical information and neural networks (NN) to enrich the general-
ization ability is also a growing field in wind power forecasting. Wu et al. [29] proposed a probabilistic
forecasting method for wind power based on an adaptive neuro-fuzzy inference system and a fuzzy
C-means clustering algorithm, which proved that ensemble NWP data could improve the performance
of NN forecast models. A combined model was presented by He et al. [30], which leverages the mutual
information to select the most representative NWP subset and then the K-means algorithm to group
meteorological features to improve the generalization ability of a convolutional neural network and
long short-term memory (CNN-LSTM) prediction model of wind power. Xia et al. [31] proposed
a wind power ramping events prediction model powered by a classified spatiotemporal network that
considered a resampled NWP dataset in which the rare extreme weather samples were augmented with
a GAN. A short-term interval prediction method for wind speed was illustrated by Han et al. [32] using
VMD to extract the time-series features of NWP data and to generate the prediction interval (PI) of
wind speed using multivariate line regression and a GAN. Although, the physics-informed approaches
above are all short-term (one-step or multi-step) methods that cannot maintain availability under day-
ahead forecasting scenarios. However, these approaches did indicate that physics information can
enrich the data-driven forecasting model through clustering, decomposing, or feature augmenting,
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without intensive computation, i.e., building a lightweight surrogate for physics information to inform
the forecasting model is possible and valuable.

2.2 Extreme Learning Machine
An extreme learning machine is a single hidden layer feedforward neural network (SLFN) [33].

Without the feedback step, the hidden nodes’ parameters (weight and bias) will not evolve during
learning. This simple structure makes ELM possess good generalization ability and more rapid
learning than most other networks with backpropagation. Fig. 1 shows an ELM with one hidden
layer of L nodes.

Figure 1: The structure of ELM

The output function of a single layer ELM with L nodes ni (x) = F
(
αi, β i, x

)
is:

fL (x) =
L∑

i=1

ωini (x) (1)

where αi and β i are the function parameters, and ωi is the weight of the node. Given m training samples,
the output matrix of ELM is:

N =
⎡⎢⎣n (xi)

...
n (xm)

⎤⎥⎦ =
⎡⎢⎣F (α1, β1, x1) · · · F (αL, βL, x1)

...
. . .

...
F (α1, β1, xm) · · · F (αL, βL, xm)

⎤⎥⎦ (2)

where n (xi) = [ni (x) , · · · , nL (x)]. Let the training target matrix I be Y = [y1 · · · ym]T , then the
optimized objective function of ELM can be written as:∣∣∣∣Nω̂ − I

∣∣∣∣ = min
β

||Nω − I|| (3)

Owing to the high training speed and adaptability for non-linear activation functions, the ELM
has been deterministically and probabilistically applied to wind speed and power forecasting [34].

2.3 Generative Adversarial Network
Since the GAN was first introduced in 2014 [35], it has been applied in a vast range of fields for

data augmentation tasks [36]. Compared with other data augmentation methods such as Monte Carlo
[37] and bootstrap [38], GAN-based methods do not need a pre-defined distribution and can handle
extremely small datasets with the cost of some training time. GAN has gradually become one of the
leading AI methods in data augmentation due to these advantages. In the wind power predicting field,
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Xia et al. [31] introduced GAN to augment rare extreme weather samples to improve the accuracy
of ramping events. Different from the structure of the auto-encoder neural network [39], GAN is
constructed with two adversarial deep learning NNs: the generator (net G) and the discriminator
(net D). Through the adversarial training of nets G and D, GAN is capable in non-supervised or
semi-supervised learning tasks of generating realistic synthetic data from arbitrary raw data.

The objective function of GAN has many forms, in which the Wasserstein distance based function
(i.e., Earth–Mover distance), W (x, x̃) = E

x∼Pr
[D (x)]− E

x̃∼Pg
[D (̃x)], is physics meaningful and continuous

at the point 0 [40] the objective function of the Wasserstein GAN (WGAN) with gradient penalty is:

min
G

max
D

E
x∼Pg

[D (x)] − E
x̃∼Pr

[D (̃x)] + Lgp (4)

where the distribution of original data is x ∼ Pr, the distribution of generated data is x̃ ∼ Pg. Lgp =
λ E

x̂∼Px̂

[(∣∣∣∣∇x̂D
(
x̂
)∣∣∣∣

2
− 1

)2
]

is the gradient penalty term to improve the training stability with randomly

sampled x̂ ∼ Px̂ along straight lines between points sampled from Pr and Pg. λ is an adjustable training
parameter [41]. The structure of WGAN is shown in Fig. 2. In practice, most monitored data have time-
varying characters [42]. Based on the WGAN, our team has proposed an auto-augmentation algorithm
for time-series data called worm WGAN (WWGAN), which is practical for probabilistic forecasting
tasks with a small sample or incomplete sample of time-series data [16].

Figure 2: The structure of WGAN

3 Methodologies of the Physics-Informed AI Surrogates Method
3.1 The Bayesian Network Architecture of Probabilistic Forecasting

Traditional wind power forecasting using NWP mainly conducts the regression from NWP
features to wind power directly. However, this kind of regression ignored the prediction error within
the NWP itself. That is, the regression model is founded on an unreliable prediction of physics factors
rather than the real physics factors, so the robustness of NWP constrains its forecasting accuracy.

From the viewpoint of probability theory, the probabilistic forecasting of wind power generation
with physics information from NWP data is a classic Bayesian inference problem. Taking the physics
information of NWP as the prior knowledge and the real weather factors as the posterior stochastic
variables, the generated wind power is then predicted by the regression inference of the posterior
weather factors. A Bayesian network can be built to describe the forecasting process, as shown in
Fig. 3.
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Figure 3: The Bayesian network for probabilistic wind power forecasting

In Fig. 3, the light nodes are observable variables while the dark nodes are hidden, and the whole
network could be divided into three sub-layers. Layer 1 is the target layer with only one hidden node of
wind power, layer 2 contains k posterior weather factors, i.e., SF that are inferred from NWP factors,
and layer 3 contains n day-ahead NWP factors as prior knowledge. This Bayesian network structure
decomposed the regression from NWP to wind power into two Bayesian inference problems between
layers: NWP to posterior weather factors and the posterior factors to wind power:

P (WP |SF = sf1, . . . , sfk ) = P (WP) P (SF = sf1, . . . , sfk |WP )

P (SF = sf1, . . . , sfk)
(5)

P
(
SF

∣∣NWP = nwp1, . . . , nwpn

) = P (SF) P
(
NWP = nwp1, . . . , nwpn |SF

)
P

(
NWP = nwp1, . . . , nwpn

) (6)

In which, P (X = x1, . . . xk |Y ) are the likelihood functions, and P (X) is the prior probability
distribution. P (X = x1, . . . xn) can be replaced by a normalizing constant in practice. Accordingly, the
main task for wind power probabilistic forecasting lies in building probabilistic surrogates to estimate
each inference problem in the Bayesian network.

The NWP contains multiple weather features, from wind speed at a different height to the radiation
of various wavelengths. However, in most practice scenarios, not all features of the weather in NWP are
necessary for wind power forecasting since some are irrelevant to wind power. He et al. [30] discussed
using a max-relevance and min-redundancy algorithm based on mutual information evaluation to
select NWP features, i.e., to determine SFs. The mutual information MI

(
Fi, Fj

)
between NWP factors

Fi and Fj, and the mutual information MI (fi, WP) between NWP factors and wind power are written
as:

MI
(
Fi, Fj

) =
∫

fj

∫
fi

P(Fi ,Fj )

(
fi, fj

)
log

(
P(Fi ,Fj )

(
fi, fj

)
PFi (fi) PFj

(
fj

))
dfidfj (7)

MI (Fi, WP) =
∫

wp

∫
fi

P(Fi ,WP) (fi, wp) log
(

P(Fi ,WP) (fi, wp)

PFi (fi) PWP (wp)

)
dfidwp (8)

where P(X ,Y) is the joint probability density function (PDF) of X and Y, and PX denote the marginal
PDF of X. Apparently, the main task in mutual information calculating is to evaluate the joint
and marginal PDFs within. When the feature variables are discrete, the integral operation in the
mutual information equation reduces to summation. Then, both joint and marginal PDFs reduce
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to probability tables that can be estimated straightforwardly by tallying the samples of different
categories. When the variables are continuous, the mutual information could be estimated either by
discretizing the continuous data or by the density estimation method. One of the general density
estimation methods is Parzen window approximation [43].

P̂X = 1
M

M∑
i=1

δ (x − xi, h) (9)

In which, P̂X is the approximated PDF of X, M is the number of samples. δ (·) is the Parzen window
function, xi is the ith sample, h is the window width. Commonly, choose Gaussian window as δ (·):

δ (z, h) =
exp

(
−zT�−1z

2h2

)
(2π)

d
2 hd |�| 1

2

(10)

where z = x − xi, d is the sample dimension and � is the covariance of z. When d = 1, P̂X is the
estimation of marginal PDF; when d > 1P̂X denotes the estimation of joint PDF. The meaning in terms
of physics of mutual information is the information that is shared by stochastic variables. Therefore,
the max-relevance and min-redundancy algorithm aims to select a set of NWP factors that contain the
most information about wind power yet the least repeated information. Given a determined factor set
SF, the relevance (REL) and redundancy (RED) of which can be valued as:

REL = 1
|SF |

∑
fi∈SF

MI (fi, WP) . (11)

RED = 1

|SF |2

∑
fi ,fj∈SF

MI
(
fi, fj

)
(12)

where |SF | means the number of factors is SF. Then the max-relevance and min-redundancy can be
the simultaneously optimized following:

max �(REL, RED) (13)

� = REL
RED

(14)

In which, the �(REL, RED) called mutual information quotient (MIQ). Similarly, this study also
needs to select the NWP features that influence the SFs.

3.2 The Data Augmentation and Resampling for the Incomplete Dataset
Despite the ELM’s good generalization ability, it still needs enough samples to train the regression

model. However, incomplete samples remain a problem in most day-ahead wind power forecasting
tasks. Therefore, WGAN, as a data augmentation solution, is introduced to overcome the incomplete
sample problem and enhance ELM training.

The WGAN can learn the original data distribution and generate realistic synthetic data to
augment it. Nevertheless, a conventional WGAN can only deal with non-series data since it cannot
capture the intrinsic time-varying patterns of the time-series data. Hence, a WWGAN was proposed
to improve the data augmentation ability with time-series data. WWGAN incorporates the WGAN
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into a recurrent neural network (RNN) structure, which adaptively learns time-series data’s arbitrary
distribution and implicit pattern, clusters the same pattern into adjacent groups by a threshold
calculated with the Wasserstein distance, and then generates the augmentation model for each group.
The structure of WWGAN is shown in Fig. 4.

Figure 4: The structure of WWGAN

Fig. 4 shows the links in the chain of the WWGAN’s recurrent structure. It consists of two pairs
of nets G and D (GA and DA, GD and DD). Each arrow denotes a vector, and the red dots represent
pointwise operations. The yellow rectangles denote gating functions. The trained network parameters,
hG

i and hD
i , are transmitted between the links of the WWGAN. The gate functions of the WWGAN are

listed below:

hG
i = fi × hG

i−1 + si × ĥG
i (15)

ĥG
i = AdamG

[
W (̃xi, xi) , hG

i−1

]
(16)

fi = Stepf [W (̃xi−1, xi)] (17)

si = 1 − fi (18)

hD
i = AdamD

[
W (̃xi−1, xi) , hD

i−1

]
(19)

where Adam(α, β1, β2) is the Adam optimization algorithm with pre-defined parameters α, β1, β2.
W (̃xi−1, x) = DA

(̃
xi−1, xi, hD

i−1

)
is the critical result from DA, as the Wasserstein distance, step (x) ={

0, x ≥ ε

1, x < ε
. W (̃xi, x) = DD

(̃
xi, xi, hD

i

)
gives value to the adversarial training of GD and DD.

As shown in Fig. 5, when WWGAN augments time series data, it divides the original time series
data into adjacent slices, then learns slice by slice and determines whether the data has the same latent
distribution as the previous slice. Cluster the slices with the same distribution and memorize their
corresponding generator (net G) until the complete time series data is traversed. After traversing the
complete time series data, the stored net Gs are used to augment the data in different clusters. The
augmented data can be obtained by coalescing the augmented data in the order of the clusters.
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Figure 5: The augmentation procedure of WWGAN

The main difference between WGAN and WWGAN is that WGAN can learn the correlation
between multi-dimensional data while learning the distribution features of the data. However, it cannot
capture the time series patterns of the data. WWGAN can capture the distribution and time series
patterns of the data. However, because its learning algorithm needs to call four deep neural networks,
it lacks the ability to efficiently deal with multi-dimensional data correlation. Therefore, WGAN can
effectively augment multi-dimensional non-series data but cannot effectively augment time-series data.
In contrast, WWGAN can effectively augment low-dimensional time-series data but is less efficient
when dealing with multi-dimensional data.

With both WGAN and WWGAN, either the non-series regression training sample or the time-
series input sample for forecasting can be augmented. Yet, this kind of augmentation is non-
directional. WGAN cannot specifically augment the fewer or missing features in the incomplete
dataset; instead, it augments every feature from the distribution. Hence, the augmented dataset is still
imbalanced, and different features have different proportions in the dataset, which is not conducive
to training the network’s generalization ability [44]. A resampling procedure must be conducted to
balance the features before inputting the augmented data into ELM. This is achieved using the K-
means algorithm to cluster the augmented samples to different feature groups, then equally resampling
from each group to build the balanced training dataset. The K-means cluster algorithm can group
different features by minimizing the Euclidean distance between feature vectors and cluster centers:

ED (F , C) =
√√√√ d∑

i=1

(fi − ci)
2 (20)

where F is the feature vector with a dimension of d, C is the cluster center, fi denote the feature in F ,
and ci denote the feature in C. The number of cluster centers can be pre-defined. However, it is better
if it is optimized by minimizing the average Euclidean distance between all groups.
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After clustering and resampling the augmented data, a training dataset with balanced features can
be built to enhance the training efficiency of ELM and improve its generalization ability.

3.3 The Probabilistic Forecasting Model with Physics-Informed AI Surrogates
Based on the above Bayesian network architecture and the incomplete data augmentation method,

the physics-informed AI surrogates model can be constructed, as shown in Fig. 6.

Figure 6: The physics-informed AI surrogates forecasting model

There are two ELM-based AI surrogates in the model. The first surrogate forms a response surface
from the NWP factors to the SFs to model and quantify the uncertainty that lies in the day-ahead
weather prediction. The second surrogate models the regression of SFs to wind power, which quantifies
the uncertainty within the wind power generation process. Utilizing both AI surrogates to solve the
inference problems between Bayesian network layers, the physics information and its uncertainty are
better modeled in the probabilistic forecasting model. Due to the multiple AI surrogates within the
model, the training and forecasting (testing) datasets for each AI surrogate are listed in Table 1. As
shown in Table 1, the forecasting data for the second surrogate are generated by the first surrogate.
The specific steps of the proposed method are as follows:

Step 1: Data Preprocessing.

Step 2: Build the training set and test set of the first surrogate and the training set of the second
surrogate.

Step 3: Augment and resample the training set of the first surrogate, then train the first surrogate.
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Step 4: Augment the test set of the first surrogate and use the test set to get the output.

Step 5: Train the second surrogate.

Step 6: Take the output of the first surrogate as the test set to obtain the output of the second
surrogate, that is, the wind power forecasting result.

Table 1: Training & forecasting datasets for each surrogate

Surrogate Types Form Input features (X) Labels/Output
features (Y)

First AI surrogate Training Discrete features Historical NWP
data

Observed SF
records

Forecasting Time series Day-ahead NWP
data

Day-ahead SF
estimation

Second AI
surrogate

Training Discrete features Observed SF
records

Wind power
generation records

Forecasting Time series Day-ahead SF
estimation

Wind power
forecasting

The framework of the proposed method is shown in the flowchart in Fig. 6. The raw data are first
preprocessed with data washing and normalization and then separated into three parts: the training
data for the two AI surrogates D1 and D2, and the forecasting data for the first surrogate Df . Then the
training data D1 for the first surrogate are augmented to D̂1 with the conventional WGAN method
since the features are discrete. The augmented training data D̂1 are then resampled to D̃1 and fed into
the first ELM with L nodes for regression learning of k SFs.

SF = fL

(
NWP

∣∣D̃1

) =
L∑

i=1

ωini

(
NWP

∣∣D̃1

)
(21)

Due to the training data for the second surrogate being sampled from observed records, the data
can be directly fed into ELM with H nodes and does not need to be augmented to guarantee the
regression learning effect.

WP = fH (SF |D2 ) =
H∑

i=1

ωini (SF |D2 ) (22)

However, the time-series forecasting data need to be augmented by the WWGAN to quantify
the uncertainty of forecasting results. After that, the augmented forecasting data D̂f are fed into the
trained first surrogate to produce the estimation of SFs, which are then fed into the trained second
surrogate for wind power forecasting.

SFti = fL

(
D̂ti

f

)
=

L∑
i=1

ωini

(
D̂ti

f

)
(23)
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WPti = fH

(
SFti

) =
H∑

i=1

ωini

(
SFti

)
(24)

where D̂ti
f , SFti , and WPti are the vectors of each at time index ti ∈ T , T = {t1, . . . , tN}. Since the

forecasting data are augmented, the forecasting output {WP (t) , t ∈ T} is a stochastic process with
distributed variables at each time index. Hence, the uncertainty propagation within the Bayesian
network can be evaluated by confidence interval estimation of the forecasting results. The whole
forecasting process is like a two-stage rocket. Each stage contains an ELM surrogate and uses different
fuel, i.e., the training data, to launch it.

4 Case Study
4.1 Data Description and Preprocessing

In order to examine the forecasting ability with an incomplete dataset, the raw dataset is built
from 15 days of weather monitoring and wind power generation data from a wind farm in North
China, the installed capacity of which is 17.29 MW, and this area’s corresponding day-ahead NWP
data. The period of the raw data is from 2016-2-19 00:00:00 to 2016-3-4 23:45:00 with a time resolution
of 15 min. The first 14 days’ data are used as the training period to predict the last day’s wind power
generation, i.e., the wind power from 2016-3-4 00:00:00 to 2016-3-4 23:45:00. With a resolution of
15 min, there should be 96 sets of data points per day, and the training period should contain 1344
sets of samples. However, due to grid control, shutdowns, missing data, and other issues, the actual
monitored amount of wind power generation data within the training period is 1318, which limits
the training dataset to the same size. After aligning the NWP data, weather monitoring data, and the
wind power generation data with coincident time indexes, the raw data are normalized to 0∼20 with
the min-max normalization method.

4.2 Data Augmentation for AI Surrogates
4.2.1 Select the Weather Factors for Regression

Intuitively, wind speed is the most obvious factor affecting wind power generation. However, in
the day-ahead wind power forecasting scenario, the error of the NWP wind speed itself cannot be
ignored. If only wind speed is used as a regression factor, it may cause a significant error in the final
prediction result. As Han et al. [32] discussed, the wind is one of the manifestations of atmospheric
motion, so wind speed is closely related to other meteorological factors like temperature, air pressure,
and relative humidity. Therefore, considering the coupling relationship between other weather factors
can help improve wind power’s prediction effect. The max-relevance and min-redundancy algorithm
with mutual information evaluation is carried out between weather monitoring data and wind
power to determine the SFs. The monitored weather factors are first ranked by mutual information
MI (Fi, WP). Fig. 7 shows the top 12 factors and their MIQ. The first three factors with increasing
MIQ, i.e., the ws70, mslp, and T, are selected as SFs to reduce the dimension and guarantee the model’s
generalization ability. Moreover, the top 9 factors with MIQ ≥ 1 are then selected as NWP factors to
infer SFs, because they are not only highly correlated with wind power but also have less information
redundancy between each other. This is consistent with the screening principle of He et al. [30] since
the ultimate purpose of selecting these factors is to ensure the effectiveness of wind power forecasting.
As shown in Table 2, the wind speed at 70 m height (ws70) is the most relevant feature for wind power
generation because the wind turbine engines in this wind farm are at this height.
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Figure 7: The mutual information quotient of factors

Table 2: The ranking and MIQ result

Rank Weather factors Abbreviation MIQ

1 Wind speed at 70 m height ws70 1.0000
2 Mean sea level pressure mslp 1.2750
3 Temperature T 2.4698
4 Wind speed at 100 m height ws100 1.5318
5 Wind speed at 30 m height ws30 1.2623
6 Wind direction at 70 m height direction70 1.4087
7 Sensible heat flux senf 1.4117
8 Temperature at 2 m height T2m 1.3554
9 Relative humidity at 2 m height RH2m 1.2242
10 Wind direction at 30 m height direction 30 0.6249
11 Wind direction at 10 m height direction 10 0.4397
12 Wind direction at 100 m height direction 100 0.5829

4.2.2 Data Augmentation with WGAN and WWGAN

Since the main job of the first surrogate is to calibrate the prediction results of NWP to make
it closer to the real weather features, therefore, the first surrogate does not focus on the time series
features of the data but on the relationship between different weather features, so it does not need to
use WWGAN to augment it but uses WGAN. The raw training datasets Dws70

train = X NWP
1318×9 → Y ws70

1318×1,
Dmslp

train = X NWP
1318×9 → Y mslp

1318×1, and DT
train = X NWP

1318×9 → Y T
1318×1 are augmented 10 times with the WGAN to

build the augmented training datasets D̂ws70
train , D̂mslp

train, and D̂T
train for the first surrogate after resampling.

The parameters setting for the WGAN are listed in Table 3. It should be noted that the input features
X NWP

1318×9 are the same for these three datasets, yet the augmentation should be carried out separately
with different labels to avoid redundant correlations between labels. The WGAN augmentation results
for Dws70

train are shown in Fig. 8, and the augmentation results for Dmslp
train and DT

train are provided in the
Supplementary Figs. S1 and S2. In Fig. 8, the blue dots denote real data, and the orange squares are
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the generated data. As shown in Fig. 8, the generated data complement the absent characteristics of
the real data, while the correlations between NWP features are maintained. The probability density
plot on the main diagonal of Fig. 8 shows that the generated and raw data distribution is equivalent
for each NWP feature, even if the distribution of raw data is non-standard or non-unimodal.

Table 3: Parameters setting for WGAN

Parameters Value Parameters Value

Order of input data 10 Batch size 60
Hidden size 27 Learning rate 0.001
Number of hidden layers 10 λ of GP 5

Figure 8: Augmentation results for Dws70
train
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Dataset Dws70/mslp/T
forecast = X NWP

96×9 is augmented 100 times using the WWGAN to build the datasets
D̂ws70/mslp/T

forecast for the probabilistic forecasting, which do not need to be resampled to maintain the sequen-
tial characteristic. The parameters of WWGAN are set as in Table 4. The WWGAN augmentation
results for nine features of Dws70/mslp/T

forecast are shown in Fig. 9. The trend of generated time series for each
feature in Fig. 9 is analogous to the original data, yet the data points at each time index are not entirely
the same, which means that the WWGAN successfully learned the pattern of original data without
overfitting. The training dataset DWP

train = X SF
1318×3 → Y WP

1318×1 for the second surrogate is sampled from
monitored SFs, and the forecasting dataset DWP

forecast for the second surrogate is the output from the first
surrogate.

Table 4: Parameters setting for WWGAN

Parameters Value Parameters Value

Order of input data 1 Batch size 6
Hidden size 42 Learning rate 0.0001
Number of hidden layers 3 λ of GP 0.2
Slice size 12 Threshold for WWGAN 0.2

Table 5: Performance evaluation indicators

Abbreviation Indicator Equation

MAE Mean Absolute Error MAE = 1
N

N∑
i=1

|̃xi − xi|

RMSE Root Mean Square Error RMSE =
√

1
N

N∑
i=1

(̃xi − xi)
2

RSS Residual Sum of Squares RSS =
N∑

i=1

(̃xi − xi)
2

PICP Prediction Interval Coverage Probability PICP = 1
L

L∑
i=1

{
1 yi ∈ [

lowα
i , upα

i

]
0 yi /∈ [

lowα
i , upα

i

]
ACE Average Coverage Error ACE = PICP − (1 − α) × 100%

PINAW Prediction Interval Normalized Average
Width

PINAW =
1

L × [max (y) − min (y)]

L∑
i=1

(
upα

i − lowα
i

)
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Figure 9: Augmentation results for Dws70/mslp/T
forecast

4.3 AI Surrogates Learning and Forecasting
With the prepared datasets, the training process of these two AI surrogates designed by ELM is

convenient. The hidden nodes of the ELM for both surrogates are set to 14, and the training epoch
set to 10,000. The output weights are the average of results from these 10,000 epochs to improve the
robustness.

4.3.1 The First AI Surrogate

The first surrogate contains three sub-surrogates that are trained with D̂ws70
train , D̂mslp

train, and D̂T
train,

respectively. The original sample without augmentation is used to verify the ELMs training effect and
generalization ability during training to avoid overfitting. The training is considered complete when
the network, which is trained with augmented data, can properly generalize the original sample. After
training, the forecasting dataset D̂ws70/mslp/T

forecast is input to produce calibrated forecasting results for SFs
(ws70, mslp, and T). As shown in Fig. 10, the blue lines denote the real monitored weather factors,
and the 95% confidence intervals (CI) of the calibrated forecasting results are shown with the shadow
area between red lines, and the green line denotes the mean of calibration. The original NWP data
are shown in purple lines, and the forecasting results with the not augmented dataset Dws70/mslp/T

forecast are
shown in yellow lines. Commonly used performance evaluation indicators for accuracy, i.e., RMSE,
MAE, and RSS, are listed in Table 5, together with three commonly used probabilistic performance
evaluation indicators PICP, ACE, and PINAW. The smaller the value of RMSE, MAE, RSS, ACE,
and PINAW, the better the result. Conversely, larger values of PICP indicate better results. Table 6
lists the accuracy evaluation results for the first surrogate. As shown in Fig. 10 and Table 6 after
calibrating, the prediction accuracies of these three SFs are all improved, especially for the ws70
and T. As shown in Fig. 10, there is a certain difference between the mean of the prediction results
using the augmented forecasting data and the prediction results using the raw forecasting data. This is
because the augmentation using WWGAN is not just calculating raw data’s quantile but learning the
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time-varying distribution patterns of it, that is, its physical information. As seen from the Fig. 10 and
Table 6, the raw NWP data is calibrated through the first surrogate with a smaller error between the
real value.

Figure 10: Calibrated SFs (ws70, mslp, T) and the 95% CI

Table 6: Performance evaluations of the first surrogate

ws70 mslp T

Not
augmented

Mean Original
NWP

Not
augmented

Mean Original
NWP

Not
augmented

Mean Original
NWP

RMSE 1.9334 1.8313 3.3036 0.5812 0.7454 1.0961 1.4822 1.5372 5.2035
MAE 1.5737 1.5206 2.8288 0.4880 0.5996 0.9749 1.2092 1.2684 3.9593
RSS 358.8472 321.9585 1047.7269 32.4295 53.3361 115.3353 210.9015 226.8560 2599.3187

4.3.2 The Second AI Surrogate

The second AI surrogate is trained with DWP
train, the historical SFs, and wind power. Due to the high

relevance between SFs and wind power, the ELM network’s generalization ability can be trained on
and verified on the same training datasets. The training effects of the second surrogate are shown in
Fig. 11. The ELM model’s validation effect on the training set is adequate, and the predicted wind
power generation is close to the actual power generation, as shown in Fig. 11.

Figure 11: The training effects of the second surrogate

When training is completed, the outputs from the first surrogate were used as inputs to produce
the probabilistic forecasting result for wind power. After denormalization, the forecasting results from
2016-3-4 00:00:00 to 2016-3-4 23:45:00 are shown in Fig. 12 with a resolution of 15 min. Here the blue
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line represents the real wind power data, the green line denotes the forecast result, and the yellow line
represents the mean estimate of the forecast result. Both the accuracy and probabilistic performance
evaluation results are shown in Table 7. In Table 7, RMSE, MAE, and SSE are calculated using the not
augmented prediction results, while PICP, ACE, and PINAW are calculated using the set of augmented
prediction results.

Figure 12: Probabilistic forecasting result from the second surrogate

Table 7: Performance evaluations of the second surrogate

Indicator RMSE MAE SSE PICP ACE PINAW

Value 1.3011 1.0064 162.5204 0.9583 0.0083 0.6036

4.4 Discussion
In order to evaluate the forecasting effect of the proposed method, three mainstream wind power

forecasting methods are selected as benchmarks, the ELM-based method [34], the method based on the
combination of VMD and LSTM (VMD-LSTM) [32], the Bayesian model (BM) [27] and the CNN-
LSTM [30]. Among them, the VMD-LSTM class method first uses VMD to decompose training
input data and labels into ten modes and then uses LSTM to perform regression learning mode by
mode. After learning, the prediction data is also decomposed into ten modes and poured into the
corresponding LSTM to obtain the output respectively, then add up the output results of all modes for
the final result. Through VMD, the uncertainty is also decomposed, thus diminishing the difficulty of
uncertainty quantification and improving the learning efficiency of LSTM. At the same time, to further
verify the impact of the training and testing datasets on the prediction effect, the not augmented real
weather factors and NWP data were used as training or testing sets to compare with the proposed
data augmentation approach. Specifically, 12 wind power probabilistic forecasting approaches are
compared with the proposed AI surrogates method, as shown in Table 8. The prediction accuracy
and probabilistic performance are mainly discussed here, so denormalization is not performed. The
evaluation results are shown in Table 8 and Fig. 13.
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Table 8: Performance evaluation results of different forecasting methods

Datasets Approaches RMSE MAE RSS PICP ACE PINAW

Train and
test with
NWP

VMD-LSTM-
NWP

2.185 1.7852 458.3373 0.9375 −0.0125 0.5802

CNN-LSTM-
NWP

2.8727 2.4293 792.2321 0.6563 −0.2937 0.5935

ELM-NWP 1.9922 1.5746 380.9975 0.8958 −0.0542 0.5803
BM-NWP 2.5376 2.0856 618.1598 1 0.0500 1.3316

Train and
test with
real
weather
factors

VMD-LSTM-
REAL

1.7403 1.3481 290.7432 0.9271 −0.0229 0.5867

CNN-LSTM-
REAL

1.4448 1.0504 200.4038 0.9688 0.0188 0.6536

ELM-REAL 1.6471 1.1957 260.4523 0.9583 0.0083 0.6275
BM-REAL 1.9258 1.4671 356.0313 0.9688 0.0188 0.8365

Train
with real
weather
factors
test with
NWP

VMD-LSTM-
REAL-NWP

2.0315 1.5807 396.1728 0.9271 −0.0229 0.589

CNN-LSTM-
REAL-NWP

5.3081 4.4806 2704.8980 0.3958 −0.5542 0.6140

ELM-REAL-
NWP

3.9384 3.1374 1489.0836 0.6354 −0.3146 0.6408

BM-REAL-
NWP

5.5735 4.7552 2982.1671 0.4167 −0.5333 0.8371

AI surrogates
(Proposed)

1.3011 1.0064 162.5204 0.9583 0.0083 0.6036

In Fig. 13, approaches that use the same training and testing sets are grouped and compared with
the proposed method to verify the performance with a bar chart of evaluation attached. In each group,
the probabilistic forecasting results of benchmark and proposed methods are exhibited by line charts.
Within each line chart, the mean values of prediction results are shown in yellow lines, the real power
generation is shown in blue, and the red area shows the 95% CI of prediction results. The bar chart
in each group exhibits the RMSE, PICP, and PINAW of the prediction results from each approach.
The results in Table 9 and Fig. 13 show that the proposed method can provide the best prediction
accuracy and the most realistic probability performance compared with the benchmarks. Different
training and testing sets do affect the performance of forecasting, and training and testing with real
weather factors can achieve the best accuracy. However, the real weather factors cannot be obtained
a day ahead, which makes models trained with it more appropriate for real-time modeling tasks but
cannot handle day-ahead forecasting. In contrast, the uncertainty in NWP data limits the prediction
accuracy of models trained on it. As for training with real weather data and then testing with NWP
data, neither the accuracy nor the probabilistic performance is adequate due to the mismatch between
the training and testing datasets.
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Figure 13: Evaluation results of different methods with different datasets
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Table 9: The accuracy evaluations

Variable Type RMSE

ws70 Calibrated NWP 2.1062
Original NWP 3.3036

mslp Calibrated NWP 1.0904
Original NWP 1.0961

T Calibrated NWP 1.6475
Original NWP 5.2035

Wind power Calibrated NWP prediction 2.1547
Original NWP prediction 3.7056

Note that the proposed method exceeds the approaches trained and tested with real weather
factors, as shown in Fig. 13. This is because the real weather factors and power generation dataset,
which, as mentioned, is an incomplete training set. Hence, the incomplete mapping between weather
features and wind power generation in the dataset constraints the generalization ability of models
trained on it. While after using the proposed method to augment the training data, some missing or
fewer features are supplemented, thereby improving the generalization ability of the prediction model.
The results indicate that, through data augmentation and multiple AI surrogates, the proposed method
obtained the intrinsic physics information from NWP data and quantified its uncertainty, effectively
calibrating the day-ahead weather forecasting outputs. Compared with other wind power probabilistic
forecasting methods, the proposed method has a better training effect on an incomplete dataset. The
prediction accuracy, generalization ability, and probability prediction effect are more reliable.

In order to further verify the effect of the proposed method on a smaller data set, the training set
is reduced to half. Only the data from 2016-2-26 to 2016-3-3 are used as training data. Employ the
proposed method to build surrogates and predict the wind power generation in 2016-3-4. The training
and testing process remains unchanged; the results are shown in Fig. 14. As shown in Fig. 14, the
original NWP of ws70, mslp, and T are calibrated with the first surrogate, and with the calibrated NWP
data, the prediction result of wind power generation is obtained. Table 9 shows the RMSE evaluations.
Although only one week of training data is employed, the proposed method can still improve the effect
of wind power forecasting. However, there is an accuracy gap compared to the forecast results using
two weeks of data which means a certain amount of data is necessary for accurate forecasting.
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Figure 14: Forecasting results with one-week training data

5 Conclusion

This article aims at the operation and management of renewable energy smart grids for smart cities
and buildings. A physics-informed AI surrogates method for probabilistic forecasting of wind power
generation is introduced to tackle the insufficient generalization ability of high-resolution day-ahead
forecasting caused by incomplete datasets. The proposed method is able to mine the implicit physical
information in NWP data by employing small sample augmentation algorithms based on GAN, then
train the forecasting model with a multiple AI surrogates structure constructed with ELM. Thus, the
uncertainty within the NWP data and wind power generation are modeled and quantified. Compared
with conventional probabilistic forecasting methods, the proposed method improves in these three
aspects:

1. Compared with conventional methods, the proposed method improves the accuracy and
probability forecasting performance of day-ahead wind power generation forecasting, tested
on a certain incomplete dataset of a particular wind power farm.

2. Through incomplete data augmentation, the proposed method enhances the training effect
and generalization ability of the prediction model on the one hand and, on the other hand,
provides a more extensive data basis for quantifying the uncertainty of the prediction results.
This characteristic makes it applicable for relatively small datasets with missing, discontinuous,
and abnormal data. Therefore, considering the fluctuating nature of renewable energy, the
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proposed method’s prospects in modeling and controlling renewable energy smart grids are
apparent.

3. The prediction model constructed by multiple AI surrogates enables the wind power prediction
model trained on real weather factors to provide accurate wind power prediction with NWP
data. Therefore, it is possible to calibrate the prediction model in real-time through the weather
and wind power data monitored online to ensure its prediction ability, which is meaningful for
the power generation simulation tasks in the digital twin of smart cities.
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Supplementary Materials

Supplementary Figure S1: The data augmentation result for Dmslp
train
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Supplementary Figure S2: The data augmentation result for DT
train
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