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ABSTRACT

Many existing intelligent recognition technologies require huge datasets for model learning. However, it is not
easy to collect rectal cancer images, so the performance is usually low with limited training samples. In addition,
traditional rectal cancer staging is time-consuming, error-prone, and susceptible to physicians’ subjective awareness
as well as professional expertise. To settle these deficiencies, we propose a novel deep-learning model to classify the
rectal cancer stages of T2 and T3. First, a novel deep learning model (RectalNet) is constructed based on residual
learning, which combines the squeeze-excitation with the asymptotic output layer and new cross-convolution layer
links in the residual block group. Furthermore, a two-stage data augmentation is designed to increase the number of
images and reduce deep learning’s dependence on the volume of data. The experiment results demonstrate that the
proposed method is superior to many existing ones, with an overall accuracy of 0.8583. Oppositely, other traditional
techniques, such as VGG16, DenseNet121, EL, and DERNet, have an average accuracy of 0.6981, 0.7032, 0.7500,
and 0.7685, respectively.
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1 Introduction

Rectal cancer is a type of colorectal cancer that is a common malignant tumor of the digestive
tract, and its fatality rate is second only to lung cancer [1]. Among malignant tumors of the digestive
system, it is followed by gastric cancer [2,3], and esophageal cancer [4], all of which pose a serious threat
to a patient’s life and health. To a large extent, the description of the disease statute, the determination
of the tumor treatment plan, the prediction of the disease progression, and the likelihood of disease
recovery are all dependent on accurate rectal cancer staging. Thus, it plays a crucial role in the entire
diagnosis and treatment process, such as determining which treatments and prognosis are appropriate
for which stages. From a medical perspective, tumors are classified as T staging, N staging, or another
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staging, and T staging is employed in this paper. Rectal cancer tumors in the T2 stage penetrate the
submucosa, whereas those in the T3 stage penetrate not only the submucosa but also the intrinsic
muscle layer, as seen in Fig. 1. Hence, T3 is a more severe stage than T2, and there is a significant
difference in their therapeutic interventions. When tumors are discovered at the T2 stage, they can be
treated surgically right away. However, if metastatic lymph nodes are present above or around the T3
stages, neoadjuvant chemoradiotherapy should be used. As a result, the T2 and T3 stages mark the
beginning of the transition from benign to malignant rectal cancer. The incorrect staging can result in
unnecessary over-treatment and may lead to unanticipated consequences and expenses while providing
no therapeutic benefit [5]. Correctly measuring the difference in T2 and T3 stages is a topic of cardinal
importance and has great clinical significance.

Mucosal layer

Submucosa Layer

T1 T2 T3 T4 T4a T4b

Organs

Muscularis propria

Subserous Layer

Serosal Layer

Figure 1: Different stages of rectal cancer

Deep learning is one of the advantageous tools for medical data analysis, which involves image
classification [6,7], medical image segmentation [8–10]. and so on. At the same time, the evolution
of deep learning in the medical field is dependent on the accumulation of larger amounts of medical
datasets, which have multi-modal properties and provide a large amount of rich data. Besides, Deep
learning has made brilliant achievements in the processing of medical images, such as tumor detection,
prediction, classification, segmentation, and registration of medical images, especially in gastric [11],
brain [12], lung [13], histopathology [14], and image synthesis [15–17] or the other aspects of diagnosis
and treatment [18–21]. Furthermore, differential feature maps [22], rough set theory [23], discrete
gravity search algorithm (DGSA) [24], and other techniques are also employed effectively. Among
them, ResNet [25] also achieves excellent performance in image classification [26,27] and detection
[28,29]; Moreover, we also gain some understanding of few-shot learning tasks and learning their
minds. Although the development of deep learning methods has achieved remarkable results with
adequate data sets, there are some problems with small sample tasks [30]. Kim et al. [31] performed
classification by computing the similarity between the multi-scale representation of the image and the
label features of each class. Dong et al. [32] used low-level information to improve the classification
accuracy for the few-shot task. For the problem of insufficient training samples [33–38], various
methods are employed to handle specific challenges.

At present, deep learning for rectal cancer involves the following aspects: segmentation of the
rectum and rectal cancer [39], analysis of rectal cancer lymphatic metastasis based on computerized
tomography images [40], automatic detection of the invasion of vessels outside the rectal wall [41],
assisting patients’ treatment programs. and detection or classification of intestinal polyps [42]. These
deep learning methods have specific requirements on the dataset and lack studies when the sample
size is scarce. Traditional machine learning methods, such as radiomics [43–48], can exploit potential
differences in radiomics features of rectal cancer patients to predict patient survival, but feature
extraction in radiomics requires manual involvement. Deep learning continues to evolve in treatment
problems and medical diagnosis. The medical perspective includes a new classification based on
magnetic resonance imaging (MRI), which determines the relationship between tumors and their fixed
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parameters on MRm [49] or using support vector machines as well as RNA test data for classification
[50]. There are enough cases for doctors to analyze for this condition. In response to the lack of training
datasets, Wang, Cui et al. proposed a multi-branch hybrid model [51], which makes full use of the
information contained in the data. Our method can deal with the same situation but in a different way.

In this paper, we propose an accurate and reliable deep-learning model, which effectively addresses
the challenge of traditional rectal cancer staging and data collection. First, we make full use of
the advantages of deep learning, where feature extraction is extracted automatically via convolution
kernels rather than manual selection. Meanwhile, it reduces the time and labor cost of collecting and
manually annotation to a certain extent. To address the issue of the limited and unbalanced dataset,
we present a new classification model with appropriate modifications based on ResNet34. Apart from
squeezing and extracting between residual blocks, we add this structure to residual groups and re-
create the residual architecture by applying the idea of feature fusion to establish cross-convolution
layer links. T2WI images, both annotated and unannotated, were selected and preprocessed. Then,
the training set consists of the original images and the preprocessed images. Our image preprocessing
mainly includes noise, contrast, shift tumor location, and so on; besides, the images obtained after
preprocessing must ensure the integrity of the tumor and avoid the loss of tumor features. There is a
correlation between the preprocessed samples. To alleviate the influence of the relevance of the data
in the training model, we use an asymptotic output layer (AOL) at the end of the model. Additionally,
due to personnel shortages and unequal distribution, our approach may be used in the future to help
doctors prevent delays and bias in imaging results [52]. The contributions of our work are as follows:

1) We develop a new network framework for T2WI image classification of rectal cancer, which
incorporates the recalibrating feature and AOL organically; Meanwhile, we widen the network
width further by using cross-convolution layers, reducing the loss of feature information.
Compared with the existing classification models, our model achieves the best.

2) We use effective data augmentation methods to avoid problems, which could be generated by
small and unbalanced data in the process of model training, and it is conducive to training a
model.

3) The proposed classification model is based on significant data expansion and model inno-
vation. Its accuracy can reach 0.8583, which helps doctors make correct judgments, avoid
subjectivity, save labor, and achieve better treatment benefits.

The rest of our manuscript is organized as follows: Section 2 summarizes and reviews the relevant
works, such as SENet, SpianlNet, and others. The proposed RectalNet method and the processing of
the rectal cancer dataset are stated detailedly in Section 3. The details of the experimental setup, the
analysis, and the discussion of experimental results are presented in Section 4; the conclusion is given
in Section 5.

2 Related Work
2.1 Squeeze and Excitation

In this paper, we fully draw the advantages of feature recalibration [53] to improve the performance
of our model. The basic parameter propagation mechanism is depicted in Fig. 2, and the fundamental
idea behind this network’s work is that it can learn attention weights for its channels in an adaptable
manner given an input. The following are the primary three processes utilized to recalibrate the
previously acquired feature maps:
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(1) Squeeze Operation. Fsq represents this operation, which can change the spatial dimension
through the global average pooling layer to obtain a feature map of size 1 × 1 × C, which can be
understood as having a global receptive field.

Fsq ⇔ 1
H × W

H∑
i=1

W∑
j=1

uc (i, j) (1)

i and j represent the length and width dimensions of the input feature tensor, respectively, and the
dimension is changed to 1. uc is the number of input channels.

(2) Excitation Operation. This operation’s role is primarily reflected in the use of the fully
connected layer, whose purpose is to perform a nonlinear transformation of the previous stage’s result.
A channel scaling parameter is set, representing a correction between channels, and the weights are
continuously updated in the backpropagation. Fex denotes this process means and is as follows:

Fex ⇔ σ (Fc (Re (Fc ((Conv(Fsq)))))) (2)

Fc, Re, and σ refer to dimensionality reduction, ReLu and Sigmoid are the activation function.

(3) Scale Operation. Fscale signifies this operation. The excitation features are weighted towards the
original features by multiplication channel by channel to complete the reconstruction of features. In
a word, the module’s receptive field can cover the whole channel of the input tensor, focusing on the
channels with informative features and suppressing channels with few information features.

Fscale ⇔ Euc (v (Fex)) ∗ uc (3)

v is the reshape to the output of the previous phase, and Euc means redefining the dimensions in
the same way as the uc.

C2 C2
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h
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X

input
output

Figure 2: The main mechanism is squeeze and excitation

2.2 Asymptotic Output Block
Deep neural networks bring high performance to engineering and science fields and have attracted

attention for their success in various cognitive tasks of machine learning. Asymptotic output is a neural
network module that imitates the properties of the human somatosensory system, which mainly refers
to how the spine receives external input signals and outputs bodily responses; This module can be
divided into an input layer, a hidden layer, and an output layer. The input layer mainly receives external
signals, the hidden layer can be regarded as the joint processing of input signals by neurons, and the
output layer is used to present the processing results of the signals. The working principle is shown
in Fig. 3: (1) Each time a portion of the input data is presented as the first neuron’s input; (2) The
other part remaining data and the output of the first neuron are considered as the input of the second
neuron; (3) Repeat the second step until all the input data is used up; (4) The output of each neuron
is concatenated together as the final output. This process is expressed in Eq. (4). The goal of a deep
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learning network is to minimize the loss of input feature mapping and thus obtain better classification
results. To achieve this goal, this paper utilizes multiple fully connected layers to process input data
with inter-processing between fully connected layers.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1 ⇔ F (x1)

t2 ⇔ C (F (x2) , t1)

t3 ⇔ C (C (F (x3) , t2) , t1)

. . .

tn ⇔ C (C (F (xn) , tn−1) , tn−2)

(4)

F denotes the processing of each neuron, C denotes the connection operation and x denotes the
input data.

1 ~ nX

2n ~ nX

2 3n ~ nX

C

…

Figure 3: The workflow of asymptotic output

3 Methodology

At present, many scholars apply ResNet as the benchmark for a variety of tasks in the field of
computer vision because ResNet can build residual blocks by adding a shortcut connection between
input and output. It can be understood that this network is a combination of several parallel sub-
networks by combining multiple paths rather than stacking. In this paper, an expanded residual
learning network, named RectalNet, to classify T2WI images of rectal cancer. It can increase its depth
and width at the same time and learn image information correctly and repeatedly.

3.1 Augmentation of Rectal Cancer Dataset (RECD)
In this paper, the RECD was collected by the Imaging Department of Changshu First People’s

Hospital and has been approved by the ethics committee. Patients with colorectal cancer who
underwent curative resection, patients with early-stage rectal cancer (Early stage: T1 or T2 and N0)
who underwent total mesorectal excision (TME), and patients with progressive-stage rectal cancer
(Advanced stage: T3, T4, N+ or CRM+) who underwent neoadjuvant chemoradiotherapy followed
by TME were enrolled in this paper. T and N staging were determined based on postoperative
histopathological findings in the first type of patients. For the second type of patients, T and N staging
was evaluated based on a pre-neoadjuvant MRI report by a radiologist (Zhihua Lu) experienced in
MRI diagnosis of gastrointestinal tumors. It should be noted that histopathological specimens did not
correspond to MR images. The images in this dataset were collected from 67 patients. These patients
were diagnosed with rectal T1, T2, T3, and T4 stages, as well as malignant lymphoma and mucinous
adenocarcinoma, and all the labeled data were annotated by experienced doctors. According to these



928 CMES, 2023, vol.137, no.1

diagnostic results and the number of patients with corresponding diseases, there are only five patients
with rectal cancer T1, only three patients with rectal cancer T4, and a total of four patients with other
tumors. Thus, we abandoned those seriously unbalanced diseases and finally chose to classify T2 (19
patients) and T3 (36 patients) rectal cancer. Because this has a certain clinical significance, subsequent
treatment and recovery are different depending on the stages. Computerized tomography (CT) and
magnetic resonance (MR) imaging are performed on each patient. MR imaging, as opposed to CT
imaging, images at the molecular level and offers superior soft-tissue resolution with no radiation. MR
scans can provide physiological, pathological, and metabolic information in addition to the anatomical
structure of the human body. Accordingly, MR(T2WI) has the most reference value.

When a deep learning model is used to categorize the T2 and T3 of rectal cancer, the training
dataset’s volume significantly impacts the model’s performance. Due to our limited data amount,
data augmentation technology is indispensable. In this paper, our workflow is depicted in Fig. 4,
and n represents the number of cycles (n is 20 in our experiments). In the first phase, we conduct
numerous fundamental data alterations, such as horizontal and vertical mirror inversion, pepper and
salt noise, contrast enhancement, and so on. After this phase, the model’s generalization capability
is improved, and the data amount is enhanced. In addition, we exploit random clipping, random
offset, and zca-whitening processing in the second and most significant step. Meanwhile, we ensure
the tumor’s integrity in the image regions. As shown in Fig. 5, the purpose of this procedure is to
expand the diversity of training images while also assisting the model in extracting the features of the
tumor fully. Finally, the training set contains 2000 images, where T2 and T3 are 800 and 1200 images,
respectively.

Phase I
Original medical image

spilt(1…n)

Phase II
One-fifth to test and four-fifth to 

train

Phase III
Image enhancement to obtain images of different 

interference levels

Phase V
Original residual Group

Phase VI
Adding squeeze and excitation in residual Group

Phase VII
Adding Asymptotic output layer at the end of the 

framework

Phase IV
Additional layer

Phase VIII
Using trained model to test

train(1…n)
test(1…n)

work flow

data flow

Figure 4: The workflow
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Figure 5: T2WI images of one patient after processing

3.2 Proposed Network Framework
3.2.1 Reduce the Loss of Feature Information in Residual Group(SE)

We introduce squeeze-excitation into the residual group, which primarily compresses and extracts
the feature maps. It is also proved in [37] that this operation, combined with some basic network
models, can improve network performance even further. What distinguishes our network in this paper
is that it employs this operation in residual blocks as well as in residual groups. We constructed
this substructure to alleviate the following issues: Firstly, the semantic information of feature maps
will be lost after repeated convolution operations between each residual block. Secondly, there is no
discernible difference between our data categories, and it is difficult for our model to distinguish
information. Thirdly, compared with natural images, medical images are more likely to lose some
vital information; After preprocessing, the images input our model, which not only compresses and
extracts each residual block, recalibrates the features, but also performs global average pooling and
dimensionality reduction between each residual block. The importance of each feature channel is
automatically acquired through repeated learning, and the corresponding parameters of each channel
number are constantly updated to achieve multiple captures of shallow information, reduce feature
loss, and provide meaningful information supplements. Fig. 6 depicts the sub-model, whereas Part II
of Fig. 7 depicts the inter-structure. This mechanism is added between the third and fourth residual
blocks, and the performance is improving greatly. The following is the flow of our algorithm:{

a = Conv (Re (BN (x)))

r = Add (a, Res (x))
(5)

{
x1 = Fscale (Fex (Fsq (r)))
x2 = Res (x1)

(6)

BN, Res, Add represent Batch Normalization, a set of residual processing, and element addition
severally.
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Figure 6: The structure of SE between the residual group
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Figure 7: The overall structure of the RectalNet

3.2.2 Asymptotic Output Avoid Information Loss (AOL)

We use the asymptotic output block as our classifier at the end of the model, which is composed of
full connection layers. We use it as our classifier because it can gradually integrate useful information,
avoiding the feature of information redundancy. As shown in Fig. 8, this block inputs information
step by step to avoid accepting too much information at once in the final fully connected layer and
to efficiently output differentiated information. Furthermore, the asymptotic output layer consists
of three elements: the input layer, the hidden layer, and the output layer; the process is as follows:
when the tensor propagates forward to the hidden layer, each hidden layer selects the pixel values in
different dimensions of the input tensor for processing, and there is information interaction between
each hidden layer; The use of hidden layers will increase the depth of the network; The overall structure
of the asymptotic output layer is depicted in Fig. 8 and is Part III of Fig. 7. The application of adaptive
average pooling can compress spatial dimensions and remove the mean values of corresponding
dimensions, which can suppress some useless features to a certain extent. In addition, the final
experimental results are diverse depending on the number of hidden layers in the asymptotic input
layer. The selection of the number of relevant layers will be given in the experimental part. As illustrated
in formula (1), we use five hidden layers as a classifier.{

t4 ⇔ C (C (t1, t2) , t3)

a = AAP (C (t4, t3, , t2, t1))
(7)

AAP is the processing of adaptive average pooling, a is the final result.
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Figure 8: The framework of the asymptotic layer

3.2.3 Get Different Receptive Fields between Residual Groups(ADD)

To reduce the loss of low-lever feature information in medical images, we construct an additional
block, including Batch Normalization, ReLu activation function, and convolution with a 2 ∗ 2 kernel.
It can be inserted between the residual blocks to reuse the feature map of the previous group of residual
blocks. The structure can be seen in Fig. 6. The additional layer has a different receptive field and can
acquire more information from limited data, thereby increasing the richness of the feature map. The
convolution kernels of 1 ∗ 1, 3 ∗ 3, and 7 ∗ 7 are used in most network models, whereas our framework
employs an even-numbered convolution kernel of 2 ∗ 2. Diverse convolution kernels have different
receptive fields so that they can obtain more feature information from distinct convolution processes.
Their fundamental function is to use the receptive field of the even convolution kernel to extract the
shallow feature information that is ignored by the odd receptive field. This process corresponds to
Part I of Fig. 7.

3.3 The Overall Structure of the Network Framework
RectalNet is a feature representation learning model, which repeatedly uses shallow semantic

information in the process of feature extraction. As for complex rectal cancer T2WI images, the model
has a strong multi-level abstraction ability to learn distinguishing features of T2 and T3 stages, and
spatial distance constraint capability. Fig. 7 depicts the proposed network’s outline. Inspired by [43,44],
the model solves the problem of too large correlations between sample categories during the data
expansion phase and continuously utilizes the advantages of [43] networks to solve our dilemmas.
Moreover, the main features of the RectalNet model are as follows:

(1) We draw on the characteristics of feature fusion and the feature output of the residual group
structure to reduce the loss of the residual block from the previous layer, as shown in Part I of
Fig. 7;

(2) We use the SE channel attention mechanism in the last two sets of residual structures to
recalibrate the features multiple times in the channel dimension, as shown in Part II of Fig. 7;

(3) We add an asymptotic output layer at the end of the network to avoid overfitting, as shown in
Part III of Fig. 7.

4 Experiment Studies
4.1 Setup

Our experimental settings are as follows: the development system uses Ubuntu 16.04 LTS (64
bits), the processor is the CPU E5-2640 V4, the memory is 64 G, the GPU is the GeForce RTX 2080
Ti, the editor uses PyCharm, and the development language used is Python, and the deep learning
framework uses PyTorch version 1.8.0. During model training, our learning rate is set to 0.005, the
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maximum number of iterations is 100, and the batch size is 20. In the experimental part, we conduct
comparison experiments and ablation experiments and also investigate the number of hidden layers
in the asymptotic input layer. As illustrated in Fig. 9, the final accuracy of our proposed model can
converge to around 0.85 and its loss to around 0.3. To better train our model, the optimizer of our
choice during the training process is Adam. To control the update range of model parameters during
the experiment, L2 regularization is added, and the weight decay parameter is set to 0.01. To verify
the generalization of our model, each method is run 20 times for random data, and we take the mean
of all the criteria plus or minus the standard deviation.

Figure 9: The curve of the proposed model’s accuracy and loss

4.2 Experiment Result and Discussion
In this section, we assess the effectiveness of the proposed RectalNet method for rectal cancer

classification. We use accuracy, precision, recall, and F1-score to evaluate our model, where F1-score
can balance recall and precision, avoiding either being too high or too low. Firstly, we affirm the
number of hidden layers in the asymptotic output block. Different numbers of hidden layers have
diverse influences on the model. In addition to more layers bringing more variables, it also harms the
final performance of the model. As available from Table 1, when the number of hidden layers (HL)
is 6 or 7, the final test accuracy is less than HL = 5. Similarly, if HL is 3 or 4, the performance is
unsatisfactory too. While the number of HL is 5, the ultimate test accuracy of the model achieves
the best at 0.8583. Therefore, comprehensively considering the accuracy and parameters, the number
of hidden layers of our model is 5 in the subsequent experiments. Besides, we can find that fewer
parameters will not improve performance, and we should choose the appropriate number of hidden
layers. Fig. 9 illustrates the training process of our model and the training accuracy converges to 0.85,
while the training loss is closer to 0.2. Secondly, we conduct the ablation experiment to confirm our
final model is valid in Table 2. Our proposed model has three main novel highlights: squeeze-excitation
(SE) block, additional layer (ADL), and asymptotic output layer (AOL). They can recalibrate features,
and obtain information from different acceptive fields across multi-layer convolutional connections.
In our model, we apply a squeeze-excitation (SE) block to each set of residuals with an accuracy of
0.6268, we utilize an additional layer (ADL) with an accuracy of 0.7616, and we employ an asymptotic
output layer (AOL) with an accuracy of 0.8583. Oppositely, the performance combination of any two
of the three alterations or one change drop dramatically. Furthermore, as known from Table 2, each
highlight is meaningful. Finally, we conduct the comparison experiment to ensure our model exceeds
existing deep learning models. We performed all the models 20 times to verify their stability. It is clear
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from Table 3 that the proposed network has the highest accuracy. Although the recall values of VGG16,
AlexNet, and EL1 models are higher than ours, their precision values are lower. In addition to this,
the accuracy, precision, recall, and F1-score of our model are higher than other models. Therefore,
our model is superior to existing deep learning models. Besides, our model is sensitive to the RECD,
while other models are unfavorable to RECD.

Table 1: Experimental results of different numbers HL based on RectalNet

Model Number of HL Accuracy Precision Recall F1-score

RectalNet 3HL 0.7122 ± 0.11 0.8181 ± 0.55 0.7934 ± 0.13 0.8014 ± 0.08
RectalNet 4HL 0.6583 ± 0.07 0.7714 ± 0.04 0.7778 ± 0.09 0.7718 ± 0.05
RectalNet 5HL 0.8583 ± 0.07 0.8910 ± 0.07 0.8889 ± 0.08 0.8983 ± 0.05
RectalNet 6HL 0.6500 ± 0.19 0.7925 ± 0.13 0.7000 ± 0.28 0.7182 ± 0.22
RectalNet 7HL 0.6999 ± 0.14 0.8213 ± 0.06 0.7666 ± 0.19 0.7825 ± 0.12

Table 2: Experimental results of RectalNet based on different improvements

Model Accuracy Precision Recall F1-score

Res_ADL 0.6878 ± 0.11 0.7728 ± 0.07 0.7955 ± 0.19 0.7677 ± 0.10
Res_AOL 0.6938 ± 0.13 0.8006 ± 0.05 0.7166 ± 0.17 0.7473 ± 0.11
Res_SE_AOL 0.6794 ± 0.13 0.847 ± 0.09 0.7178 ± 0.21 0.7569 ± 0.13
Res_AOL_ADL 0.6616 ± 0.06 0.8037 ± 0.04 0.7367 ± 0.11 0.7619 ± 0.06
Res_SE 0.6268 ± 0.12 0.8006 ± 0.09 0.6809 ± 0.17 0.7201 ± 0.12
Res_SE_ADL 0.6872 ± 0.07 0.8021 ± 0.04 0.78224 ± 0.14 0.7846 ± 0.07
Proposed (RectalNet) 0.8583 ± 0.07 0.8910 ± 0.07 0.8889 ± 0.08 0.8983 ± 0.05

Table 3: Experimental results of RectalNet and contrast methods on augmented RECD

Model Accuracy Precision Recall F1-score

Alexnet [54] 0.7512 ± 0.04 0.7561 ± 0.02 0.9889 ± 0.05 0.8566 ± 0.02
ResNet34 [25] 0.6955 ± 0.09 0.8224 ± 0.08 0.7711 ± 0.13 0.7878 ± 0.07
ResNet101 [25] 0.6372 ± 0.13 0.7716 ± 0.06 0.7389 ± 0.21 0.7406 ± 0.12
DenseNet121 [55] 0.7032 ± 0.06 0.8401 ± 0.09 0.7589 ± 0.14 0.7893 ± 0.05
VGG16 [56] 0.6981 ± 0.16 0.6981 ± 0.16 1.000 ± 0.00 0.8089 ± 0.15
TSK [57] 0.6320 ± 0.15 0.7861 ± 0.09 0.7561 ± 0.19 0.7708 ± 0.14
EL1 [58] 0.7500 ± 0.0 0.7500 ± 0.0 1.000 ± 0.0 0.8571 ± 0.0
DRENet [59] 0.7685 ± 0.07 0.8368 ± 0.08 0.8642 ± 0.09 0.8461 ± 0.04
Proposed (RectalNet) 0.8583 ± 0.07 0.8910 ± 0.07 0.8889 ± 0.08 0.8983 ± 0.05

In this paper, we propose a method for rectal cancer classification. Despite being a part of the
T stages, few reporters researched it, and our method exhibits superior performance. As we can see
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from the experimental tables, the accuracy has increased, as have the other three indicators, and the
recall has decreased acceptably. To better determine the treatment plan from doctors, it is crucial for
our model to accurately recognize the status of patients’ tumors from medical images. Currently, there
are three major challenges in rectal cancer classification. The first problem is the lack of labeled data
because only a few radiologists and physicians can accurately identify the location and shape of rectal
cancer from medical images; Collecting sufficient data and labeling data is time-consuming. Another
challenge is that the results of disease diagnoses tend to be skewed towards a certain category, resulting
in imbalanced data; Collecting medical images with a comparable number of categories is tougher. The
last one is that the shape of the tumors and rectum is varied, depending on the object and location
being depicted, so it is challenging to establish a universal model for classifying rectal tumors.

When developing a deep learning model for medical image classification, we must take into
account the characteristics of medical images. Medical images have fewer distinguishing features and
are more difficult to identify than conventional images. In this study, we focused on classifying the T2
and T3 stages of rectal cancer and compensated for the deficiencies of our dataset by constructing a
model. Based on the results of the experiments, we can conclude that the proposed model has some
validity. Our model outperforms typical deep learning models in terms of results. We have successfully
treated restricted datasets in this paper to decrease the reliance of deep learning models on the amount
of data; Furthermore, the method of data augmentation may result in significant correlations between
images, causing the model to overfit during the training process. We may need to limit the scope of
data preprocessing, and cannot blindly expand the quantity. Our method can be applied to other small
sample datasets as a model. Besides, the dominant sources of our errors are as follows: The patient’s
age, gender, tumor distribution site, and other factors influence tumor characteristics, but our data had
a small sample size, resulting in a lack of variation in tumor features; Another source is our model;
in the meantime, our model may lack generalizability. One of the main reasons is that tumors have
a variety of strange shapes. From a medical perspective, the more a tumor seems irregular, the more
likely it is a malignant tumor.

5 Conclusion

We presented the asymptotic-feature-map-hybrid approach as constructive and practical based on
feature information from combination preprocessing, identifying rectal cancer stages between T2 and
T3. Asymptotic-hybrid-feature-map has incorporated multiple techniques and strategies, including
uncomplicated data preprocessing, feature compression and extraction, the asymptotic output of
feature information, and adding cross-multi-layer convolution information interaction. Consequently,
our experimental results demonstrate the superiority of our approach over the other networks. This
raises the likelihood of being used in clinical settings. In future work, we will try to apply the proposed
method to other medical image classification problems to test whether it is suitable for a more limited
sample of medical datasets and whether the superior performance of our method generalizes to larger
groups, and we will further combine deep learning with the medical field to compare the performance
of the tool with the performance of radiologists and postoperative histology. Likewise, we will take
into account tumor segmentation because lump size affects treatment decisions for rectal cancer and
then use our model to classify the carcinoma according to its morphology.
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