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ABSTRACT

With the help of surgical navigation system, doctors can operate on patients more intuitively and accurately. The
positioning accuracy and real-time performance of surgical instruments are very important to the whole system.
In this paper, we analyze and design the detection algorithm of surgical instrument location mark, and estimate
the posture of surgical instrument. In addition, we optimized the pose by remapping. Finally, the algorithm of
location mark detection proposed in this paper and the posture analysis data of surgical instruments are verified
and analyzed through experiments. The final result shows a high accuracy.
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1 Introduction

With the development of the global economy, people’s demand for health care is increasing,
and countries have invested considerable funds in the medical field. At the same time, thanks to
the development of computer technology and image processing technology, more and more technical
means are used in the medical field [1,2], and medical technology has also ushered in revolutionary
change. Among them, the surgical navigation system is one of the most representative inventions in the
medical field. The surgery navigation system originated in the early 20th century. And until the 20th
century, computer tomography (CT) and magnetic resonance (MRI) technology improved the clear
degree of medical imaging. Combined with CT and MRI and positioning technology, it can be used
in patients with lesion locations. This greatly improves the doctor’s operation difficulty, the operation
safety, accuracy, and also reduces wound trauma, potentially reducing the risk of wound infection and
multiple surgeries. Therefore, the surgical navigation system was formally born [3].

Surgical navigation system technology has the advantages of high precision, high safety, low pain
and minimally invasive, which makes the traditional surgical treatment schemes relying on doctors’
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experience gradually eliminated. Its application field has gradually expanded and is widely used in
orthopedic surgery [4,5]. The common ones are spinal surgery, orthognathic repair and dental surgery
[6–10]. The surgical navigation system was also used to locate the organ lesion site for resection [11–
15]. The beauty industry uses the assisted function of navigation technology to remove part of the
skin, mainly for the precise removal of skin cancer [16]. In order to make the operation process more
operable for doctors, the R & D personnel introduced augmented reality (AR) technology [17–21],
mixed reality (MR) technology [22,23] and visualization technology [24,25] to make the operation
process more visible. These technologies are also widely used in the fields of preoperative planning and
medical teaching. With the development of machine learning, the combination of machine learning
and surgical navigation system also gives the system higher performance and accuracy than traditional
systems [26–28].

Scholars have also done a lot of research on the localization algorithm of surgical navigation
systems. Zhou et al. [29] proposed an optical surgical instrument tracking system based on the basic
principles of stereovision, which used the region growth algorithm to extract marker pixels’ coordinates
and the gray centroid algorithm to optimize the pixel coordinates of positioning markers. The main
contribution of the algorithm is to propose a new precise sub-pixel positioning method, so as to
improve the positioning accuracy of the surgical instrument. Jiang et al. [30] proposed an optical
positioning technology based on binocular vision. They used markers mounted on the skin to precisely
locate puncture instruments, improving the accuracy of puncture positioning and reducing the time of
surgery.

Besides, Wang et al. [31] proposed a stereo-matching network that could efficiently learn charac-
teristic information between stereo vision based on deep learning. Wang et al. [32] proposed a method
of matching line segments in redundant images according to the polar geometric constraints between
matching pairs. This method avoids redundancy line before matching detection, has good accuracy
and high efficiency.

In addition, Chen et al. [33] proposed an unsupervised stereo matching algorithm based on
sparse representation. This method does not rely on actual parallax data, can avoid the influence
of illumination and exposure changes, and is very beneficial to the calculation of similarity between
pixels in image matching. Zhong et al. [34] proposed a stereo matching algorithm that uses the relation
of visual stereo correction and visual homograph transformation to search the relationship between
left and right images. The proposed method makes the search process of stereo matching simpler, and
reduces the influence of shape change caused by DOP on the stereo matching process.

Furthermore, Zhang et al. [35] proposed a new stereo matching algorithm on the basis of weighted
guided filtering. The algorithm first uses the particularity of complementary technologies (absolute
difference algorithm, census algorithm and gradient algorithm) to solve the matching cost. Then,
the adaptive weighted guided image filtering method is used to obtain the total cost function, and
the gradient operator Canny algorithm is used to adjust the regularization parameters automatically.
Finally, the compacting method is used to optimize the parallax graph preliminarily to reduce the
error.

The checkerboard is a frequently used pattern in camera calibration, an essential process to get
intrinsic parameters for more accurate information from images. Yan et al. [36] proposed an automatic
method to detect multiple checkerboards in a single image. It contains a corner extraction approach
using self-correlation and a structure recovery solution using constraints related to adjacent corners
and checkerboard block edges. The method utilizes the central symmetric feature of the checkerboard
crossings, the spatial relationship of neighboring checkerboard corners, and the grayscale distribution



CMES, 2023, vol.137, no.1 671

of their neighboring pixels. Harris corner detection in checkerboard images for camera calibration
often suffers from uneven illumination. The key to camera calibration is robustly detecting corners
from degraded images. To this end, Yang et al. [37] proposed an image processing method to deal
with non-uniform illumination problems and improve the stabilities of Harris corner detection under
uneven illumination. Wang et al. [38] proposed a robust checkerboard corner detection method for
camera calibration based on an improved YOLOX deep learning network and Harris algorithm, whose
purpose is to get high checkerboard corner detection robustness against the images with poor quality
(i.e., degradation, including focal blur, heavy noise, extreme poses, and large lens distortions). The
proposed method is not only more accurate than the existing methods but also robust against the
types of degradation.

At present, the accuracy of surgical instrument posture positioning is required more and more in
the field of surgical application. It is of great significance to study the factors affecting the accuracy
of surgical instrument posture positioning, any lack of accuracy may have a huge impact on the
surgical results. Therefore, the positioning accuracy in the current research still has room for further
improvement.

This paper proposes a detection algorithm for surgical instrument position marking based
on the above analysis. We first design and analyze the markers, and then selects the markers that
meet the accuracy and robustness for tracking and positioning. Then a detection algorithm suitable
for the system is proposed and the experimental data is analyzed. Then the matching algorithm of
surgical instruments is analyzed and designed, mainly consists of the matching algorithm of feature
points and the matching algorithm of surgical instruments. Then, the gesture analysis algorithm of
surgical instruments is analyzed and designed, mainly using the rigid body characteristics of surgical
instruments to solve its gesture, and the algorithm of surgical instruments gesture optimization
is studied. Finally, experimental data analysis, mainly black and white corner detection, surgical
instrument positioning accuracy of experimental data analysis and comparison.

2 Dataset

The data set selected in this paper is obtained by processing the time series data. Multiple data can
be obtained for the same data series according to different time steps and mean square parameters.
The data is classified according to the motion category of the time series. The sequence data is shown
in the Table 1.

Table 1: Time series data set

Sport category Data volume

Training set Plane random motion 5231
Random motion 10125
Simulated surgical random motion 20235
Mixed motion 20469

Test set Plane random motion 1171
Random motion 2296
Simulated surgical random motion 4312
Mixed motion 4482
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In the specific experiment, the above data are sliced according to different demand steps, and the
training data can be obtained by sampling. The plane random motion data in the training data is used
to preliminarily train the model, and select the step size and sampling period, to find the preliminary
parameter range suitable for the model. Some of the processed data in the above time series data are
shown in Table 2.

Table 2: Gesture time series data

q1 q2 q3 q4 t1 t2 t3

0.042 0.661 0.746 −0.015 0.026 0.001 0.010
0.047 0.660 0.748 −0.011 −0.071 0.011 0.055
0.036 0.660 0.750 −0.017 −0.573 0.081 0.525
0.043 0.657 0.751 −0.013 −0.271 0.007 0.069
0.043 0.657 0.752 −0.013 −0.182 0.071 −0.325
0.049 0.656 0.753 −0.005 −0.696 0.143 −0.244
0.041 0.653 0.755 −0.012 −0.464 −0.035 0.044
0.042 0.6526 0.756 −0.006 −0.131 −0.079 −0.067
0.043 0.648 0.759 −0.008 −0.242 −0.188 0.154
0.034 0.648 0.760 −0.004 −0.147 −0.227 0.227

3 Method
3.1 Surgical Instrument Matching Algorithm

In the process of surgical instrument matching, there are mainly two kinds of problems, that is,
single surgical instrument matching and multi-surgical instrument matching. During the operation,
doctors often need to use a variety of puncture tools, and there are situations where the surgeon has to
cross surgical instruments between surgeries, which can lead to the problems of staggered positioning
and disordered sequence of positioning markers. Therefore, this paper analyzes and studies the actual
situation encountered in the process of manipulator matching, and puts forward a multi-surgical
instrument matching algorithm suitable for this paper. The positioning mark points on multiple
surgical instruments are imaged in one of the cameras, as shown in Fig. 1.

Bouguet stereo correction is to make the baseline of the two cameras parallel to the camera’s
imaging plane after correction, so that the poles are at infinity. At the same time, the optical axes of
the left and right cameras are parallel, and the ordinates of the imaging points on the imaging plane
of the left and right cameras are the same. After correction, feature point matching can be carried
out only in the small range image area consistent with the ordinate of the point to be matched, which
can greatly reduce the matching time, reduce the target matching error rate, and avoid the complex
situation of multi-point corresponding pole line crossing in the opposite pole geometry. In this paper,
Bouguet stereo correction method [39] is used to make the corresponding matching points on a straight
line, simplify the matching process, reduce the matching error rate.

The principle of Bouguet stereo correction is to transform the whole transformation matrix of
left and right cameras

[
R t

]
into two matrices R1 and R2, which are obtained when the left and right

cameras are rotated to parallel. The transformation matrix is the result of solving the optimization
function based on the minimum reprojection error and the maximum common area of the two cameras.
After the camera correction transformation matrix is obtained, the left and right camera point sets are
processed to obtain a new set of points to be matched.
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Figure 1: Schematic diagram of multiple surgical instruments

Then, according to the spatial positioning principle [40], the three-dimensional coordinate set
Pc = {

Pc
i : i ∈ N

∗
M

}
of the corresponding point in the camera coordinate system can be solved, where

Pc
i is the three-dimensional coordinate data of the corresponding point. According to the matching

relation and the black and white lattice detection data, the average set of black and white lattice Angle
θ = {

θi : i ∈ N
∗
M ∧ −90 < θi ≤ 90

}
of the imaging plane of the left and right cameras can be calculated,

where M is the number of matching pairs of location markers.

In addition, this paper regularly sets the angle of the black-and-white grid on the surgical
instrument. Among the four black-and-white grids, the angle directions of the three black-and-white
grids except the origin are the same and perpendicular to the angle direction of the black edge grid
at the origin. Therefore, some points in the set that may be matched into surgical instruments can be
quickly screened, so as to avoid the direct violent matching between all points in the set and make the
matching algorithm more efficient. The matching diagram of multiple surgical instruments obtained
by the above method is shown in Fig. 2.

Figure 2: Matching diagram of multiple surgical instruments
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3.2 Gesture Analysis Based on Rigid Body Characteristics
The specific process of surgical instrument gesture resolution is to use the four positioning markers

on the surgical instrument to obtain the known information of point set P = {
Pi : i ∈ N

∗
n

}
in the

surgical instrument coordinate system and point set Q = {
Qi : i ∈ N

∗
n

}
in the camera coordinate system.

Solve the minimization problem of the transformation matrix
[
R t

]
3×4

between the coordinates of the
surgical instrument and the camera to minimize the overall matching error E, as shown below:

argminE =
∑n

i=1
|RPi + t − Qi| (1)

Singular value decomposition (SVD) and quaternion method are often used to solve such
problems [41]. Compared with the rotation matrix, quaternion has the advantages of convenient
storage and concise representation. At the same time, it avoids the problem of coplanar deadlock in the
rotation of the current Euler angle representation. At the same time, quaternion has more advantages
in inversion and other operations than the matrix. Therefore, this paper uses the quaternion solution
to solve the quaternion representation of the surgical instrument conversion matrix R.

Let the quaternion be q = [q1 q2 q3 q4]T , q1
2 + q2

2 + q3
2 + q4

2 = 1, where q1 is the real part of
the quaternion, and q2, q3, and q4 are the imaginary parts. Let rij be the corresponding element in the
rotation matrix R. The rotation matrix and quaternion can be converted to each other, and the formula
is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = 1
2

√
1 + r11 + r22 + r33

q2 = r32 − r23

4q1

q3 = r13 − r31

4q1

q4 = r21 − r12

4q1

(2)

Quaternion conversion to rotation matrix:

R =
⎡
⎢⎣

1 − 2q2
3 − 2q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) 1 − 2q2
2 − 2q2

4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) 1 − 2q2
2 − 2q2

3

⎤
⎥⎦ (3)

Use the above method to analyze the posture of surgical instruments, as shown in the Fig. 3 below.

Figure 3: Posture analysis of surgical instruments
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3.3 Gesture Optimization Based on Remapping
SVD is used to solve the transformation matrix between the coordinates of the camera and the

surgical instrument in the coordinate system, which is the preliminary solution calculated by using the
rigid body information of the surgical instrument during calibration. In order to obtain the optimal
solution of the posture of the surgical instrument, this paper remaps the positioning mark points on
the surgical instrument back to the left and right camera imaging planes and takes the preliminary
posture solution of the surgical instrument as the starting point, The sum of the squares of the distance
between the location marks projected on the left and right cameras and the detected location marks is
a loss function, which is continuously optimized and iterated. The schematic diagram of reprojection
optimization is shown in Fig. 4. The optimized position will be closer to the actual position.

Figure 4: Optimization of surgical instruments

Then the optimization problem can be described as:

min
(q1,q2,q3,q4,t1,t2,t3)

F =
4∑

i=4

((
ul

i − ûl
i

)2 + (
vl

i − v̂l
i

)2 + (
ur

i − ûr
i

)2 + (
vr

i − v̂r
i

)2
)

s.t. q2
1 + q2

2 + q2
3 + q2

4 = 1 (4)

t1, t2 and t3 are the parameters in the translation matrix, and ul
i, vl

i, ur
i and vr

i are the coordinates
of the positioning markers on the imaging plane of the left and right cameras, which are independent
variables.

4 Experiments and Results
4.1 Black and White Lattice Detection Algorithm Test

In this paper, for some pictures intercepted in the experiment of real-time recognition of black-
and-white lattice corner detection in the video stream, the central blue point is the recognition
positioning point, and the arrow represents the direction of black-and-white lattice corner defined
in the way described in this paper. The image resolution in the experiment is 1280 × 960. A round
piece with a black-and-white grid corner diameter of 25 mm is pasted on the surgical instrument. The
identification picture is shown in Fig. 5 below.
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Figure 5: Experimental diagrams of black and white lattice detection. (a) Normal black-and-white grid
identification diagram; (b) Complementary light black-and-white lattice recognition diagram

Fig. 5a shows the schematic diagram of normal black-and-white grid recognition, which recog-
nizes the whole image. In conventional checkerboard recognition, many points in the recognition
process of a single checkerboard, such as the proximity of two fingers, are easy to form points
similar to the checkerboard. In this paper, corner screening is carried out according to the maximum
regional score. As shown in the image area, the recognition is relatively stable. Fig. 5b shows the corner
recognition under strong light. It can be seen from the figure that the algorithm can still identify the
positioning marks robustly under a certain light intensity, indicating that the algorithm has strong
robustness.

In feature point screening based on symmetry, the corner point score Roriginal = SR−DR−16×MR,
and the improved corner point score is Rmodify = SR − DR − λ × MR. In this paper, the corner point
score is greater than a certain threshold value, that is, R > thre, for the initial corner point screening,
the score R is different from the threshold value Thre. In order to avoid affecting the screening effect
by setting the algorithm described in the original text and the improved algorithm thre for R > thre
segmentation data, this paper set thre as 50, 100, 150 and 200 for four groups of experiments. Fig. 6 is
the effect diagram of different thre treatments of the symmetric corner recognition algorithm described
in the original text.

Figure 6: Screening diagram of the original algorithm. (a) thre = 50 (b) thre = 100 (c) thre = 150
(d) thre = 200
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The fracture diagram of cross area is shown in Fig. 7.

Figure 7: Fracture diagram of cross area

The effect diagram of the improved algorithm after different thre, comprehensive score and
regional connectivity is shown in Fig. 8.

Figure 8: Schematic diagram of improved algorithm score screening (a) thre = 50 (b) thre = 100
(c) thre = 150 (d) thre = 200

Compared with the common Fast, Harris and Shi-Tomasi corner detection algorithms, this paper
tests and makes statistical analysis on 10 pictures in the calibrated pictures, and shows part of the
screenshot area of one picture. The detection effect pictures are as follows in Fig. 9.

In order to avoid the value of various algorithm thresholds, which can affect the experimental
comparison, in the process of this experiment, when adjusting the threshold, the original algorithm is
set to be equivalent to the threshold of this algorithm in proportion for comparison. And the other
algorithms adjust the threshold from small to large intervals until the critical threshold of black-
and-white grid corners can be fully identified, and fine tune around the critical threshold. It can be
seen from the figure that the distribution near the corners in the Fast corner detection diagram is
extremely uneven, and many non-intersecting corners will be identified. Compared with fast, Harris
corner detection map is more evenly distributed near corners and can identify some non-intersecting
corners. In the Shi-Tomasi corner detection diagram, the corner recognition is relatively uniform, and
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the number of recognitions at each position is relatively stable. Still, some non-intersecting corners can
also be recognized.

Figure 9: Corner screening diagram. (a) Fast; (b) Harris; (c) Shi-Tomasi; (d) Original algorithm; (e)
The algorithm of this paper; (f) Regional distribution map of checkerboard corner points

The image resolution adopted in this experiment is 1280 × 960, the test environment is win10
× 64, visual studio 2015, Opencv3.2, C++. The CPU model is Intel (R) core (TM) i7-4510u,
2.0∼2.6 GHz and 8 G memory. Fast, Harris, Shi-Tomasi, the CQRD algorithm proposed by the
original author Stuart and the corner algorithm in this paper, the average recognition time and the
number of corners are shown in Table 3.
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Table 3: Corner screening test data

Algorithm Average time/MS Average number of corners

Fast 7.641 145.289
Harris 151.453 107.854
Shi-Tomasi 143.482 86.149
CQRD 26.699 429.391/70.553 (connected number)
Ours 15.281 233.475/50.400 (connected number)

After corner screening, it is compared with the existing positioning algorithms including black-
and-white lattice to further verify the certainty of corner points of black-and-white lattice. The
comparison algorithms include ASCD algorithm proposed by Da et al. [42], AXDA algorithm
proposed by Zhao et al. [43], ACRSC algorithm proposed by Andreas Geiger, fast template matching
FTM algorithm proposed by Cheng et al. [44] and CQRD algorithm of the original text, elect 10
pictures in the corner screening test for corner positioning test, and the results are shown in Table 4.

Table 4: Corner positioning test data

Algorithm Average time/MS Average error/pixel

ASCD 4489.136 0.109
AXDA 2086.453 0.117
ACRSC 1024.825 0.129
FTM 219.754 0.134
CQRD 31.699 0. 141
Ours 24.281 0.136

4.2 Surgical Instrument Positioning Test
We perform feature matching on the corner points of the surgical instrument, calculate the spatial

coordinates, and then calculate the surgical instrument tip according to the rigid relationship of the
surgical instrument. Print the square ABCD with the side length of 100 mm on the paper, stick it to
the glass plate, and place the glass plate on the stable plane, with the needle tip at the four vertices of
the square for the positioning test. Table 5 shows the coordinates of measuring points A, B, C, and D.

Table 5: Rectangular positioning test data (unit: mm)

First group Group 2 Group 3 Mean value Variance

A x 194.780 194.857 195.031 194.889 0.105
y 244.102 244.463 244.562 244.376 0.198
z 157.807 157.707 158.151 157.888 0.190

(Continued)
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Table 5 (continued)

First group Group 2 Group 3 Mean value Variance

B x 108.903 108.933 109.115 108.982 0.091
y 96.417 95.923 96.346 96.228 0.218
z 42.229 42.265 42.313 42.269 0.034

C x 21.116 21.221 21.408 21.248 0.121
y 75.610 75.833 75.695 75.7127 0.092
z 830.652 830.458 830.498 830.536 0.084

D x 899.063 899.034 898.904 899.000 0.069
y 944.299 944.101 944.291 944.230 0.092
z 876.532 876.447 876.457 876.479 0.038

The distance between adjacent points is shown in Table 6.

Table 6: Distance data of adjacent points (unit: mm)

First group Group 2 Group 3 Mean value Variance

AB 100.245 100.213 100.261 100.239 0.024
BC 99.693 100.002 99.819 99.838 0.137
CD 99.767 99.691 99.767 99.742 0.047
DA 99.562 99.506 99.604 99.558 0.0465

It can be seen from the table that compared with the experimental side length of 100 mm, the
maximum error does not exceed 0.5 mm. In order to avoid the problem of printing accuracy, the
maximum error between the calculated data with the same side length does not exceed 0.755 mm,
which fully meets the system requirements.

Let the tip of the surgical instrument move in a straight line about 20 cm away against the edge of
the ruler on the plane of the glass plate, and fit the motion data of the tip of the surgical instrument
with MATLAB to obtain the spatial straight-line equation as: 0.044 × (x − 143.408) = 0.558 × (y −
231.113) = 0.828 × (z − 654.392). In the fitting results, SSE = 2.1456e − 15, R − square = 0.911. The
fitting diagram is as shown in Fig. 10.

5 Discussion

According to the analysis of the score and screening graph of the above original text algorithm,
when R > thre is only used for the target screening. It is more appropriate to select thre = 200 through
the experimental test. Further corrosion operations are carried out on the area filtered by the threshold
value, so as to achieve the noise points that meet the requirements of a small number of points in the
connected area. It is appropriate to select thre = 50 through experimental tests, but according to the
comparison of Figs. 6b and 6a, after thre decreases from 100 to 50, the area of partial screening points
in the lower part of the figure does not change significantly, indicating that the method of continuing
to reduce thre and continue to use corrosion operations to remove noise points in the image is not ideal,
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and the screening points in Fig. 6b are mostly vertical bar shapes. Moreover, the number of points in
the connected region is very small. When the surgical instrument is tilted or the light is enhanced or
weakened, the screening points in (b) will disappear, resulting in low robustness of the algorithm. In
addition, by Fig. 6, black and white case we can know more angular points for cross shape distribution,
when the light intensity is the strong, weak, or black and white case, cross area will be broken in the
middle, and then to split into multiple connected regions, is not convenient to subsequent diagonal
point area with simple and efficient method to quickly identify, In addition, the robustness of the
black and white lattice detection algorithm of the original text decreases rapidly.

Figure 10: Linear motion of needle tip

According to the scoring and screening graph of the original text algorithm, it is appropriate to
select thre = 200 when R > thre is only used for target screening. Thre = 200 is appropriate when
noise is filtered through corrosion in the filtered area. Compared with Fig. 7, the noise in Figs. 8a–8c
is more prominent, partly because the reasonable value range of the algorithm thre before and after
the improvement is different, so it cannot be directly compared quantitatively. Another part of the
reason is that the improved algorithm increases the robustness of the algorithm, so the degree of noise
screening will be appropriately reduced. But the core of the algorithm design in this paper is the idea
of multistage screening. It can be seen from Figs. 8a–8d that with the continuous increase of thre, the
corner area does not change significantly and is always distributed in a rectangular area. Therefore,
after the corrosion treatment of the filtered image, part of the noise points mentioned above will be
filtered automatically without affecting the recognition of the corner area.

To sum up, the improved algorithm not only requires relatively few candidate points for subse-
quent processing but also greatly improves the robustness of the improved algorithm, especially for
light and tilt.

It can be seen from Table 3 that Fast has the lowest calculation cost, but the recognition effect is the
worst. Harris and Shi-Tomasi are effective, but the recognition time is the longest, which cannot meet
the real-time requirements. At the same time, in the calibration picture, because the chessboard picture
has good imaging, Fast, Harris and Shi-Tomasi detection algorithms can identify corners. However,
there will be missed detection in the actual detection process, and the number of missed detections is
high under the above threshold conditions. Reducing the threshold will rapidly increase the number
of detected disordered corners, which will seriously affect the subsequent corner processing effect.
This paper adopts the idea of Fast, filters most non-corner points in advance, speeds up the speed of
finding corner points in the smooth area, and uses the low-resolution image to extract seed points,
which can double the amount of calculation, significantly reducing the total calculation time, and the
corner extraction quality is good. In addition, it can be seen that the corner extraction algorithm in
this paper is also more accurate.
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It can be seen from Table 4 that the accuracy of ASCD, AXDA and ACRSC is relatively high, but
the running time is far greater than the real-time requirements. Among them, ASCD has the highest
accuracy, and the accuracy described in the original text can reach 0.09 pixels. Due to the equipment
limitation, the test data is not ideal in this experiment as described in this paper. The error of the CQRD
algorithm is similar to that in this paper, but its corner area is scattered, so it is slightly lower than in
this paper. Although the speed of the FTM algorithm has been improved a lot, it still needs to meet
the real-time requirements, and the effect of tilt corner detection could be better. The accuracy of this
paper is slightly higher than that of the original text, and the other algorithms are slightly lower, and
the average running time is about 24.281 ms. Due to the slow movement of the surgical instruments,
the posture estimation of the surgical instruments in the later stage only needs to scan the full image
on the low-resolution image at a fixed interval, and only the left and right image surgical instrument
areas are processed in the rest of the time, and the average time can achieve real-time. It meets system
requirements.

6 Conclusion

This paper studies the selection of surgical instruments, the recognition algorithm of black-
and-white grid position marks and its influencing factors on the positioning accuracy of surgical
instruments, and makes an experimental analysis. An improved black-and-white lattice detection
algorithm based on symmetry is proposed. The symmetry operator is used for initial extraction,
and then the corners are further extracted according to the regional and marginal diagonal points.
Experiments show the stability and robustness of the improved algorithm. The matching method of
feature points and the matching algorithm of surgical instruments are proposed. In addition, according
to the rigid body characteristics of surgical instruments, the gesture parameters of surgical instruments
are solved, and the estimated gesture accuracy is optimized by the remapping method. The experiment
verifies the accuracy of the final results.

However, there are also imperfections in this article that can be improved, for example: In this
paper, only the direction information of the corners of the black-and-white lattice is considered, and
the size problem is not considered. At the same time, the surgical instruments designed in this paper
can not rotate. Therefore, it is still necessary to further study the three-dimensional structure design
of positioning marks of surgical instruments and the positioning algorithm with stable accuracy.
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