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ABSTRACT

In intelligent perception and diagnosis of medical equipment, the visual and morphological changes in retinal
vessels are closely related to the severity of cardiovascular diseases (e.g., diabetes and hypertension). Intelligent
auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results. To address
this challenge, we design a Dual-Branch-UNet framework, which comprises a Dual-Branch encoder structure for
feature extraction based on the traditional U-Net model for medical image segmentation. To be more explicit, we
utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the
original U-Net. Then, image features are combined at each layer to produce richer semantic data and the model’s
capacity is adjusted to various input images. Meanwhile, in the lower sampling section, we give up pooling and
conduct the lower sampling by convolution operation to control step size for information fusion. We also employ
an attention module in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.
Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation. The
proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods.
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1 Introduction

The basic goal of medical image segmentation is to make pathological structural changes in the
image more visible, allowing the imaging physician to make a diagnosis more quickly and objectively
[1]. With the rise of deep learning, particularly the significant progress made by convolutional neural
networks in recent years, computer-aided diagnosis has been greatly improved in terms of efficiency
and accuracy. Among the well-known CNN approaches, U-Net [2] is unquestionably one of the most
successful medical image segmentation models, requiring little training data while achieving good
segmentation results. U-Net [2] originates from FCN (Fully Convolutional Networks) [3], and consists
of two parts: encoder and decoder. After multiple convolutions and down-sampling, feature maps
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containing rich semantic information are obtained, and the feature maps are up-sampled and then
spliced to obtain the output. Since U-Net [2] has efficient reasoning speed and excellent segmentation
results, it has been widely concerned by researchers since it appears and has expanded many variant
works [3]. For example, Attention U-Net [4] skillfully adopts the soft attention mechanism to replace
the hard attention mechanism for pancreas segmentation, and obtains the attention weight by fusing
the feature maps, then finally splices with the upsampling results to suppress irrelevant features and
enhance relevant features. Another example is the connection-sensitive attention network CSAUNet
[5], which achieves good segmentation results by combining the attention mechanism with its proposed
connection-sensitive loss function. These studies showed that the attention mechanism is useful for
lightweight medical picture segmentation models.

In recent years, the construction of innovative convolution modules has been a key research focus,
and some research teams have produced dynamic convolution that is more suitable for lightweight
neural networks [6,7], such as CondConv [8], DyNet [9] and Res-UNet [10]. Dynamic convolution,
as opposed to traditional convolution, dynamically alters the convolution parameters based on the
input image. This architecture can enhance the model’s expressiveness without expanding the network’s
depth or width. Numerous investigations have shown that dynamic convolution improves performance
more significantly than normal convolution for the same number of channels.

Semantic segmentation techniques in natural situations and related applications [11–14] have
made significant progress with many outstanding segmentation models emerging, including the
Deeplab series [15–18], FCN [19], FastFCN [20], and PsPNet [21]. However, there are still numerous
challenges in the field of medical image segmentation. These challenges come from the intrinsic
property of medical images themselves. The main reasons for segmentation difficulty are overlapping
lesions with normal areas, diminutive variances between the anterior and posterior backdrops [22],
small targets with various locations [23], and diverse noises generated by the medical imaging system.

In order to deal with these challenges, this paper proposes an improved network based on U-Net
[2] and dynamic convolution as shown in Fig. 1, which aims to promote the accuracy rating of retinal
blood vessel segmentation. The main contributions of this paper are condensed as follows:

1) We designed a two-branch encoder module composed of different convolutional blocks to
replace the original single encoder to enhance the model’s processing capability for retinal
image analysis.

2) We proposed a new attention module to guide the model to better identify vascular and non-
vascular features.

3) Experiments implemented on both DRIVE and ARIA datasets show that the devised Dual-
Branch-UNet outperforms the other typical models.

The remaining sections are described as below. Section 2 of this study provides a summary of
current work on retinal vascular segmentation, and Section 3 shows how to extend U-Net to Dual-
Branch-UNet. Section 4 presents our experimental results, and the last Section 5 summarizes and
discusses the article.
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Figure 1: Encoder structure contrast of (a) UNet and (b) Dual-Branch-UNet. The down module is
composed of conv, batch normalization and Relu

2 Related Work

Vessel segmentation is a challenging task for diagnosing diseases in medical image processing.
Researchers have applied different methods, techniques and algorithms to extract retinal vascular
structures to predict diseases such as laryngology, neurosurgery and ophthalmology [24]. This section
presents some existing methods and models for retinal vascular segmentation from different technical
perspectives.

2.1 Thresholds and Multiscale Segmentation
Thresholding is the most common and traditional technique for object region segmentation. This

method is based on the feature that the gray values between neighboring pixels (e.g., background
regions) and the target region is distinguished [25–27]. By setting a suitable threshold value, the pixels
can be separated into two categories. Dash et al. [28] suggested a multi-stage framework for segmenting
retinal vessels based on a threshold. This approach is divided into three steps. The first stage improves
the retinal image using contrast-limited equalization and removes noise with median filtering, and the
second stage is a Mean-C thresholding-based retinal vessel extraction segmentation procedure that
uses a threshold to separate the input into black and white images, then the third stage is a morphology-
based procedure that removes non-vessels and isolated pixels.

Additionally, the multi-scale approach adopts different convolution kernels to process the medical
image, with the advantage of being able to take into account different ranges of spatial feature
contexts. Michelson et al. [29] developed a multiscale-based approach for extracting retinal blood
vessels. The method shortens the inference time by recognizing blood vessels of varying sizes with
varying degrees of Gaussian kernel resolution. The Gaussian pyramid is separated into three tiers,
which correspond to the original image’s largest resolution, the breadth of the retinal vessels, and
the height of the retinal vessels. Similarly, Rattathanapad et al. [30] suggested a multiline detection-
based vascular segmentation approach based on Gaussian linear detection of input images at different
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sizes. This technique is able to segment larger and smaller vessels in the retinal image. Comparative
experiments are carried on the DRIVE dataset [31], which verify that both techniques can produce
better segmentation results. However, despite the fact that the multiscale-based method can obtain
different ranges of contextual information more effectively, the huge computing cost imposed by
multiscale operations remains a problem to be considered.

2.2 Matching Filter-Based Segmentation
The matched filter segmentation is performed by convolving the kernel mask with the vessel

structure of the retinal image, and the response image of the matched filter is generated by designing a
kernel function on the basis that the filter can extract different features in each direction of the retinal
vessels [32]. Using appropriate image threading, Fan et al. suggested a matched filter-based approach
for the automatic extraction of retinal vasculature [33], which processes local entropy thresholds and
filters misclassified pixels by eight contiguous regions around the target. Morphological refinement
methods are also adopted to discover vessel trees and branch points in retinal pictures.

3 The Proposed Method

Dynamic convolution, a recent research hotspot, intends to overcome the challenges of limited
depth of lightweight network models. The merit of dynamic convolution is that it is capable of
enhancing feature extraction capability and diminishing the number of channels while preserving
network performance. The usefulness of dynamic convolution is demonstrated by experimental
verification on numerous publicly available datasets. Our research focuses on how to construct a
deep learning model with dynamic convolution for medical image segmentation via extending the
conventional U-Net [2] to Dual-Branch-UNet.

3.1 Structure of a Dual-Branch Encoder
In the current research, many algorithms use multi-branch network structures, such as Contextnet

[34], Bisenet [35], Fast-SCNN [36], which have been successful in related medical image analysis tasks.
This has triggered diverse thoughts about introducing multi-branch structures into U-Net [2] for
medical image segmentation. Double U-Net [37], an improved U-Net based convolutional neural
network with a composite structure, has been introduced in medical image segmentation. The encoder
structure of Double U-Net [37] consists of a composite of VGG19 [38] and U-Net [2], and the input
of U-Net [2] comes from the output of the VGG network, namely, it is two relatively independent
networks that compose the codec module. Those models are different from our designed method, as
our encoder is composed of two relatively independent convolutional modules, while we accomplish
all feature fusion before decoding. Structurally, the devised model is simpler and lighter, as illustrated
in Fig. 2.
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Figure 2: Diagram of the designed Dual-Branch-UNet model. Dark green and light green boxes are
characteristic graphs generated by different branches, and the purple box represents the branch fusion
result

In a multi-branch network structure, the deeper branches input low-resolution images with the
aim of efficiently extracting global contextual features while ensuring less computational overhead.
Meanwhile, the shallower network branches process high-resolution images with the aim of extracting
spatial detail information. In our experiments, we found that the mutual combination of shallow
networks can better control the computational overhead without losing accuracy so as to ensure
the real-time performance of the algorithm. Therefore, we design a two-branch encoder structure,
as depicted in Fig. 1, where each branch operates relatively independently and the intermediate results
are fused to form the final semantic segmentation result.

3.2 Dynamic Convolution and Depth Separable Convolution
Compared with high-performance deep network, lightweight network has limited network depth

and channel number, which leads to insufficient feature extraction ability and recognition performance
of lightweight network. Dynamic convolution aims to solve these problems. In contrast to the standard
convolution, the convolution kernel of dynamic convolution is associated with the input image, and
different input images correspond to different convolution kernels. The exploitation of dynamic
convolution not only enhances the robustness of the model to different datasets, but also brings a
rapid rise in the total number of parameters. Considering this, it is desirable to seek out a solution to
the large increase of the number of parameters caused by the introduction of dynamic convolution.
Especially, we discovered that the combination of both dynamic convolution and depth-separable
convolution has parallel segmentation accuracy to the combination of dynamic convolution and
standard convolution, but the number of parameters is greatly decreased. Therefore, in the first branch,
we replace the standard convolution with a deep separable convolution with a kernel of 3 × 3. In the
designed architecture, the convolution kernel is set to 3 × 3 in its corresponding dynamic convolution
branch, and the channel transform rate is set to 0.25, then the average pooling of its built-in attention
module is replaced with maximum pooling.
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3.3 Downsampling and Branch Fusion
In practical experiments, we found that the precision of down-sampling using convolution with

step size of 2 and convolution kernel size of 3 × 3 is slightly higher than that of pooled down-sampling
with convolution kernel size of 2 × 2. Therefore, we adopt convolution for down-sampling. Secondly,
we fuse the feature information of two distinct branches in the channel dimension through the splicing
operation, and then reduce the dimension through the standard convolution core of 1 × 1.

3.4 Attention Mechanism
In order to better combine the low-level semantic information in the up-sampling process and

suppress the responses of irrelevant features in the fusion process, we rearranged a new attention
module by referring to Attention UNet [4] and the attention module in the full dimension dynamic
convolution ODConv [39], as shown in Fig. 3. The input of the attention module is the sampling result
ui (f , u ∈ RH×W ) on the i (i ∈ [1, 4]) layer feature map fi and the j (j = i + 1) layer, respectively, then
fi and uj do the addition operation, and activate through the activation function. Currently, we can
generate the preliminary output Qi

att ∈ RH×W as follows:

Qi
att = Relu(fi + Up(uj)). (1)

Figure 3: Diagram of attention mechanism. The rounded rectangle represents different operations, the
yellow box represents the activation function, the arrow represents the direction of data flow, and the
grid represents the weight matrix

Immediately, Qi
att is processed using the convolution operation with the kernel 1 × 1. And we

change the shape of tensor Qi
att, where �() represents flattening operation, then input it into the

sigmoid function to obtain the attention weight matrix Wi between [0, 1], which can be formulated
as below:

Wi = Sigmoid(�(Conv(Qi
att))). (2)

Finally, the weight matrix is multiplied with the up-sampling results to acquire the weighted
features:

X = uj × Wi, (3)

X = uj × Sigmoid(�(Conv(Relu(fi + Up(uj))))). (4)

Experimental results showed that our attention module can suppress noise and increase the
segmentation performance across diverse datasets and training sizes.
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4 Experiments

In this section, the utilized data set, evaluation indicators and parameter settings of the experiment
are depicted. Through a series of experiments, the validity of the designed model is tested and
compared with other advanced network models.

Figure 4: Comparison outputs of different methods for medical image segmentation. (a) the original
image, (b) the ground truth, (c) U-Net [2], (d) Attention UNet [4], (e) UNet++ [40], (f) UNext [41],
(g) R2UNet [42], (h) ConvUNext [22] and (i) the devised Dual-Branch-UNet

4.1 Experimental Setup
Data set: We verified the proposed model on two publicly accessible retinal vascular segmentation

datasets, as depicted in Table 1. The DRIVE dataset is popular for retinal vessel segmentation [31].
This dataset consists of 20 training images and 20 testing images of size 565 × 565, including 7 cases
of abnormal pathology. The Automated Retinal Image Analysis (ARIA) dataset [43] was provided
by St. Paul’s Eye Unit, Liverpool, UK, which included a total of 142 RGB images of size 768 × 576
with three groups of subjects, containing the healthy, age-related macular degeneration, and diabetic
groups. Among them, 120 were used for training and the rest of 22 were employed for testing.

Table 1: Information on the dataset used for the experiment, 200 rounds of training

Data Train Test Size Modality

DRIVE 20 20 565 × 565 RGB
ARIA 120 22 768 × 768 RGB

Implementation details: To evaluate the devised model, we utilize the Dice coefficient and the
average cross-merge ratio MIOU metrics for objective assessment. The early learning rate is set to
1e-4 for 200 training cycles using the Adam optimizer, the DRIVE dataset [31] is set to 2 for each
batch size, and the learning rate is dynamically modified. The loss function is a combination of cross-
entropy loss and dice loss. We also employ popular data preparation methods during experiments such
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as on-the-fly cropping, horizontal and vertical flipping, histogram equalization, and so on. Because
the resolutions of the two datasets are different, we crop them into 480 × 480 for the DRIVE dataset
and 600 × 600 for the ARIA dataset during training stage accordingly. Figs. 5 and 6 show the training
loss curve on ARIA and DRIVE data sets.

Figure 5: Training loss curve of the devised Dual-Branch-UNet on the ARIA dataset

Figure 6: Training loss curve of the proposed Dual-Branch-UNet on the DRIVE dataset

4.2 Experiment Results
The Dice coefficients and MIOU of U-Net [2], Attention UNet [4], UNet++ [40], UNext [41],

R2UNet [42], ConvUNext [22] and Dual-Branch-UNet carried on the DRVIE and ARIA datasets
are compared in Tables 2 and 3, respectively. The experimental results showed that our model
achieves the best segmentation accuracy on DRIVE dataset. On ARIA dataset, the segmentation
result of ConvUNext is also capable of generating promising results. We consider that ConvUNext
adopted 7 × 7 large convolution kernel is more effective on ARIA data sets with objects of the larger
original size.
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Table 2: Comparison of MIOU metrics in terms of the DRIVE and ARIA datasets

Models Data set

DRIVE ARIA

U-Net [2] 81.6(±0.2) 74.7(±0.2)
Attention UNet [4] 82.5(±0.2) 76.2(±0.2)
UNet++ [40] 81.2(±0.2) 75.5(±0.2)
UNext [41] 76.3(±0.2) 75.3(±0.2)
R2UNet [42] 80.1(±0.2) 65.8(±0.2)
ConcUNext [22] 82.5(±0.2) 76.8(±0.2)
Dual-Branch-UNet 82.9(±0.2) 76.6(±0.2)

Table 3: Comparison of DICE metrics based on the DRIVE and ARIA datasets

Models Data set

DRIVE ARIA

U-Net [2] 0.811 0.667
Attention UNet [4] 0.814 0.712
UNet++ [40] 0.796 0.686
UNext [41] 0.711 0.696
R2UNet [42] 0.779 0.571
ConvUNext [22] 0.816 0.723
Dual-Branch-UNet 0.819 0.712

The gap between UNext and the other models gradually closes as the training data increases,
indicating that UNext is attentive to the amount of data volume and performs worse when the training
data is minimal. In contrast, regardless of the amount of training data, our model delivers the best
segmentation results. Fig. 4 depicts the visual outcomes anticipated by all models.

Some typical applications of computer-aided medical treatment for eye diseases are mainly aimed
at some chronic eye diseases, such as early diabetic retinopathy and glaucoma [44,45]. This long-term
chronic disease that will lead to blindness requires very experienced doctors to find signs from early
scanning results. Computer-aided medical treatment can help doctors diagnose more objectively and
improve the efficiency and accuracy of diagnosis [46,47].

5 Conclusion

In this paper, we improved the U-Net encoder structure by extending the classic single-branch
encoder to a dual-branch structure in order to extract richer feature information for medical image
segmentation. Furthermore, we substituted ordinary convolution with dynamic convolution and
depth-separable convolution to ensure segmentation accuracy while dwindling the total number of
parameters created by the multi-branch structure. Finally, we also developed an attention module
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to improve feature fusion further. Experiments based on the DRIVE, ARIA dataset show that the
designed model outperforms the typical state-of-the-art approaches.

Since the number of parameters is increased compared to the original U-Net model due to the
incorporation of the attention mechanism and dynamic convolution, how to accomplish the further
lightweight design of the model will be our next study issue in future research. Besides, it is found
that the segmentation results of the model have small fragmentation predictions. We know that blood
vessels are continuous structures, and the fragmentation prediction obviously does not conform to this
structure. In this case, the design of a new connectivity constraint function that is applied to solve the
fragmentation prediction problem is also one of our concerned research directions in the future.
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