

DOI: 10.32604/cmes.2023.027463

ARTICLE

High Utility Periodic Frequent Pattern Mining in Multiple Sequences

Chien-Ming Chen¹, Zhenzhou Zhang¹, Jimmy Ming-Tai Wu¹ and Kuruva Lakshmanna^{2,*}

¹College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China

²Department of Information Technology, Vellore Institute of Technology, Vellore, 632014, India

*Corresponding Author: Kuruva Lakshmanna. Email: lakshman.kuruva@vit.ac.in

Received: 31 October 2022 Accepted: 03 January 2023

ABSTRACT

Periodic pattern mining has become a popular research subject in recent years; this approach involves the discovery of frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pattern mining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodic patterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequences is more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences is important. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To address existing problems, three new measures are defined: the utility, high support, and high-utility period sequence ratios. Further, a new upper bound, *upSeqRa*, and two new pruning properties were proposed. MHUPFPS uses a newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improve the overall performance of the algorithm. Furthermore, the proposed algorithm is evaluated using several datasets. The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utility periodic frequent patterns.

KEYWORDS

Decision making; frequent periodic pattern; multi-sequence database; sequential rules; utility mining

1 Introduction

With the continuous development of information technology, the modern internet of things (IoT) generates a large amount of complex data that cannot be efficiently acquired, stored, managed, and analyzed using traditional data management techniques. Data mining involves extracting potentially valuable information from large and disorganized data [1,2]; it uses a practical application perspective to extract meaningful information from large amounts of data to make decisions and set solutions [3,4]. Data mining combines different fields by employing other approaches, such as machine learning and statistics, to find and design algorithms for meaningful mining patterns [4–6]. Data mining classifies large amounts of data to identify patterns of interest [3,4]. To date, data mining has been applied to various areas, such as the IoT [7,8], machine learning [9–11], optimization [12,13], smart cities [14–16], and wireless sensors networks [17,18], etc.

Frequent pattern mining (FPM) is an essential branch of data mining research aimed at mining frequently occurring patterns [4,5,19]. For example, FPM has been used to find frequent customer purchases in transaction databases. With the development of FPM in various fields, several algorithms have been proposed for different types of applications, such as malware detection [20], machine learning [21], image classification [22], and activity detection [23]. These algorithms use different measures to identify meaningful patterns to meet the needs of the relevant field [4]. FPM algorithms can be used to determine the correlation between items or transactions in a database. However, they do not consider the order of precedence between transactions [24]. More specifically, FPM algorithms can identify a set of products that customers frequently buy periodically; however, identifying the order of each purchase is impossible. The sequence of events must be considered in practical applications, such as biomedicine [25], electronic information learning [26,27], text analysis [28], website hit comments, and various other fields. For example, in online shopping applications, several customers make the same or different purchases at regular intervals. Analyzing sequential behavior over time can help merchants and e-commerce platforms to develop sales plans and improve sales strategies.

To solve the constraints of FPM, several researchers consider the temporal order between transactions (events) and offer the concept of sequential pattern mining (SPM). SPM mines frequent subsequences in a sequence of transactions. Unlike FPM, SPM considers the sequence of events or transactions [1,26,28-30]. Although SPM algorithms can find frequently occurring patterns in a set of transaction sequences, they cannot be used to find patterns that repeat in a sequence over time, which could be useful. For example, analyzing products that numerous users repeatedly buy every few days or weeks from an online shopping database helps e-commerce platforms develop sales strategies. Research on periodic pattern mining has been conducted to find periodically occurring patterns in sequence databases [31-37]. The task of periodic pattern mining is to find the events or number of events between two occurrences of a pattern in a sequence of transactions that do not exceed a user-defined maximum periodicity threshold. For example, if a customer goes to the gym once a week, and if the maximum period threshold is set to one week, the user goes to the gym at least once a week. Various algorithms have already been proposed for periodic pattern mining [36,38-42],

Existing algorithms for periodic pattern mining focus on patterns occurring periodically in a sequence (one sequence corresponds to one customer). However, this is no longer sufficient to meet real needs. For example, there might be a need to determine the behavior of multiple customers who repeatedly purchase together. Recently, an algorithm called MPFPS was proposed [43] to find periodically frequent patterns in multiple sequences. More significantly, it extends finding periodic patterns in a single sequence to finding periodic patterns that are common to a group of sequences. MPFPS defines a new measure called the periodic standard deviation to guarantee a more stable period for patterns to appear in a sequence. However, MPFPS considers patterns that only appear once in a transaction and does not consider the internal utility (e.g., number of purchases) or external utility (e.g., value, importance) of a pattern. In practical applications, considering the importance and number of patterns based on user preferences is more helpful in discovering which patterns are of higher value in a user's periodic purchase behavior and mining significant patterns. For example, specific DNA molecules appear regularly in gene sequences [6,33]. However, each DNA molecule carries information of varying importance that directly affects the expression of certain external traits. Hence, the identification of DNA molecules that appear periodically plays an important role. Consequently, designing a new algorithm for mining high-utility periodic frequent patterns (HUPFPS) in multiple sequences is essential.

In this study, we proposed a new algorithm called MHUPFPS to mine HUPFPS in multiple sequences. In contrast to existing algorithms for periodic pattern mining, MHUPFPS considers the

value (utility, profit) of patterns in a sequence database to mine patterns that are both periodic and of high value in practical applications. A new measure called the utility ratio is defined to evaluate the percentage of the utility of patterns in a sequence to identify patterns with a high utility percentage. Additionally, traditional algorithms for periodic pattern mining use a fixed number of supports to define the pattern frequency. This is obviously unpractical. In this study, sequence lengths in different databases had different characteristics. Furthermore, MHUPFPS uses a support rate to ensure the fair and effective mining of higher-utility patterns in sequences of different lengths. Moreover, to reduce the search space when MHUPFPS is performed, a new pruning strategy was designed. The key contributions of this study are as follows:

- 1. To guarantee the frequency of periodic patterns in each sequence, we defined a new measure: the support ratio. Further, we proposed a high-utility periodic sequence ratio, which defined the high-utility periodic frequent patterns in multiple sequences.
- 2. A pruning strategy was proposed to prune the search space. A MHUPFPS was proposed based on this pruning strategy. The proposed algorithm uses the HUPFPS-list structure to avoid scanning the database repeatedly.
- 3. Experimental results show that MHUPFPS is correct and efficient in filtering several non-high utility periodic frequent patterns.

The remainder of this paper is organized as follows. Section 2 reviews previous studies related to data mining, and Section 3 presents the necessary definitions. Section 4 describes the proposed algorithm MHUPFPS and Section 5 presents the experimental results. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Sequential Pattern Mining

To date, SPM has been a popular research direction that aims to mine frequent subsequences with at least a threshold minimum number of occurrences in a sequence [4,44]. The first algorithm used for sequential pattern mining was AprioriAll. The AprioriAll algorithm [29] is based on the Apriori algorithm: the mining process was the same. The difference between the two algorithms is that the AprioriAll algorithm considers the order of the last two elements of the pattern when generating the candidate patterns. An algorithm called GSP [44] has also been proposed, which is an extension of the AprioriAll algorithm. The algorithm introduces time constraints, sliding time windows, and classification hierarchy techniques to effectively reduce the number of candidate sequences that need to be scanned. Han et al. [45] proposed the concept of database prefix projection to reduce the cost of scanning the database when mining larger patterns. They then incorporated this concept into the newly proposed freespan algorithm. They further developed the PrefixSpan algorithm [46], which is an improved algorithm based on the freespan algorithm. The PrefixSpan algorithm only introduces the project suffix with the same prefix to obtain the project database. As the PrefixSpan algorithm can significantly reduce the search space and does not generate candidate sequences, the memory consumption of the PrefixSpan algorithm is reduced and relatively stable.

2.2 Utility-Based Pattern Mining

In recent years, high utility pattern mining (HUPM) has become popular in the field of datamining. HUPM considers that each item in a transaction may have multiple purchase quantities, and each item has equal weight [47–52]. The purpose of HUPM is to find high utility patterns in a transaction database, such as a customer who buys several items in a transaction. HUPM is an important branch of data mining [50, 53-55]. If the utility of a pattern is not less than a userdefined minimum utility threshold, it is considered to be a high-utility pattern (HUP). Several HUPM algorithms have been proposed, such as IHUP [50], UP-growth [54], UPgrowth+ [55], HUI-Miner [53], d2HUP [48], FHM [56], HUP-Miner [57], and EFIM [58]. The purpose of HUPM is to discover high utility item sets in transaction databases. HUPM is not only used in market basket analysis but also in website clickstream analysis and biomedical applications. Chan et al. [59] proposed a framework for mining the top-k closed utility patterns by combining positive and negative utilities to find the top-k HUP. Yao et al. [60] considered the problem of internal utility (number of purchases) and external utility (profit per unit) of a transaction to mine HUPs. Liu et al. [61] used the closure property under transaction weighting to discover HUPs and proposed a transaction-weighted utility (TWU) model. Liu et al. [53] also proposed an algorithm called HUI-miner, which uses a new utility list structure to calculate the internal and residual utility of the supported transaction patterns based on the utility list structure. As the challenges of HUPM have been further studied, HUPM algorithms have started to consider the order and utility of transactions, and countless high-utility sequential pattern mining algorithms have been proposed, such as USpan [62], ProUM [63], and HUSP-ULL [64].

2.3 Periodic Pattern Mining

The FPM has been extended from finding periodic patterns in a single sequence to finding those that are common in multiple sequences. In a sequence, a pattern that appears frequently and has two consecutive appearances with a period interval of less than the maximum period threshold is said to be periodic. The PFPM task was defined in a transaction-sequence database by Tanbeer et al. [31]. Several variants of periodic mining patterns in a single sequence have been proposed based on their approach [33–38]. For example, an algorithm called MTKPP was used to mine the top-k frequently occurring patterns in a single sequence [32-34]. Periodic patterns continue to be studied in depth, and some approaches consider the utility (profit) of the periodic patterns. For example, an algorithm called PHM was proposed to find items that are frequently purchased and highly profitable, locating patterns that occur periodically in a single sequence and are of high utility [38]. Additionally, an algorithm called PHUSPM was designed to mine high-utility periodic patterns in multiple-symbol sequences [36]. The PHUSPM algorithm considers a set of sequences as one sequence and mines periodic patterns using the same periodicity measure as for a single sequence. Recently, Philippe et al. proposed two new algorithms for periodic pattern mining in multiple sequences: MPFPS [43] and MRCPPS [65]. These algorithms proposed a new measure called the periodic standard deviation, which was used to evaluate the periodicity of the patterns in the sequence. For MPFPS [43], another new measure was proposed to define a common periodic pattern in multiple sequences: the sequence periodicity ratio (SPR). The MRCPPS algorithm identifies strongly correlated periodic patterns using the bond correlation measure, and defines a new pattern called rare correlated periodic patterns. Recently, the SPP-Growth [66] algorithm was proposed to determine stable periodic patterns in transaction databases with timestamps.

2.4 Problems of Existing Research

Most existing research on periodic patterns does not mine PFPS common to a set of sequences. To the best of our knowledge, MPFPS and MRCPPS are the only recently proposed algorithms that mine PFPS in multiple sequences. However, these algorithms assume that each item has the same weight or value and only appears once in a transaction; this obviously has limitations for practical applications.

In contrast, current algorithms for PFPS use a measure called support to define the frequency of patterns; however, this measure does not apply to data with different characteristics.

3 Definition and Problem Statement

In this section, we first present the definitions of periodic and utility patterns in a single sequence [67]. Then, we consider the corresponding definitions for multiple sequences [43]. The terms pattern and itemset are used alternately in the following descriptions.

3.1 Definitions for a Single Sequence

Definition 3.1. Assume that there is a set of items (symbols) I in a sequence database D. An itemset X_i is a subset of I, i.e., $X_i \subseteq I$. An itemset X with k distinct items $\{i_1, i_2, \ldots, i_k\}$ is called a k-itemset. A sequence S is an ordered list of itemsets $S = \{T_1, T_2, \ldots, T_j\}$, where $T_v \subseteq I$ $(1 \le v \le j)$, and T_v represents a transaction in the sequence, where v is a unique transaction identifier in that sequence. A sequence database D is an ordered set containing n sequences, i.e., $D = \{S_1, S_2, \ldots, S_n\}$. Sequence S_i $(1 \le i \le n)$ is defined as the *i*-th sequence in D, where *i* is a unique sequence identifier. The itemset X appears in a sequence $S_a = \{T_1, T_2, \ldots, T_k\}$, i.e., $X \subseteq S_a$, where X is $\subseteq T_d$ $(1 \le d \le k)$. This itemset appears in the transaction T_q .

Example 1. Consider a set of different items $I = \{a, b, c, d, e\}$, which represent different types of items sold in a supermarket. As shown in Table 1, sequence S_0 contains five transactions. The first transaction (*a*:6, *b*:8) indicates that the first transaction in sequence S_0 contains two itemsets $\{a\}$ and $\{b\}$. The number of occurrences of $\{a\}$ in the transaction is six and that of $\{b\}$ is eight. $\{a\}$ is called a 1-itemset because it contains only one item, *a*.

 Table 1: An example sequence

 S_0 (a:6, b:8), (a:4, c:9, e:10), (a:8, b:11, c:7, d:4), (a:5, b:3, c:12), (b:4, d:3)

Definition 3.2. Consider an itemset X in S_i . The ordered list of transactions in S_i containing X is defined as $TR(X, S) = \langle T_{g(1)}, T_{g(2)}, \ldots, T_{g(k)} \rangle \subseteq S_i$. Let $T_{g(z)}$ and $T_{g(z+1)}$ $(1 \le z \le k-1)$ be two consecutive occurrences in S_i . The formula for calculating the period of two consecutive occurrences of a transaction containing X is $per(T_{g(z)}, T_{g(z+1)}) = g(z+1) - g(z)$. The period of X in S_i is $pr(X, S_i) = \{per_1, per_2, \ldots, per_{k+1}\}$, where $per_1 = g(1) - g(0)$, $per_2 = g(2) - g(1), \ldots, per_k = g(k+1) - g(k)$. g(k) is the unique identifier of the transaction; when X appears, g(0) = 0 and $g(k+1) = |S_i|$. $|S_i|$; the latter denotes the length of S_i .

Example 2. In the sequence S_0 shown in Table 1, the itemset $\{a\}$ appears in the transactions T_1 , T_2 , T_3 and T_4 ; thus, $TR(\{a\}, S_0) = \{T_1, T_2, T_3, T_4\}$. The period $\{a\}$ in S_0 is denoted by $pr(\{a\}, S_0) = \{1, 1, 1, 1, 1\}$.

Definition 3.3. In a sequence S, an itemset X may appear in multiple transactions, and the number of transactions in a sequence S containing X is defined as sup(X, S) = |TR(X, S)|.

Example 3. In the sequence S_0 shown in Table 1, the itemset $\{a, c\}$ appears in T_2 , T_3 , and T_4 ; therefore, the number of occurrences of $\{a, c\}$ supported for S_0 is represented as $sup(\{a, c\}, S_0) = 3$.

Definition 3.4. Each item *i* has a unit profit, denoted as pl(i), which represents its importance. The unit profit for each item uses a dedicated profit list: profit = { $pl(i_1), pl(i_2), ..., pl(i_m)$ }. The profit of

item i_j in T_q in a sequence S_n is defined as $u(i_j, T_q, S_n) = q(i_j, T_q, S_n) \times pl(i_j)$, where $q(i_j, T_q, S_n)$ is the number of itemsets i_j in T_q in S_n .

Example 4. In Table 2, the unit profits of the itemsets $\{a\}$, $\{b\}$, $\{c\}$, $\{d\}$, $\{e\}$ are $\{pl(a): 76, pl(b): 65, pl(c): 35, pl(d): 41, pl(e): 118\}$, respectively. For S_1 and S_2 considered in Table 3, $\{b\}$ in T_4 in S_1 and $\{b, d\}$ in T_2 in S_2 have $u(\{b\}, T_4, S_1) = 65 \times 5 = 325$ and $u(\{b, d\}, T_2, S_2) = 65 \times 8 + 41 \times 3 = 643$, respectively.

 Table 2: Profit table for the example sequence

Item	Profit
a	76
b	65
с	35
d	41
е	118

 Table 3: An example sequence

Sid	Sequence
$\overline{S_1}$	<i>((a:6, b:10, c:10), (b:8, c:8, d:13), (a:5, b:6), (a:8, b:5, e:8), (a:4, b:7, c:6, d:10))</i>
S_2	$\langle (d:14), (a:5, b:8, c:3, d:3), (a:6, c:15, d:8), (a:9, b:9, d:15), (a:10, b:6, c:14, e:13)) \rangle$
S_3	$\langle (b:7, d:10), (a:8, d:4), (a:5, c:15, d:12), (b:3, d:12, e:3), (a:9, b:11, d:12) \rangle$
S_4	$\langle (a:6, c:12, d:14), (a:6, b:2, d:8), (a:9, c:6, d:6), (b:2, d:9), (b:5, d:8, e:6) \rangle$

Definition 3.5. The total utility of a transaction T_q in S_i is defined as $tu(T_q) = \sum_{j=1}^{|T_q|} u(i_j, S_i)$, where $i_j \in T_q$ is the *j*-th item in T_q .

Example 5. The total utility of T_1 in the sequence S_1 in Table 3 is $tu(T_1, S_1) = u(a, S_1) + u(b, S_1) + u(c, S_1) = 76 \times 6 + 65 \times 10 + 35 \times 10 = 1456$.

Definition 3.6. The total utility of X in S is defined as $u(X, S) = \sum_{q=1}^{|s|} u(X, S)$ where $X \in T_q \land T_q \in S$.

Example 6. As shown in Table 3, the total utility of $\{a, b\}$ in S_1 is $u(\{a, b\}, S_1) = u(\{a, b\}, T_1, S_1) + u(\{a, b\}, T_3, S_1) + u(\{a, b\}, T_4, S_1) + u(\{a, b\}, T_5, S_1) = 76 \times 6 + 65 \times 10 + 76 \times 5 + 65 \times 6 + 76 \times 8 + 65 \times 5 + 76 \times 4 + 65 \times 7 = 3568.$

Definition 3.7. In a sequence database *D*, the total utility of S_i is defined as $su(S_i) = \sum_{q=1}^{|S_i|} tu(T_q)$ for $T_q \in S_i$.

Example 7. As shown in Table 3, the total utility of S_2 is $su(S_2) = tu(T_1, S_2) + tu(T_2, S_2) + tu(T_3, S_2) + tu(T_4, S_2) + tu(T_5, S_2) = 574 + 1128 + 1309 + 1884 + 3174 = 8069.$

Definition 3.8. If a sequence $S_B = \langle T_1, T_2, ..., T_l \rangle$ contains another sequence $S_A = \langle T_{k1}, T_{k2}, ..., T_{km} \rangle$, then it must satisfy the existence of integers $1 \le k_1 \le k_2 \le ... \le k_m \le l$ such that $T_{k1} \subseteq T_1, T_{k2} \subseteq T_2, ..., T_{km} \subseteq T_l$ is defined as $S_A \subseteq S_B$.

Example 8. The sequence S_0 in Table 1 contains $\langle (a: 6, b: 8), (a: 4, c: 9), (a: 8, d: 4) \rangle$.

Definition 3.9. In a sequence database D, the standard deviation of the period of the itemset X in the sequence S is denoted by *stanDev* (X, S).

Example 9. As shown in Table 3, the period of the itemset {*a*} in sequence S_1 is $pr(\{a\}, S_1) = \{1, 2, 1, 1, 0\}$. The average period is $avgPr(\{a\}, S_1) = (1 + 2 + 1 + 1 + 0)/5 = 1$. The standard deviation of the period is $stanDev(\{a\}, S_1) = \sqrt{[(1 - 1)^2 + (2 - 1)^2 + (1 - 1)^2 + (0 - 1)^2]/5} = 0.63$.

3.2 Definitions for Multiple Sequences

In the following paragraphs, we described how to combine the utility and periodicity of patterns and apply them to multiple sequences. In addition to the definitions presented in previous works, we defined three measures: utility ratio (Definition 3.10), support ratio (Definition 3.11), and high-utility periodic sequence ratio (Definition 3.14). The utility ratio defines the utility percentage of a pattern in a sequence. The support ratio guarantees the frequency of the periodic patterns in sequences of different lengths. The high-utility periodic sequences ratio is used to discover frequent patterns of high-utility periods in multiple sequences.

Definition 3.10. Let the total utility of an itemset X in a sequence S be u(X, S) and the total utility of S be su(S). Then, the utility ratio is utiRa(X, S) = u(X, S)/su(S). Given a user-defined threshold minHuRa, namely, the minimum high-utility ratio, if $utiRa(X, S) \ge minHuRa$ for an itemset X, then X is defined as a high-utility itemset in the sequence S.

Example 10. Table 3 outlines an example with S_1 and minHuRa = 0.25. The utility of an itemset $\{a\}$ in S_1 is $u(\{a\}, S_1) = tu(T_1, S_1) + tu(T_3, S_1) + tu(T_4, S_1) + tu(T_5, S_1) = 456 + 380 + 608 + 304 = 1748$. The total utility of S_1 is $su(S_1) = 6815$, and that of the itemset $\{a\}$ in sequence S_1 is $utiRa(\{a\}, S_1) = 1748/6815 = 0.256$. Because $0.256 \ge minHuRa$, the itemset $\{a\}$ is a high-utility itemset in sequence S_1 .

Definition 3.11. The support ratio of an itemset X in a sequence S is defined as $supRa(X, S) = sup(\{X\}, S)/|S|$, where |S| is the total number of transactions in S. Given the minimum support ratio threshold, minSuqRa, if $supRa(X, S) \ge minSupRa$, then X in S has a high support ratio.

Example 11. The user-defined threshold is set to be minSupRa = 0.6. In Table 3, the itemset $\{a\}$ appears in T_1 , T_3 , T_4 , and T_5 in S_1 . The support for the itemset X in S_1 is $sup(\{a\}, S_1) = 4$. The support ratio of $\{a\}$ in S_1 is $supRa(\{a\}, S_1) = sup(\{a\}, S_1)/|S_1| = 0.8$. Because $0.8 \ge minSupRa$, X in S_1 has a high-support ratio pattern.

Definition 3.12. Let there be four user-defined thresholds, minSupRa, maxPr, maxStd, and minHuRa. If an itemset X in a sequence S satisfies $supRa(X, S) \ge minSupRa$, $maxPr(X, S) \le maxPr$, $stanDev(X, S) \le maxStd$, and $utiRa(X, S) \ge minHuRa$, then X in S is a high-utility periodic frequent pattern.

Example 12. Let minSupRa = 0.6, maxPr = 3, maxStd = 1, and minHuRa = 0.2. Considering S_2 in Table 3, the itemset $\{a, d\}$ appears in T_2 , T_3 , and T_4 . Thus, $supRa(\{a, d\}, S_2) = 0.6 \ge minSupRa$, $stanDev(\{a, d\}, S_2) = 0.433 \le maxStd$, $utiRa(\{a, d\}, S_2) = 0.32 \ge minHuRa$, and $maxPer\{2, 1, 1, 1\} = 2 \le maxPr$; thus, the itemset $\{a, d\}$ is a high-utility periodic frequent pattern in S_2 .

Definition 3.13. In a sequence database *D*, the set of sequences for which an itemset *X* satisfies $supRa(X, S) \ge minSupRa$, $stanDev(X, S) \le maxStd$, $maxPr(X, S) \le maxPr$, and $utiRa(X, S) \ge minHuRa$ is defined as $huPrSeq(X, D) = \{S|supRa(X, S) \ge minSupRa \land maxPr(X, S) \le maxPr \land stanDev(X, S) \le maxStd \land utiRa(X, S) \ge minHuRa \land S \in D\}$.

Example 13. In Table 3, the itemset $\{d\}$ satisfies $supRa(\{d\}, S) \ge minSupRa, maxPr(\{d\}, S) \le maxPr$, $stanDev(\{d\}, S) \le maxStd$, and $utiRa(\{d\}, S) \ge minHuRa$ in S_2 , S_3 , and S_4 . Thus, the huPrSeq of $\{d\}$ is $huPrSeq(\{d\}) = \{S_2, S_3, S_4\}$.

Definition 3.14. In a sequence database D, the number of sequences in the set huPrSeq(X) is |huPrSeq(X)| and the high utility periodic sequence ratio of X in D is huSeqRa(X) = |huPrSeq(X)|/|D|, where |D| is the number of sequences in D. Given a user-defined threshold minSeqRa, if $huSeqRa(X) \ge minSeqRa$, then X is a high utility periodic frequent pattern in D.

Example 14. As shown in Table 3, let minSupRa = 0.6, maxPr = 3, stanDev = 1, and minHuRa = 0.2. The pattern $\{a, d\}$ in S_2 , S_3 , and S_4 is a high utility periodic frequent pattern, and the sequence set is $huPrSeq(X) = \{S_2, S_3, S_4\}$. Thus, the high-utility periodic sequence ratio of $\{a, d\}$ is $huSeqRa(\{a, d\}) = |huPrSeq(X)|/|D| = 3/4 = 0.75 \ge minSeqRa$; hence, X is a high utility periodic frequent pattern in D.

4 Proposed Algorithm: MHUPFPS

In this section, we first described a new pruning strategy for pruning a search space. Then, we proposed a compact data structure, HUPFPS-list, to store the transactions, sequence information, and utility values of a pattern. Finally, we present the proposed MHUPFPS algorithm.

4.1 Pruning Strategy

To identify high utility periodic frequent patterns in a set of sequences, a method of pruning the search space is required. Thus, in this study, periodicity and utility are combined and an upper bound, upSeqRa, was proposed for the measure huSeqRa and two new pruning properties that were used to prune the vast search space. Note that upSeqRa is defined by Definition 3.14.

Definition 4.1. Given three user-defined thresholds minHuRa, maxPr, and minSupRa, we say that a pattern X is a high-utility periodic frequent candidate pattern in a sequence S if X in S satisfies $supRa(X, S) \ge minSupRa$, $maxPr(X, S) \le maxPr$, and $utiRa(X, S) \ge minHuRa$.

Example 15. Let minSupRa = 0.6, maxPr = 3, and minHuRa = 0.2. According to the sequence database in Table 3, pattern {a} satisfies the conditions $supRa(\{a\}, S_1) = 0.8 \ge minSupRa, maxPr(\{a\}, S_1) = 2 \le maxPr$, and $utiRa(\{a\}, S_1) = 0.25 \ge minHuRa$. Thus, {a} is a high-utility periodic frequent candidate itemset in S_1 .

Definition 4.2. In a sequence database D, a set of sequences for which a pattern X satisfies $supRa(X, S) \ge minSupRa, maxPr(X, S) \le maxPr$, and $utiRa(X, S) \ge minHuRa$ is defined as $huCand(X, D) = \{S|supRa(X, S) \ge minSupRa \land maxPr(X, S) \le maxPr \land utiRa(X, S) \ge minHuRa \land S \in D\}.$

Example 16. As shown in Table 3, the pattern $\{d\}$ satisfies the conditions $supRa(\{d\}, S) \ge minSupRa, maxPr(\{d\}, S) \le maxPr$, and $utiRa(\{d\}, S) \ge minHuRa$ in S_2 , S_3 , and S_4 ; thus, $\{d\}$ is called a high-utility periodic frequent candidate pattern in S_2 , S_3 and S_4 and is defined as $huCand(X) = \{S_2, S_3, S_4\}$.

Definition 4.3. In a sequence database *D*, the number of sequences in the set huCand(X) is |huCand(X)|. The upSeqRa of X in D is upSeqRa(X) = |huCand(X)|/|D|, where |D| denotes the number of sequences in D.

Example 17. Let minSupRa = 0.6, maxPr = 3, and minHuRa = 0.2. As shown in Table 3, $\{a, d\}$ is a high utility period frequent candidate pattern in S_2 , S_3 , and S_4 . Thus, the set of candidate sequences

huCand(X) in which the high-utility period frequent candidate pattern is satisfied is $huCand(X) = \{S_2, S_3, S_4\}$. Thus, $upSeqRa(\{a, d\}) = |huCand(\{a, d\})|/|D| = 3/4 = 0.75$.

Theorem 4.1. For a pattern X, upSeqRa(X) is not less than huSeqRa(X), i.e., $upSeqRa(X) \ge huSeqRa(X)$.

Proof. For an itemset *X*:

huSeqRa(X) = |huPrSeq(X)|/|D|

- $= |\{S|supRa(X, S) \ge minSupRa \land maxPr(X, S) \le maxPr \land stanDev(X, S) \le maxStd \land utiRa(X, S) \ge minHuRa \land T \in S \land S \in D\}|/|D|$
- $\leq |\{S|maxPr(X, S) \leq maxPr \land supRa(X, S) \geq minSupRa \land utiRa(X, S) \geq minHuRa \land T \in S \land S \in D\}|/|D|$
- = |huCand(X)|/|D|
- = upSeqRa(X)

Theorem 4.2. For two itemsets $X \subset XY$, $upSeqRa(XY) \le upSeqRa(X)$.

Proof. For any sequence S in a sequence database D, if an itemset X is a subset of another itemset XY:

 $upSeqRa(X) = huCand({X}, S)/|D|$

- $= |\{S|maxPr(X, S) \le maxPr \land supRa(X, S) \ge minSupRa \land utiRa(X, S) \ge minHuRa \land T \in S \land S \in D)|/|D|$
- $\geq |\{S|maxPr(XY, S) \leq maxPr \land supRa(XY, S) \geq minSupRa \land utiRa(XY, S) \geq minHuRa \land T \in S \land S \in D)|/|D|$

= |huCand(XY)|/|D|

= upSeqRa(XY)

Hence, if X is such that $upSeqRa(X) \le minSeqRa$, then both X and its superset can be pruned without further exploration.

Theorem 4.3. In a sequence database *D*, if $upSeqRa(X) \le minSeqRa$ for any itemset *X*, then the superset *X'* of *X* is not a HUPFPS.

Proof. We have $upSeqRa(X) < minSeqRa \Rightarrow upSeqRa(X') < minSeqRa$.

Hence, X is not a HUPFPS, because $X \subset X' \Rightarrow upSeqRa(X') \leq upSeqRa(X)$

 \Rightarrow upSeqRa(X') < minSeqRa.

Thus, any superset of X is not a HUPFPS.

4.2 The HUPFPS-List Data Structure

To avoid repeated scanning of a database and to improve the performance of MHUPFPS, we proposed a data structure called the HUPFPS-list, which contains four fields. MHUPFPS only scans a database once to generate a HUPFPS-list for each pattern that appears in the sequence database. MHUPFPS combines the HUPFPS-list of different patterns to generate a HUPFPS-list of extended patterns.

Definition 4.4. The HUPFPS-list of a pattern X is denoted Px and contains four fields. The i - set field is defined as Px.i - set = X. The sid - list field is defined as $Px.sid - list = \{S_1, S_2, ..., S_w\}$, where $S_i(1 \le i \le w)$ represents the equivalence number at which X appears. The tran - list field represents

a list of stored transaction numbers $Px.tran - list = \{Z_1, Z_2, ..., Z_i\}(1 \le i \le |S_w|)$ where $Z_i = \{Z|X \in T_z \land T_z \in S_i\}$. The *uti* – *list* field is defined as $Px.uti - list = \{p_1, p_2, ..., p_i\}$, where p_i is the utility of X for a particular transaction in the sequence and is defined as $p_i = \{p|(X, p_i) \in T_z \land T_z \in S_w\}$.

Example 18. Tables 4 and 5 represent the HUPFPS-lists of patterns $\{a\}$ and $\{d\}$, respectively. Table 6 shows the HUPFPS-list of pattern $\{a, d\}$, which is constructed by combining the HUPFPS-lists of patterns $\{a\}$ and $\{d\}$.

i-set	<i>{a}</i>
sid-list	{1, 2, 3, 4}
tran-list	$[\{1, 3, 4, 5\}, \{2, 3, 4, 5\}, \{2, 3, 5\}, \{1, 2, 3\}]$
uti-list	$[(\{456\}, \{380\}, \{608\}, \{304\}), (\{380\}, \{456\}, \{684\}, \{760\}), (\{608\}, \{380\}, (\{684\}),$
	[({456}, {456}, {684}]

Table 4: HUPFPS-list of pattern {*a*}

Table 5: HUPFPS-list of pattern {*d*}

i-set	$\{d\}$
sid-list	{1, 2, 3, 4}
tran-list	$[\{2, 5\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 5\}]$
uti-list	$[(\{533\},\{410\}),(\{574\},\{123\},\{328\},\{615\}),(\{410\},\{164\},\{492\},\{492\},\{492\}),$
	$({574}, {328}, {246}, {369}, {328})]$

Table 6: HUPFPS-list of pattern $\{a, d\}$

i-set	$\{a, d\}\}$
usid-list	{1, 2, 3, 4}
tran-list	$[\{5\}, \{2, 3, 4\}, \{2, 3, 5\}, \{1, 2, 3\}]$
pro-list	$[({714}), ({503}, {784}, {1299}), ({772}, {872}, {1176}), ({1030}, {784}, {930})]$

Definition 4.5. The itemsets Px.i-set and Py.i-set with the same prefix are extended to Pxy, which is defined as $Pxy = Px \cup Py$ (the prefix of a single itemset is an empty itemset).

Example 19. The proposed algorithm uses an intersection procedure to combine the HUPFPS-lists of the itemsets $\{a\}$ and $\{d\}$, in Tables 4 and 5, respectively, to construct the HUPFPS-list of the itemset $\{a, d\}$, as shown in Table 6.

4.3 Proposed MHUPFPS Algorithm

Based on the HUPFPS-list and pruning strategy, we designed an algorithm called MHUPFPS. MHUPFPS (Algorithm 1) inputs a multisequence sequence database and five user-defined thresholds: *minSupRa*, *maxPr*, *maxStd*, *minHuRa*, and *minSeqRa*. Finally, a set of high utility periodic frequent patterns is output.

In the proposed design, MHUPFPS first scans the database to calculate supRa(X, S), maxPr(X, S), stanDev(X, S), and utiRa(X, S) for each individual itemset. Then, it iterates over every itemset, calculates whether it satisfies the high-utility periodic frequent pattern in each sequence, and stores the sequence that satisfies the condition in the set huPrSeq(X). After it scans all sequences, the set huPrSeq for this pattern is used to calculate the high utility periodic sequence ratio huSeqRa(X). If the value of huSeqRa(X) is not less than the threshold minSeqRa, the output pattern X is a HUPFPS.

Algorithm 1: MHUPFPS algorithm

Input: D : Multiple sequence database; user-specified thresholds: minSupRa, maxPr, maxStd, min-HuRa, minSeqRa.

Output: Set of high-utility periodic frequent patterns.

1: Scan each sequence in the database to obtain a HUPFPS-list, and then calculate the $supRa(\{i\}, S)$, $pr(\{i\}, S)$, $maxPr(\{i\}, S)$, $stanDev(\{i\}, S)$, $u(\{i\}, S)$, and su(S) for each itemset $i \in I$;

2: $I^{\star} \leftarrow \varnothing$;

- 3: for item $i \in I$ do
- 4: $huPrSeq(\{i\}, S) \leftarrow \{S|supRa(\{i\}, S) \ge minSupRa \land maxPr(\{i\}, S) \le maxPr \land stanDev(\{i\}, S) \le maxStd \land utiRa(\{i\}, S) \ge minHuRa \land i \in S \land S \in D\};$
- 5: $huSeqRa(\{i\}) \leftarrow |huPrSeq(\{i\}, S)|/|D|;$
- 6: **if** $huSeqRa(\{i\}) \ge minSeqRa$ **then**
- 7: output *i* and $I^* \leftarrow I^* \cup \{i\}$;

8: $huCand(\{i\}) \leftarrow \{S|supRa(\{i\}, S) \ge minSupRa \land maxPr(\{i\}, S) \le maxPr \land utiRa(\{i\}, S) \ge minHuRa \land i \in S \land S \in D\};$

```
9: upSeqRa(\{i\}) \leftarrow |huCand(\{i\}, S)|/|D|;
```

10: **end if**

11:end for

12: *boundHUPFPS* \leftarrow {HUPFPS – list of itemset i|i \in I \land upSeqRa({i}) \geq minSeqRa};

13: Search (minSupRa, maxPr, maxStd, boundHUPFPS, minHuRa, minSeqRa).

Additionally, MHUPFPS prunes the search space using the upper bound upSeqRa(X) of huSeqRa(X). It stores the HUPFPS-list of the pattern whose upSeqRa(X) is not less than minSeqRa in the set boundHUPFPS. The UHPFPS-list of patterns in the set boundHUPFPS is stored in ascending order of upSeqRa(X). Finally, MHUPFPS performs a depth-first search, recursively searching for larger patterns by calling the *Search* procedure (Algorithm 2) with a set of parameters and the set boundHUPFPS.

The Search procedure (Algorithm 2) takes a HUPFPS-list of patterns and set of user-defined thresholds as input and outputs the high-utility periodic expansion pattern. First, the algorithm iteratively loops over the set *boundHUPFPS* and sequentially takes the HUPFPS-list of Px.i and Py.i from the set *boundHUPFPS*. The HUPFPS list of patterns Px.i and Py.i is extended into Pxy using the *intersection* procedure (Algorithm 3). Then, the set *huCand(Pxy.i)* of sequences of the itemset Pxy.i is calculated. Finally, the algorithm calculates upSeqRa(Pxy.i) to prune the search space if upSeqRa(Pxy.i) is not less than *minSeqRa*; Pxy is added to the set ExtenOfPx, which stores the HUPFPS-list of all extended patterns of Px.i for the next iteration. Next, the value of *huSeqRa(Pxy.i)* is calculated, and if *huSeqRa(Pxy.i)* is not less than *minSeqRa*, the output Pxy.i is a HUPFPS. Subsequently, the search procedure recursively calls the HUPFPS-list (*ExtenOfPx*) of the extended patterns of Px.i to explore larger patterns.

Algorithm 2: The search procedure

Input: ExtOfP: a set of HUPFPS-lists for extensions of the itemset P; D: database of multiple sequences: minSupRa, maxStd, maxPr, minHuRa, minSegRa: user-specified thresholds. **Output:** extended high utility periodic frequent patterns of *P*. for HUPFPS-list $Px \in ExtOfP$ do for HUPFPS-list $Py \in ExtOfP$ such that $y \prec x$ and Px. *i-set* and Py. *i-set* have the same prefix do 2: $Pxy \leftarrow \text{Intersection}(Px, Py);$ 4: $huCand(\{i\}) \leftarrow \{S|supRa(\{i\}, S) \geq minSupRa \land maxPr(\{i\}, S) \leq maxPr \land utiRa(\{i\}, S)\}$ $> minHuRa \land i \in S \land S \in D$ }; $upSeqRa(\{i\}) \leftarrow |huCand(\{i\})|/|D|;$ 6: if $upSeqRa(\{i\}) > minSeqRa$ then $ExtOfP \leftarrow ExtOfP \cup Pxy;$ 8: $huPrSeq(\{i\}, S) \leftarrow \{S|supRa(\{i\}, S) \geq minSupRa \land maxPr(\{i\}, S) \leq maxPr \land$ $stanDev(\{i\}, S) \leq maxStd \wedge utiRa(\{i\}, S) \geq minHuRa \wedge i \in S \wedge S \in D\};$ $huSeqRa(\{i\}) \leftarrow |huPrSeq(i, S)|/|D|;$ if $huSeqRa(\{i\}) \ge minSeqRa$ then 10: output *Pxy*; 12: end if end if 14: end for search (*ExtOfPx*, *minSupRa*, *maxPr*, *maxStd*, *minHuRa*, *minSeqRa*, *D*); 16: **end for**

Algorithm 3: Intersection procedure

Input: *Px*: the HUPFPS-list of *Px.i-set* and *Py.i-set*: the HUPFPS-list of *Py.i-set* **Output:** the HUPFPS-list of itemset *Pxy.i-set* 1: $Pxy.i-set \leftarrow Px.i-set \cup Py.i-set$; $Pxy.tran-list \leftarrow \phi$; $ElPxy.sid-list \leftarrow \phi$;

```
2:
     for each i, j where Px.sid-list(i) = Py.sid-list(j) do
              Pxy.sid-list \leftarrow Px.sid-list(i) \cap Py.sid-list(j);
3:
              if Pxy.sid-list \neq \phi then
4:
5:
                 Pxy.tran-list \leftarrow Px.tran-list \cap Py.tran-list;
                 if Pxy.tran-list \neq \phi then
6:
                    Pxy.uti-list \leftarrow Px.uti-list \cap Py.uti-list
7:
8:
                 end if
9:
              end if
10: end for
11: return Pxy;
```

4.4 Concrete Example

In this example, the user-defined thresholds were set to minSupRa = 0.6, maxPr = 3, maxStd = 1.0, minHuRa = 0.2, and minSeqRa = 0.6. According to the example sequence database in Tables 4 and 5, MHUPFPS scans the database once, then uses the HUPFPS-list to calculate $pr(\{a\}, S_1\} = \{1, 2, ..., S_n\}$

1, 1, 0}, $pr(\{a\}, S_2) = \{2, 1, 1, 1, 0\}$, $pr(\{a\}, S_3) = \{2, 1, 2, 0\}$, $pr(\{a\}, S_4) = \{1, 1, 1, 2\}$, $supRa(\{a\}, S_1) = 0.8$, $supRa(\{a\}, S_2) = 0.8$, $supRa(\{a\}, S_3) = 0.6$, $supRa(\{a\}, S_4) = 0.6$, $maxPr(\{a\}, S_1) = 2$, $maxPr(\{a\}, S_2) = 2$, $maxPr(\{a\}, S_3) = 2$, $maxPr(\{a\}, S_4) = 2$, $stanDev(\{a\}, S_1) = 0.63$, $stanDev(\{a\}, S_2) = 0.63$, $stanDev(\{a\}, S_3) = 0.82$, and $stanDev(\{a\}, S_4) = 0.43$, based on the HUPFPS-list of $\{a\}$. Consider the itemset $\{a\}$; because $supRa(\{a\}, S_1) \ge minSupRa$, $maxPr(\{a\}, S_1) \le maxPr$, $stanDev(\{a\}, S_1) = 0.63 \le maxStd$, and $utiRa(\{a\}, S_1) \ge minHuRa$, the pattern $\{a\}$ is a high-utility periodic frequent pattern in S_1 . Similarly, the set $huPrSeq(a) = \{S_1, S_2, S_3, S_4\}$ can be calculated, and $huSeqRa(a) = |huPrSeq(a)|/|D| = 1 \ge minSeqRa$; thus, pattern $\{a\}$ is output as a high-utility periodic frequent pattern in a multiple sequence database. MHUPFPS computes patterns $\{a\}$ and $\{d\}$ in the same manner as HUPFPS. It adds the HUPFPS-list of the patterns to the set *boundHUPFPS* to generate a larger HUPFPS. The HUPFPS-list of patterns in *boundHUPFPS* is sorted in ascending order of upSeqRa values.

According to the HUPFPS-list of pattern {*a*} in Table 4, the *sid-list* of {*a*} is {1, 2, 3, 4}; the *tranlist* is ({1, 3, 4, 5}, {2, 3, 4, 5}, {2, 3, 5}, {1, 2, 3}); and the *uti-list* is ([{456}, {380}, {608}, {304}], [{380}, {456}, {684}, {760}], [{608}, {380}, {684}], [{456}, {456}, {684}]). From the HUPFPS-list of pattern {*d*}, the *sid-list* is {1, 2, 3, 4}; the *tid-list* is ({2, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}); and the *uti-list* is ([{533}, {410}], [{574}, {123}, {328}, {615}], [{410}, {164}, {492}, {492}, {492}], [{574}, {328}, {246}, {369}, {328}]). MHUPFPS uses the intersection procedure, which combines the HUPFPS lists of patterns {*a*} and {*d*} to generate a HUPFPS list of the pattern {*a, d*}. MHUPFPS further calculates the parameter values using the field information in the HUPFPS-list of {*a, d*} and then obtains the set *huCand*({*a, d*}) = {*S*₂, *S*₃, *S*₄} and calculates *upSeqRa*({*a, d*}) = 0.75 ≥ *minSeqRa* based on the set *huCand*({*a, d*}). Thus, the pattern {*a, d*} and its superset may be a HUPFPS. The algorithm adds the HUPFPS list of {*a, d*} is a HUPFPS list of {*a, d*} is a HUPFPS. MHUPFPS recursively calls the pattern explorer to explore larger extensions of the patterns.

5 Experiments

5.1 Experimental Setup and Datasets

We conducted experiments on three real datasets (FIFA, Bike, and Leviathan) and a synthetic dataset. The three real datasets were all obtained from the data mining library on the SPMF website, and the synthetic dataset was synthesized by the data generation code provided on the SPMF website [68]. The details of these datasets are provided below:

- The *T23l67kd15k* dataset was generated by a Matalab program written by Ashwin Balani that is available on the SPMF website. This dataset contains a total of 15,000 sequences of 68 items; each sequence contains an average of 23 transactions and each transaction contains an average of three items. This dataset is a dense dataset.
- The *FIFA* dataset contains a total of 20,450 sequences of 2,990 types of items; each sequence contains an average of 34.74 transactions.
- The *Bike* dataset contains a total of 21,078 sequences of 67 types of items; each sequence contains an average of 7.27 transactions.
- The *Leviathan* dataset contains 5,834 sequences of 9,025 types of items; each sequence contains an average of 33.8 transactions.

To the best of our knowledge, previous studies have only found periodic patterns that occur together in multiple sequences, whereas the proposed MHUPFPS finds common high-utility periodic frequent patterns in multiple sequences. This means that comparing MHUPFPS with existing

approaches is not suitable. Therefore, MHUPFPS was considered to be the baseline. MHUPFPS was implemented in Java on a Windows 11 computer with an Intel(R) Core(TM) i5-1135g7 2.42 ghz CPU and 24 GB of running memory.

In the following, $|D|, |I_d|, |T_c|$, and $|S_{avg}|$ represent the sequence number, distinct item, item count per transaction, and average number of transactions per sequence, respectively. In experiments, the aforementioned datasets with different characteristics were used to comprehensively evaluate the performance of the MHUPFPS algorithm in terms of the running time, number of patterns, and running memory.

5.2 Parameter Analysis

MHUPFPS contains five user-defined parameters: minSeqRa, minSupRa, maxStd, maxPr, and minHuRa. maxStd is used to keep the pattern period stable, maxPr is used to limit the maximum period of the pattern, minSupRa is used to guarantee the HUPFPS support ratio in each sequence, and minHuRa is used to determine whether a pattern is of high utility in a sequence. In experiments, the baseline algorithm was designed with loose settings for each parameter value with the aim of mining more high-frequency periodic patterns. For the baseline algorithm, we set maxPr = 20, minSupRa = 0.1, maxStd = 10, minHuRa = 0.01, and minSeqRa = 0.

In our experiments, we compared the baseline algorithm with MHUPFPS for different parameter sets of minSeqRa, minSupRa, maxStd, maxPr, and minHuRa to evaluate the influence of different parameters and parameter values on the performance of the algorithm. The results showed that when maxStd \geq 10, the parameter values have almost no influence on the number of patterns, time, or memory required. Thus, we set maxStd to a fixed value of 10. We also evaluated the influence of minSupRa on the performance of MHUPFPS; MHUPFPS(x, y, z) is defined as MHUPFPS when minSeqRa = x, minHuRa = y, and maxPr = z. We evaluated the influence of minSupRa on the performance of MHUPFPS(x, y, z) is defined as MHUPFPS when minSeqRa = x, minSupRa = y, and maxPr = z. When evaluating the influence of maxStd on the performance of the algorithm, maxStd was used as the independent variable. To control this variable, the algorithm used minSupRa as a fixed value of minSupRa = 0.1 when the influence of minSupRa = x, minHuRa = y, and maxPr = z. Finally, when the influence of maxPr on the performance of the algorithm was evaluated, minSupRa was used as the independent variable, and MHUPFPS(x, y, z) is defined as MHUPFPS when minSeqRa = x, minHuRa = y, and maxPr = z.

We investigated the effect of the parameters *minSeqRa*, *minSupRa*, *maxStd*, *maxPr*, and *minHuRa* on the algorithm. To investigate the influence of *minSupRa* and *minHuRa* on the algorithm, these parameters were sequentially increased from small initial values; this considered the distribution of data in different datasets and length of the sequences. The results of the experiments show that, for both the synthetic and real datasets, the performance of the algorithm was not significantly impacted when the values of *minSupRa* and *minHuRa* were set to be greater than 0.5. However, the performance was slightly impacted for some of the real datasets. Thus, the values of *minSupRa* and *minHuRa* were set to be in the intervals [0.01,0.5] and [0.1,1], respectively. Because the data in the dataset were unevenly dispersed and relatively sparse, *minSeqRa* was set to be 0.001 and 0.0001, respectively. The results indicated that these parameters had little influence on the performance of the algorithm when the value of *maxStd* was above 10. Thus, to better evaluate the parameter *maxStd*, its value was set to be in the interval [1,10]. Finally, the algorithm was tested with different values of *maxPr*. The smaller the value of *maxPr*, the more stringent the filtering of patterns, i.e., a smaller number of patterns were

filtered out for larger maxPr values. When the value of maxPr exceeded the sequence length, it had almost no effect on the performance of the algorithm. Thus, the value of maxPr was set to be in the interval [5,20] in experiments.

5.3 Influence Analysis of minSeqRa and minSupRa

In the experiments, we evaluated the performance of the algorithm while varying the value of *minSupRa*. As the datasets have different characteristics, different values were used for different datasets; for FIFA, T23l67kd15k, and Leviathan, *minSupRa* was in the interval [0.01,0.5], while for Bike, *minSupRa* was in the interval [0.1,1].

Fig. 1 shows the effect of different *minSupRa* values on the runtime of the proposed MHUPFPS. The runtime for the proposed algorithm for FIFA, Leviathan, Bike, and T23l67kd15k were 35%, 50%, 15%, and 18% shorter than that for the baseline algorithm, respectively. The difference between datasets is due to FIFA and Leviathan containing more items; thus, the algorithm generates more itemsets, resulting in a more extensive search space. While the synthetic dataset T23l67kd15k contained fewer items, it contained more items per transaction, generating more candidate patterns and requiring more search space to save them.

Figure 1: MHUPFPS runtime for various minSupRa and maxStd values

As shown in Fig. 2, the number of patterns identified decreases significantly as minSupRa increases. For example, when minSeqRa = 0, minHuRa = 0.01, maxStd = 10, and maxPr = 20, and the value of minSupRa increases from 0.01 to 0.3, the number of patterns found decreases from 2,297 to 45. For the Bike dataset, when minSeqRa = 0.0001, minHuRa = 0.1, maxStd = 10, and maxPr = 20, the number of patterns found decreases from 66 to 15 as minSupRa increases from 0.01 to 0.6. This is because almost all HUPFPS in the Bike dataset are concentrated in a sequence and occur at a high frequency. The value of minSupRa strictly filtered the number of identified patterns when executing MHUPFPS on the synthetic dataset and three real datasets considered in this study. Hence, the results highlight the critical importance of the parameter minSupRa in reducing the search space.

Figure 2: Number of patterns identified for various minSupRa and minSeqRa values

Fig. 3 shows that memory usage decreased as *minSupRa* increased. For example, for the synthetic dataset T23l67kd15k, the memory occupied by the algorithm reduced from 562 to 325 MB as the value of *minSupRa* increased from 0.01 to 0.25. In the three real datasets, memory usage decreased as *minSupRa* increased; this shows that *minSupRa* has strict support for patterns in the sequence, resulting in a reduced number of candidate patterns stored in the memory. Thus, the memory consumption of the algorithm can be reduced by limiting the value of *minSupRa*.

Figure 3: Memory usage for different parameter values for different datasets

5.4 Influence Analysis of minSeqRa and minHuRa

Fig. 4 shows the effect of different minHuRa values on the runtime of the proposed MHUPFPS. The runtime remains almost constant as minHuRa increases. For example, the results on the synthetic dataset when minSeqRa = 0.001, minSupRa = 0.1, maxStd = 10, and maxPr = 10, and on the real datasets when minSeqRa = 0.0001, minSupRa = 0.1, and maxStd = 10 are all represented by almost horizontal lines. This means that the parameter minHuRa has little influence on the runtime of MHUPFPS. Fig. 4 shows that for minSeqRa = 0.001 or minSeqRa = 0.0001, the runtime was 20% less than that of the baseline algorithm. This suggests that the search space of MHUPFPS can be reduced by changing the value of minSeqRa.

As shown in Fig. 5, the number of patterns mined by the algorithm varies for different values of minHuRa. This variation is considerable compared with that of the baseline algorithm. For example, for the FIFA dataset, when minHuRa increased from 0.01 to 0.5, the number of patterns mined by the baseline algorithm decreased from 1,329 to 49. When minSeqRa = 0.001, minSupRa = 0.1, maxStd = 10, and maxPr = 10, and minHuRa increased from 0.01 to 0.5, the number of mined patterns decreased from 122 to 1. Additionally, minSeqRa significantly influenced the number of HUPFPS. For example, for the Leviathan dataset, when minHuRa = 0.01 and minSeqRa increased from 0 to 0.001, the number of mined patterns decreased from 802 to 66. In conclusion, most of the patterns in the sequence are non-high utility frequent periodic patterns, hence the proposed MHUPFPS can prune various non-high utility frequent periodic patterns.

Figure 4: MHUPFPS runtime for various minHuRa and minSeqRa values

Figure 5: Number of patterns identified for various minHuRa and minSeqRa values

Fig. 6 illustrates the influence of minSeqRa and minHuRa on memory consumption. This figure shows that, for all datasets, the results are all represented by almost horizontal lines as the value of minHuRa increases; this indicates that the value of minHuRa has nearly no influence on the memory usage of MHUPFPS. When minHuRa was fixed, the memory consumption decreased as minSeqRa increased. For example, for the FIFA dataset, when minHuRa = 0.15 and minSeqRa increased from 0 to 0.001, the memory usage decreased from 1,265 to 856 MB; this demonstrates that the value of minSeqRa can reduce the number of patterns that are saved in the memory.

Figure 6: Memory usage for different parameter values for different datasets

5.5 Influence Analysis of minSeqRa and maxStd

We evaluated the combined influence of minSeqRa and maxStd on the algorithm by varying their values. We fixed minHuRa = 0.1, minSupRa = 0.1, and maxPr = 10. Fig. 7 shows the runtime of MHUPFPS for different values of minSeqRa and maxStd; the runtime was 15%, 18%, 12%, and 16% faster than that of the baseline algorithm for mining all HUPFPS in the FIFA, Leviathan, Bike, and synthetic datasets, respectively. The items in the Leviathan dataset are more diverse and the synthetic dataset contains more transactions per transaction; this can lead to a larger search space. Most of the patterns in the Leviathan and T23I67KD15K datasets are non-high-utility periodic frequent patterns, which require considerably more memory space to be saved. MHUPFPS prunes several non-high-utility periodic frequent patterns, resulting in improved performance.

As shown in Fig. 8, the number of HUPFPS increased as *maxStd* increased. As *maxStd* increased, the number of patterns mined by the baseline algorithm was much larger than that in the non-baseline algorithm. For example, for the FIFA dataset, the number of patterns mined by the baseline algorithm decreased from 1,329 to 869 as *maxStd* decreased from ten to three. When *minSeqRa* = 0.001 and *maxStd* decreased from ten to three, the number of patterns mined by the non-baseline algorithm reduced from 58 to 19. Fig. 8 also shows that for a constant *minSeqRa*, the number of mined patterns decreased as *maxStd* increased.

Figure 8: Number of patterns identified for various minSeqRa and maxStd values

The influence of *minSeqRa* and *maxStd* on memory consumption is shown in Fig. 9; as *maxStd* increased, the memory usage increased. This is because when *maxStd* increases, MHUPFPS requires more space to save the HUPFPS-list of patterns. For example, for the FIFA dataset, the memory consumption of MHUPFPS(0.001, 0.1, 10) increased from 678 to 868 MB as *maxStd* increased from three to ten (Fig. 9). Our results indicate that changing the value of *maxStd* can control the number of patterns that are saved in the memory.

Figure 9: Memory usage for different parameter values for different datasets

5.6 Influence Analysis of maxPr

Fig. 10 shows the time variation of MHUPFPS for different values of *maxPr*. Figs. 11 and 12 compare the changes in the number of HUPFPS and memory consumption when *maxPr* is varied. The four datasets had different sequence lengths; the longest was 99 and the shortest was eight. The value of *maxPr* was fixed at five, ten, and 20. As shown in Fig. 10, decreasing the value of *maxPr* can significantly reduce the runtime of MHUPFPS. For example, for the FIFA dataset, the runtime was reduced by 12% when *minSeqRa* increased from 0 to 0.0001, and by 20% when *minSeqRa* increased from 0.0001 to 0.001. The runtime also reduced for the other datasets. Because *maxPr* limits the period of the pattern, the algorithm strictly filters out patterns with a period lower than *maxPr*.

Fig. 11 shows that decreasing the value of maxPr can significantly reduce the number of patterns. For example, for the synthetic dataset, the number of mined patterns was 86 for minSupRa = 0.1 and maxPr = 20, which reduced to 54 for minSupRa = 0.1 and maxPr = 10. When minSupRa = 0.1 and maxPr = 5, the number of mined patterns reduced to 22. This is reasonable because maxPr enforces a very strict limit on the period of the patterns; hence, the algorithm requires that every period of every pattern is less than maxPr. Therefore, several patterns were filtered out.

Figure 10: MHUPFPS runtime for various maxPr and minSupRa values

Figure 11: Number of patterns identified for various maxPr and minSupRa values

As shown in Fig. 12, as maxPr decreased, the memory usage significantly decreased for all datasets. This is reasonable because the algorithm has a stricter limit on the period of the patterns as maxPr decreases. Thus, MHUPFPS requires less space and reduces the number of patterns in the HUPFPS-list. For example, for the Leviathan dataset, the memory usage decreased from 3,948 to 783 MB as maxStd reduced from 20 to ten for supSupRa = 0.15. The memory usage decreased to 155 MB as maxStd decreased from ten to five for supSupRa = 0.15. This is because when maxPr decreases, the algorithm has a stricter limit on the period of patterns, meaning that MHUPFPS requires less memory to store the HUPFPS-list. Our results show that the number of patterns that are saved in the memory can be reduced by decreasing maxPr.

Figure 12: Memory usage for different parameter values for different datasets

6 Conclusion

Previous studies have only considered one factor, either periodicity or utility, and have yet to identify valuable patterns in multiple sequences. In this study, we combined the utility and periodicity and mined common high utility period frequent patterns in a set of sequences. The proposed MHUPFPS algorithm is based on a new data structure, HUPFPS-list, and a novel pruning strategy that is used to reduce the search space. The experimental results show that MHUPFPS is efficient and can filter out non-high-utility period frequent patterns. In the future, we plan to further optimize the proposed algorithm in terms of runtime and memory usage. In addition, we aim to locate other meaningful patterns.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest regarding this study.

References

- 1. Schweizer, D., Zehnder, M., Wache, H., Witschel, H. F., Zanatta, D. et al. (2015). Using consumer behavior data to reduce energy consumption in smart homes: Applying machine learning to save energy without lowering comfort of inhabitants. *Proceeding of the IEEE 14th International Conference on Machine Learning and Applications (ICMLA)*, Florida, USA.
- Zhang, K., Wang, Z., Chen, G., Zhang, L., Yang, Y. et al. (2022). Training effective deep reinforcement learning agents for real-time life-cycle production optimization. *Journal of Petroleum Science and Engineering*, 208(1), 109766. https://doi.org/10.1016/j.petrol.2021.109766
- 3. Aggarwal, C. C., Bhuiyan, M. A., Hasan, M. A. (2014). Frequent pattern mining algorithms: A survey. In: *Frequent pattern mining*, pp. 19–64. Switzerland: Springer.
- Fournier-Viger, P., Lin, J. C. W., Vo, B., Chi, T. T., Zhang, J. et al. (2017). A survey of itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(4), e1207. <u>https://doi.org/</u> 10.1002/widm.1207
- 5. Berlingerio, M., Pinelli, F., Calabrese, F. (2013). Abacus: Frequent pattern mining-based community discovery in multidimensional networks. *Data Mining and Knowledge Discovery*, 27(3), 294–320. https://doi.org/10.1007/s10618-013-0331-0
- 6. Halder, S., Samiullah, M., Lee, Y. K. (2017). Supergraph based periodic pattern mining in dynamic social networks. *Expert Systems with Applications*, 72(11), 430–442. https://doi.org/10.1016/j.eswa.2016.10.033
- Khan, M. A., Ullah, I., Alsharif, M. H., Alghtani, A. H., Aly, A. A. et al. (2022). An efficient certificatebased aggregate signature scheme for internet of drones. *Security and Communication Networks*, 2022, 1–9. https://doi.org/10.1155/2022/9718580
- Mei, Q., Xiong, H., Chen, Y. C., Chen, C. M. (2022). Blockchain-enabled privacy-preserving authentication mechanism for transportation CPS with cloud-edge computing. *IEEE Transactions on Engineering Management*, 1–12. https://doi.org/10.1109/TEM.2022.3159311
- Pan, J. S., Hu, P., Snášel, V., Chu, S. C. (2022). A survey on binary metaheuristic algorithms and their engineering applications. *Artificial Intelligence Review*, 13(6), 1–67. https://doi.org/10.1007/s10462-022-10328-9
- Bhatia, M., Bhatia, S., Hooda, M., Namasudra, S., Taniar, D. (2022). Analyzing and classifying MRI images using robust mathematical modeling. *Multimedia Tools and Applications*, 81(26), 37519–37540. https://doi.org/10.1007/s11042-022-13505-8
- Malviya, S., Kumar, P., Namasudra, S., Tiwary, U. S. (2022). Experience replay-based deep reinforcement learning for dialogue management optimisation. *Transactions on Asian and Low-Resource Language Information Processing*. https://doi.org/10.1145/3539223
- Pan, J. S., Lv, J. X., Yan, L. J., Weng, S. W., Chu, S. C. et al. (2022). Golden eagle optimizer with double learning strategies for 3D path planning of uav in power inspection. *Mathematics and Computers* in Simulation, 193(10), 509–532. https://doi.org/10.1016/j.matcom.2021.10.032
- 13. Song, P. C., Chu, S. C., Pan, J. S., Yang, H. (2022). Simplified phasmatodea population evolution algorithm for optimization. *Complex & Intelligent Systems*, 8(4), 2749–2767. <u>https://doi.org/10.1007/s40747-021-00402-0</u>
- 14. Wu, T. Y., Kong, F., Wang, L., Chen, Y. C., Kumari, S. et al. (2022). Toward smart home authentication using puf and edge-computing paradigm. *Sensors*, 22(23), 9174. https://doi.org/10.3390/s22239174
- Zhao, S., Zhu, S., Wu, Z., Jaing, B. (2022). Cooperative energy dispatch of smart building cluster based on smart contracts. *International Journal of Electrical Power & Energy Systems*, 138(6), 107896. https://doi.org/10.1016/j.ijepes.2021.107896

- Khan, M. A., Kumar, N., Mohsan, S. A. H., Khan, W. U., Nasralla, M. M. et al. (2022). Swarm of UAVs for network management in 6G: A technical review. *IEEE Transactions on Network and Service Management*, 1. https://doi.org/10.1109/TNSM.2022.3213370
- Li, X., Liu, S., Kumari, S., Chen, C. M. (2023). PSAP-WSN: A provably secure authentication protocol for 5G-based wireless sensor networks. *Computer Modeling in Engineering & Sciences*, 135(1), 711–732. https://doi.org/10.32604/cmes.2022.022667
- Wu, T. Y., Meng, Q., Yang, L., Kumari, S., Pirouz, M. (2023). Amassing the security: An enhanced authentication and key agreementprotocol for remote surgery in healthcare environment. *Computer Modeling in Engineering & Sciences*, 134(1), 317–341. https://doi.org/10.32604/cmes.2022.019595
- 19. Han, J., Cheng, H., Xin, D., Yan, X. (2007). Frequent pattern mining: Current status and future directions. *Data Mining and Knowledge Discovery*, 15(1), 55–86. https://doi.org/10.1007/s10618-006-0059-1
- 20. Duan, Y., Fu, X., Luo, B., Wang, Z., Shi, J. et al. (2015). Detective: Automatically identify and analyze malware processes in forensic scenarios via DLLs. *Proceedings of the IEEE International Conference on Communications*, London, UK.
- 21. Mwamikazi, E., Fournier-Viger, P., Moghrabi, C., Baudouin, R. (2014). A dynamic questionnaire to further reduce questions in learning style assessment. *Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations*, Rhodes, Greece.
- 22. Fernando, B., Fromont, E., Tuytelaars, T. (2012). Effective use of frequent itemset mining for image classification. *Proceedings of the European Conference on Computer Vision*, Florence, Italy.
- Liu, Y., Zhao, Y., Chen, L., Pei, J., Han, J. (2011). Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays. *IEEE Transactions on Parallel and Distributed Systems*, 23(11), 2138–2149. https://doi.org/10.1109/TPDS.2011.307
- 24. Agrawal, R., Srikant, R. (1994). Fast algorithms for mining association rules. *Proceedings of the International Conference on Very Large Databases*, vol. 1215. Santiago, Chile.
- 25. Wang, J., Han, J., Li, C. (2007). Frequent closed sequence mining without candidate maintenance. *IEEE Transactions on Knowledge and Data Engineering*, 19(8), 1042–1056. <u>https://doi.org/10.1109/</u> <u>TKDE.2007.1043</u>
- 26. Fournier-Viger, P., Nkambou, R., Nguifo, E. M. (2008). A knowledge discovery framework for learning task models from user interactions in intelligent tutoring systems. *Proceedings of the Mexican International Conference on Artificial Intelligence*, México.
- 27. Ziebarth, S., Chounta, I. A., Hoppe, H. U. (2015). Resource access patterns in exam preparation activities. *Proceedings of the European Conference on Technology Enhanced Learning*, Toledo, Spain.
- 28. Pokou, Y. J. M., Fournier-Viger, P., Moghrabi, C. (2016). Authorship attribution using small sets of frequent part-of-speech skip-grams. *Proceedings of the Twenty-Ninth International Flairs Conference*, Florida, USA.
- 29. Agrawal, R., Srikant, R. (1995). Mining sequential patterns. *Proceedings of the Eleventh International Conference on Data Engineering*, Taipei, Taiwan.
- 30. Fan, Y., Ye, Y., Chen, L. (2016). Malicious sequential pattern mining for automatic malware detection. *Expert Systems with Applications, 52,* 16–25. https://doi.org/10.1016/j.eswa.2016.01.002
- 31. Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., Lee, Y. K. (2009). Discovering periodic-frequent patterns in transactional databases. *Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining*, Bangkok, Thailand.
- 32. Amphawan, K., Lenca, P., Surarerks, A. (2009). Mining top-k periodic-frequent pattern from transactional databases without support threshold. *Proceedings of the International Conference on Advances in Information Technology*, Bangkok, Thailand.
- 33. Surana, A., Kiran, R. U., Reddy, P. K. (2011). An efficient approach to mine periodic-frequent patterns in transactional databases. *Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining*, Shenzhen, China.

- 34. Rashid, M., Karim, R., Jeong, B. S., Choi, H. J. et al. (2012). Efficient mining regularly frequent patterns in transactional databases. *Proceedings of the International Conference on Database Systems for Advanced Applications*, Busan, South Korea.
- 35. Kiran, R. U., Kitsuregawa, M., Reddy, P. K. (2016). Efficient discovery of periodic-frequent patterns in very large databases. *Journal of Systems and Software*, 112(3), 110–121. https://doi.org/10.1016/j.jss.2015.10.035
- 36. Dinh, D. T., Le, B., Fournier-Viger, P., Huynh, V. N. (2018). An efficient algorithm for mining periodic high-utility sequential patterns. *Applied Intelligence*, 48(12), 4694–4714. <u>https://doi.org/ 10.1007/s10489-018-1227-x</u>
- 37. Fournier-Viger, P., Li, Z., Lin, J. C. W., Kiran, R. U., Fujita, H. (2018). Discovering periodic patterns common to multiple sequences. *Proceedings of the International Conference on Big Data Analytics and Knowledge Discovery*, Regensburg, Germany.
- 38. Fournier-Viger, P., Lin, J. C. W., Duong, Q. H., Dam, T. L. (2016). PHM: Mining periodic high-utility itemsets. *Proceedings of the Industrial Conference on Data Mining*, New York, USA.
- 39. Dinh, T., Huynh, V. N., Le, B. (2017). Mining periodic high utility sequential patterns. *Proceedings of the Asian Conference on Intelligent Information and Database Systems*, Kanazawa, Japan.
- 40. Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P., Chao, H. C. (2017). FDHUP: Fast algorithm for mining discriminative high utility patterns. *Knowledge and Information Systems*, 51(3), 873–909. https://doi.org/10.1007/s10115-016-0991-3
- 41. Zhang, C., Du, Z., Gan, W., Philip, S. Y. (2021). TKUS: Mining top-k high utility sequential patterns. *Information Sciences*, 570(4), 342–359. https://doi.org/10.1016/j.ins.2021.04.035
- 42. Chen, L., Gan, W., Lin, Q., Huang, S., Chen, C. M. (2022). OHUQI: Mining on-shelf high-utility quantitative itemsets. *The Journal of Supercomputing*, 78(6), 8321–8345. https://doi.org/10.1007/s11227-021-04218-0
- Fournier-Viger, P., Li, Z., Lin, J. C. W., Kiran, R. U., Fujita, H. (2019). Efficient algorithms to identify periodic patterns in multiple sequences. *Information Sciences*, 489(9), 205–226. <u>https://doi.org/</u> 10.1016/j.ins.2019.03.050
- 44. Srikant, R., Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. *Proceedings of the International Conference on Extending Database Technology*, Avignon, France.
- 45. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. et al. (2000). Freespan: Frequent pattern-projected sequential pattern mining. *Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, Boston, USA.
- 46. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q. et al. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. *Proceedings of the 17th International Conference on Data Engineering*, Athens, Greece.
- 47. Tang, L., Zhang, L., Luo, P., Wang, M. (2012). Incorporating occupancy into frequent pattern mining for high quality pattern recommendation. *Proceedings of the 21st ACM International Conference on Information and Knowledge Management*, Hawaii, USA.
- 48. Liu, J., Wang, K., Fung, B. C. (2012). Direct discovery of high utility itemsets without candidate generation. *Proceedings of the IEEE 12th International Conference on Data Mining*, Brussels, Belgium.
- 49. Gan, W., Lin, J. C. W., Fournier-Viger, P., Chao, H. C., Tseng, V. S. et al. (2019). A survey of utilityoriented pattern mining. *IEEE Transactions on Knowledge and Data Engineering*, 33(4), 1306–1327. https://doi.org/10.1109/TKDE.2019.2942594
- 50. Ahmed, C. F., Tanbeer, S. K., Jeong, B. S., Lee, Y. K. (2009). Efficient tree structures for high utility pattern mining in incremental databases. *IEEE Transactions on Knowledge and Data Engineering*, 21(12), 1708–1721. https://doi.org/10.1109/TKDE.2009.46
- Han, J., Pei, J., Yin, Y., Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. *Data Mining and Knowledge Discovery*, 8(1), 53–87. <u>https://doi.org/10.1023/B:DAMI.0000005258.31418.83</u>

- 52. Zihayat, M., Davoudi, H., An, A. (2017). Mining significant high utility gene regulation sequential patterns. *BMC Systems Biology*, 11(6), 1–14. https://doi.org/10.1186/s12918-017-0475-4
- 53. Liu, M., Qu, J. (2012). Mining high utility itemsets without candidate generation. *Proceedings of the 21st* ACM International Conference on Information and Knowledge Management, Hawaii, USA.
- 54. Lin, J. C. W., Gan, W., Fournier-Viger, P., Hong, T. P., Tseng, V. S. (2016). Efficient algorithms for mining high-utility itemsets in uncertain databases. *Knowledge-Based Systems*, 96(5), 171–187. https://doi.org/10.1016/j.knosys.2015.12.019
- 55. Tseng, V. S., Shie, B. E., Wu, C. W., Philip, S. Y. (2012). Efficient algorithms for mining high utility itemsets from transactional databases. *IEEE Transactions on Knowledge and Data Engineering*, 25(8), 1772–1786. https://doi.org/10.1109/TKDE.2012.59
- 56. Fournier-Viger, P., Wu, C. W., Zida, S., Tseng, V. S. (2014). FHM: Faster high-utility itemset mining using estimated utility co-occurrence pruning. *Proceedings of the International Symposium on Methodologies for Intelligent Systems*, Roskilde, Denmark.
- 57. Krishnamoorthy, S. (2015). Pruning strategies for mining high utility itemsets. *Expert Systems with Applications*, 42(5), 2371–2381. https://doi.org/10.1016/j.eswa.2014.11.001
- 58. Zida, S., Fournier-Viger, P., Lin, J. C. W., Wu, C. W., Tseng, V. S. (2017). EFIM: A fast and memory efficient algorithm for high-utility itemset mining. *Knowledge and Information Systems*, 51(2), 595–625. https://doi.org/10.1007/s10115-016-0986-0
- 59. Chan, R., Yang, Q., Shen, Y. D. (2003). Mining high utility itemsets. *Proceeding of the IEEE International Conference on Data Mining*, Florida, USA.
- 60. Yao, H., Hamilton, H. J., Butz, C. J. (2004). A foundational approach to mining itemset utilities from databases. *Proceedings of the 2004 SIAM International Conference on Data Mining*, Florida, USA.
- 61. Liu, Y., Liao, W. K., Choudhary, A. (2005). A two-phase algorithm for fast discovery of high utility itemsets. *Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining*, Hanoi, Vietnam.
- 62. Le, B., Dinh, D. T., Huynh, V. N., Nguyen, Q. M., Fournier-Viger, P. (2018). An efficient algorithm for hiding high utility sequential patterns. *International Journal of Approximate Reasoning*, 95(5), 77–92. https://doi.org/10.1016/j.ijar.2018.01.005
- 63. Gan, W., Lin, J. C. W., Zhang, J., Chao, H. C., Fujita, H. et al. (2019). ProUM: High utility sequential pattern mining. *Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC)*, Bari, Italy.
- 64. Gan, W., Lin, J. C. W., Zhang, J., Fournier-Viger, P., Chao, H. C. et al. (2020). Fast utility mining on sequence data. *IEEE Transactions on Cybernetics*, 51(2), 487–500. https://doi.org/10.1109/TCYB.2020.2970176
- 65. Fournier-Viger, P., Yang, P., Li, Z., Lin, J. C. W., Kiran, R. U. (2020). Discovering rare correlated periodic patterns in multiple sequences. *Data & Knowledge Engineering*, 126(1), 101733. https://doi.org/10.1016/j.datak.2019.101733
- 66. Fournier-Viger, P., Yang, P., Lin, J. C. W., Kiran, R. U. (2019). Discovering stable periodic-frequent patterns in transactional data. *Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems*, Kitakyushu, Japan.
- 67. Fournier-Viger, P., Lin, C. W., Duong, Q. H., Dam, T. L., Ševčík, L. et al. (2017). PFPM: Discovering periodic frequent patterns with novel periodicity measures. *Proceedings of the 2nd Czech-China Scientific Conference 2016*, Ostrava, Czech Republic.
- 68. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C. W. et al. (2014). SPMF: A Java opensource pattern mining library. *The Journal of Machine Learning Research*, 15(1), 3389–3393.