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ABSTRACT

Periodic pattern mining has become a popular research subject in recent years; this approach involves the discovery
of frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pattern
mining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodic
patterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequences
is more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences is
important. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To address
existing problems, three new measures are defined: the utility, high support, and high-utility period sequence
ratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS uses
a newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improve
the overall performance of the algorithm. Furthermore, the proposed algorithm is evaluated using several datasets.
The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utility
periodic frequent patterns.
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1 Introduction

With the continuous development of information technology, the modern internet of things (IoT)
generates a large amount of complex data that cannot be efficiently acquired, stored, managed, and
analyzed using traditional data management techniques. Data mining involves extracting potentially
valuable information from large and disorganized data [1,2]; it uses a practical application perspective
to extract meaningful information from large amounts of data to make decisions and set solutions [3,4].
Data mining combines different fields by employing other approaches, such as machine learning and
statistics, to find and design algorithms for meaningful mining patterns [4–6]. Data mining classifies
large amounts of data to identify patterns of interest [3,4]. To date, data mining has been applied to
various areas, such as the IoT [7,8], machine learning [9–11], optimization [12,13], smart cities [14–16],
and wireless sensors networks [17,18], etc.
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Frequent pattern mining (FPM) is an essential branch of data mining research aimed at mining
frequently occurring patterns [4,5,19]. For example, FPM has been used to find frequent customer
purchases in transaction databases. With the development of FPM in various fields, several algorithms
have been proposed for different types of applications, such as malware detection [20], machine
learning [21], image classification [22], and activity detection [23]. These algorithms use different
measures to identify meaningful patterns to meet the needs of the relevant field [4]. FPM algorithms
can be used to determine the correlation between items or transactions in a database. However, they do
not consider the order of precedence between transactions [24]. More specifically, FPM algorithms can
identify a set of products that customers frequently buy periodically; however, identifying the order of
each purchase is impossible. The sequence of events must be considered in practical applications, such
as biomedicine [25], electronic information learning [26,27], text analysis [28], website hit comments,
and various other fields. For example, in online shopping applications, several customers make the
same or different purchases at regular intervals. Analyzing sequential behavior over time can help
merchants and e-commerce platforms to develop sales plans and improve sales strategies.

To solve the constraints of FPM, several researchers consider the temporal order between
transactions (events) and offer the concept of sequential pattern mining (SPM). SPM mines frequent
subsequences in a sequence of transactions. Unlike FPM, SPM considers the sequence of events or
transactions [1,26,28–30]. Although SPM algorithms can find frequently occurring patterns in a set
of transaction sequences, they cannot be used to find patterns that repeat in a sequence over time,
which could be useful. For example, analyzing products that numerous users repeatedly buy every few
days or weeks from an online shopping database helps e-commerce platforms develop sales strategies.
Research on periodic pattern mining has been conducted to find periodically occurring patterns in
sequence databases [31–37]. The task of periodic pattern mining is to find the events or number of
events between two occurrences of a pattern in a sequence of transactions that do not exceed a user-
defined maximum periodicity threshold. For example, if a customer goes to the gym once a week, and
if the maximum period threshold is set to one week, the user goes to the gym at least once a week.
Various algorithms have already been proposed for periodic pattern mining [36,38–42],

Existing algorithms for periodic pattern mining focus on patterns occurring periodically in a
sequence (one sequence corresponds to one customer). However, this is no longer sufficient to meet
real needs. For example, there might be a need to determine the behavior of multiple customers
who repeatedly purchase together. Recently, an algorithm called MPFPS was proposed [43] to find
periodically frequent patterns in multiple sequences. More significantly, it extends finding periodic
patterns in a single sequence to finding periodic patterns that are common to a group of sequences.
MPFPS defines a new measure called the periodic standard deviation to guarantee a more stable period
for patterns to appear in a sequence. However, MPFPS considers patterns that only appear once in
a transaction and does not consider the internal utility (e.g., number of purchases) or external utility
(e.g., value, importance) of a pattern. In practical applications, considering the importance and number
of patterns based on user preferences is more helpful in discovering which patterns are of higher
value in a user’s periodic purchase behavior and mining significant patterns. For example, specific
DNA molecules appear regularly in gene sequences [6,33]. However, each DNA molecule carries
information of varying importance that directly affects the expression of certain external traits. Hence,
the identification of DNA molecules that appear periodically plays an important role. Consequently,
designing a new algorithm for mining high-utility periodic frequent patterns (HUPFPS) in multiple
sequences is essential.

In this study, we proposed a new algorithm called MHUPFPS to mine HUPFPS in multiple
sequences. In contrast to existing algorithms for periodic pattern mining, MHUPFPS considers the
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value (utility, profit) of patterns in a sequence database to mine patterns that are both periodic and of
high value in practical applications. A new measure called the utility ratio is defined to evaluate the
percentage of the utility of patterns in a sequence to identify patterns with a high utility percentage.
Additionally, traditional algorithms for periodic pattern mining use a fixed number of supports to
define the pattern frequency. This is obviously unpractical. In this study, sequence lengths in different
databases had different characteristics. Furthermore, MHUPFPS uses a support rate to ensure the
fair and effective mining of higher-utility patterns in sequences of different lengths. Moreover, to
reduce the search space when MHUPFPS is performed, a new pruning strategy was designed. The
key contributions of this study are as follows:

1. To guarantee the frequency of periodic patterns in each sequence, we defined a new measure:
the support ratio. Further, we proposed a high-utility periodic sequence ratio, which defined
the high-utility periodic frequent patterns in multiple sequences.

2. A pruning strategy was proposed to prune the search space. A MHUPFPS was proposed based
on this pruning strategy. The proposed algorithm uses the HUPFPS-list structure to avoid
scanning the database repeatedly.

3. Experimental results show that MHUPFPS is correct and efficient in filtering several non-high
utility periodic frequent patterns.

The remainder of this paper is organized as follows. Section 2 reviews previous studies related
to data mining, and Section 3 presents the necessary definitions. Section 4 describes the proposed
algorithm MHUPFPS and Section 5 presents the experimental results. Finally, Section 6 concludes
the paper.

2 Related Work
2.1 Sequential Pattern Mining

To date, SPM has been a popular research direction that aims to mine frequent subsequences
with at least a threshold minimum number of occurrences in a sequence [4,44]. The first algorithm
used for sequential pattern mining was AprioriAll. The AprioriAll algorithm [29] is based on the
Apriori algorithm: the mining process was the same. The difference between the two algorithms is that
the AprioriAll algorithm considers the order of the last two elements of the pattern when generating
the candidate patterns. An algorithm called GSP [44] has also been proposed, which is an extension
of the AprioriAll algorithm. The algorithm introduces time constraints, sliding time windows, and
classification hierarchy techniques to effectively reduce the number of candidate sequences that need
to be scanned. Han et al. [45] proposed the concept of database prefix projection to reduce the cost
of scanning the database when mining larger patterns. They then incorporated this concept into the
newly proposed freespan algorithm. They further developed the PrefixSpan algorithm [46], which is
an improved algorithm based on the freespan algorithm. The PrefixSpan algorithm only introduces
the project suffix with the same prefix to obtain the project database. As the PrefixSpan algorithm
can significantly reduce the search space and does not generate candidate sequences, the memory
consumption of the PrefixSpan algorithm is reduced and relatively stable.

2.2 Utility-Based Pattern Mining
In recent years, high utility pattern mining (HUPM) has become popular in the field of data-

mining. HUPM considers that each item in a transaction may have multiple purchase quantities,
and each item has equal weight [47–52]. The purpose of HUPM is to find high utility patterns
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in a transaction database, such as a customer who buys several items in a transaction. HUPM is
an important branch of data mining [50,53–55]. If the utility of a pattern is not less than a user-
defined minimum utility threshold, it is considered to be a high-utility pattern (HUP). Several HUPM
algorithms have been proposed, such as IHUP [50], UP-growth [54], UPgrowth+ [55], HUI-Miner [53],
d2HUP [48], FHM [56], HUP-Miner [57], and EFIM [58]. The purpose of HUPM is to discover high
utility item sets in transaction databases. HUPM is not only used in market basket analysis but also in
website clickstream analysis and biomedical applications. Chan et al. [59] proposed a framework for
mining the top-k closed utility patterns by combining positive and negative utilities to find the top-k
HUP. Yao et al. [60] considered the problem of internal utility (number of purchases) and external
utility (profit per unit) of a transaction to mine HUPs. Liu et al. [61] used the closure property under
transaction weighting to discover HUPs and proposed a transaction-weighted utility (TWU) model.
Liu et al. [53] also proposed an algorithm called HUI-miner, which uses a new utility list structure to
calculate the internal and residual utility of the supported transaction patterns based on the utility
list structure. As the challenges of HUPM have been further studied, HUPM algorithms have started
to consider the order and utility of transactions, and countless high-utility sequential pattern mining
algorithms have been proposed, such as USpan [62], ProUM [63], and HUSP-ULL [64].

2.3 Periodic Pattern Mining
The FPM has been extended from finding periodic patterns in a single sequence to finding those

that are common in multiple sequences. In a sequence, a pattern that appears frequently and has two
consecutive appearances with a period interval of less than the maximum period threshold is said to
be periodic. The PFPM task was defined in a transaction-sequence database by Tanbeer et al. [31].
Several variants of periodic mining patterns in a single sequence have been proposed based on their
approach [33–38]. For example, an algorithm called MTKPP was used to mine the top-k frequently
occurring patterns in a single sequence [32–34]. Periodic patterns continue to be studied in depth, and
some approaches consider the utility (profit) of the periodic patterns. For example, an algorithm called
PHM was proposed to find items that are frequently purchased and highly profitable, locating patterns
that occur periodically in a single sequence and are of high utility [38]. Additionally, an algorithm
called PHUSPM was designed to mine high-utility periodic patterns in multiple-symbol sequences [36].
The PHUSPM algorithm considers a set of sequences as one sequence and mines periodic patterns
using the same periodicity measure as for a single sequence. Recently, Philippe et al. proposed two
new algorithms for periodic pattern mining in multiple sequences: MPFPS [43] and MRCPPS [65].
These algorithms proposed a new measure called the periodic standard deviation, which was used
to evaluate the periodicity of the patterns in the sequence. For MPFPS [43], another new measure
was proposed to define a common periodic pattern in multiple sequences: the sequence periodicity
ratio (SPR). The MRCPPS algorithm identifies strongly correlated periodic patterns using the bond
correlation measure, and defines a new pattern called rare correlated periodic patterns. Recently,
the SPP-Growth [66] algorithm was proposed to determine stable periodic patterns in transaction
databases with timestamps.

2.4 Problems of Existing Research
Most existing research on periodic patterns does not mine PFPS common to a set of sequences. To

the best of our knowledge, MPFPS and MRCPPS are the only recently proposed algorithms that mine
PFPS in multiple sequences. However, these algorithms assume that each item has the same weight or
value and only appears once in a transaction; this obviously has limitations for practical applications.
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In contrast, current algorithms for PFPS use a measure called support to define the frequency of
patterns; however, this measure does not apply to data with different characteristics.

3 Definition and Problem Statement

In this section, we first present the definitions of periodic and utility patterns in a single sequence
[67]. Then, we consider the corresponding definitions for multiple sequences [43]. The terms pattern
and itemset are used alternately in the following descriptions.

3.1 Definitions for a Single Sequence
Definition 3.1. Assume that there is a set of items (symbols) I in a sequence database D. An itemset

X i is a subset of I , i.e., X i ⊆ I . An itemset X with k distinct items {i1, i2,. . ., ik} is called a k-itemset.
A sequence S is an ordered list of itemsets S = {T 1, T 2, . . ., Tj}, where Tv ⊆ I (1 ≤ v ≤ j), and Tv

represents a transaction in the sequence, where v is a unique transaction identifier in that sequence. A
sequence database D is an ordered set containing n sequences, i.e., D = {S1, S2,. . ., Sn}. Sequence Si

(1 ≤ i ≤ n) is defined as the i-th sequence in D, where i is a unique sequence identifier. The itemset X
appears in a sequence Sa = {T 1, T 2, . . ., Tk}, i.e., X ⊆ Sa, where X is ⊆ Td (1 ≤ d ≤ k). This itemset
appears in the transaction Tq.

Example 1. Consider a set of different items I = {a, b, c, d, e}, which represent different types
of items sold in a supermarket. As shown in Table 1, sequence S0 contains five transactions. The first
transaction (a:6, b:8) indicates that the first transaction in sequence S0 contains two itemsets {a} and
{b}. The number of occurrences of {a} in the transaction is six and that of {b} is eight. {a} is called a
1-itemset because it contains only one item, a.

Table 1: An example sequence

S0 (a:6, b:8), (a:4, c:9, e:10), (a:8, b:11, c:7, d:4), (a:5, b:3, c:12), (b:4, d:3)

Definition 3.2. Consider an itemset X in Si. The ordered list of transactions in Si containing
X is defined as TR(X , S) = 〈Tg(1), Tg(2),. . ., Tg(k)〉 ⊆ Si. Let Tg(z) and Tg(z+1) (1 ≤ z ≤ k-1) be two
consecutive occurrences in Si. The formula for calculating the period of two consecutive occurrences
of a transaction containing X is per(Tg(z), Tg(z+1)) = g(z+1) − g(z). The period of X in Si is pr(X , Si) =
{per1, per2,. . ., perk+1}, where per1 = g(1) − g(0), per2 = g(2) − g(1),. . ., perk = g(k+1) − g(k). g(k) is
the unique identifier of the transaction; when X appears, g(0) = 0 and g(k+1) = |Si|. |Si|; the latter
denotes the length of Si.

Example 2. In the sequence S0 shown in Table 1, the itemset {a} appears in the transactions T1, T2,
T3 and T4; thus, TR({a}, S0) = {T1, T2, T3, T4}. The period {a} in S0 is denoted by pr({a}, S0) = {1, 1, 1,
1, 1}.

Definition 3.3. In a sequence S, an itemset X may appear in multiple transactions, and the number
of transactions in a sequence S containing X is defined as sup(X , S) = |TR(X , S)|.

Example 3. In the sequence S0 shown in Table 1, the itemset {a, c} appears in T2, T3, and T4;
therefore, the number of occurrences of {a, c} supported for S0 is represented as sup({a, c}, S0) = 3.

Definition 3.4. Each item i has a unit profit, denoted as pl(i), which represents its importance. The
unit profit for each item uses a dedicated profit list: profit = {pl(i1), pl(i2), . . ., pl(im)}. The profit of
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item ij in Tq in a sequence Sn is defined as u(ij, Tq, Sn) = q(ij, Tq, Sn) × pl(ij), where q(ij, Tq, Sn) is the
number of itemsets ij in Tq in Sn.

Example 4. In Table 2, the unit profits of the itemsets {a}, {b}, {c}, {d}, {e} are {pl(a): 76, pl(b): 65,
pl(c): 35, pl(d): 41, pl(e): 118}, respectively. For S1 and S2 considered in Table 3, {b} in T 4 in S1 and
{b, d} in T 2 in S2 have u({b}, T 4, S1) = 65 × 5 = 325 and u({b, d}, T 2, S2) = 65 × 8 + 41 × 3 = 643,
respectively.

Table 2: Profit table for the example sequence

Item Profit

a 76
b 65
c 35
d 41
e 118

Table 3: An example sequence

Sid Sequence

S1 〈(a:6, b:10, c:10), (b:8, c:8, d:13), (a:5, b:6), (a:8, b:5, e:8), (a:4, b:7, c:6, d:10)〉
S2 〈(d:14), (a:5, b:8, c:3, d:3), (a:6, c:15, d:8), (a:9, b:9, d:15), (a:10, b:6, c:14, e:13))〉
S3 〈(b:7, d:10), (a:8, d:4), (a:5, c:15, d:12), (b:3, d:12, e:3), (a:9, b:11, d:12)〉
S4 〈(a:6, c:12, d:14), (a:6, b:2, d:8), (a:9, c:6, d:6), (b:2, d:9), (b:5, d:8, e:6)〉

Definition 3.5. The total utility of a transaction Tq in Si is defined as tu(Tq) = ∑|Tq|
j=1 u(ij, Si), where

ij ∈ Tq is the j-th item in Tq.

Example 5. The total utility of T1 in the sequence S1 in Table 3 is tu(T1, S1) = u(a, S1) + u(b, S1)
+ u(c, S1) = 76 × 6 + 65 × 10 + 35 × 10 = 1456.

Definition 3.6. The total utility of X in S is defined as u(X , S) = ∑|s|
q=1 u(X , S) where X ∈ Tq ∧

Tq ∈ S.

Example 6. As shown in Table 3, the total utility of {a, b} in S1 is u({a, b}, S1) = u({a, b}, T1, S1) +
u({a, b}, T3, S1) + u({a, b}, T4, S1) + u({a, b}, T 5, S1) = 76 × 6 + 65 × 10 + 76 × 5 + 65 × 6 + 76 × 8
+ 65 × 5 + 76 × 4 + 65 × 7 = 3568.

Definition 3.7. In a sequence database D, the total utility of Si is defined as su (Si) = ∑|Si |
q=1 tu(Tq)

for Tq ∈ Si.

Example 7. As shown in Table 3, the total utility of S2 is su(S2) = tu(T 1, S2) + tu(T 2, S2) + tu(T 3,
S2) + tu(T 4, S2) + tu(T 5, S2) = 574 + 1128 + 1309 + 1884 + 3174 = 8069.

Definition 3.8. If a sequence SB = 〈T1, T2, . . ., Tl〉 contains another sequence SA = 〈Tk1, Tk2, . . .,
Tkm〉, then it must satisfy the existence of integers 1 ≤ k1 ≤ k2 ≤ . . . ≤ km ≤ l such that Tk1 ⊆ T1, Tk2 ⊆
T2, . . ., Tkm ⊆ Tl is defined as SA ⊆ SB.

Example 8. The sequence S0 in Table 1 contains 〈(a: 6, b: 8), (a: 4, c: 9), (a: 8, d: 4)〉.
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Definition 3.9. In a sequence database D, the standard deviation of the period of the itemset X in
the sequence S is denoted by stanDev (X , S).

Example 9. As shown in Table 3, the period of the itemset {a} in sequence S1 is pr({a}, S1) = {1, 2,
1, 1, 0}. The average period is avgPr({a}, S1) = (1 + 2 + 1 + 1 + 0)/5 = 1. The standard deviation of
the period is stanDev({a}, S1) = √

[(1 − 1)2 + (2 − 1)2 + (1 − 1)2 + (1 − 1)2 + (0 − 1)2]/5 = 0.63.

3.2 Definitions for Multiple Sequences
In the following paragraphs, we described how to combine the utility and periodicity of patterns

and apply them to multiple sequences. In addition to the definitions presented in previous works, we
defined three measures: utility ratio (Definition 3.10), support ratio (Definition 3.11), and high-utility
periodic sequence ratio (Definition 3.14). The utility ratio defines the utility percentage of a pattern in a
sequence. The support ratio guarantees the frequency of the periodic patterns in sequences of different
lengths. The high-utility periodic sequence ratio is used to discover frequent patterns of high-utility
periods in multiple sequences.

Definition 3.10. Let the total utility of an itemset X in a sequence S be u(X , S) and the total utility
of S be su(S). Then, the utility ratio is utiRa(X , S) = u(X , S)/su(S). Given a user-defined threshold
minHuRa, namely, the minimum high-utility ratio, if utiRa(X , S) ≥ minHuRa for an itemset X , then
X is defined as a high-utility itemset in the sequence S.

Example 10. Table 3 outlines an example with S1 and minHuRa = 0.25. The utility of an itemset
{a} in S1 is u({a}, S1) = tu(T 1, S1) + tu(T 3, S1) + tu(T 4, S1) + tu(T 5, S1) = 456 + 380 + 608 + 304 =
1748. The total utility of S1 is su(S1) = 6815, and that of the itemset {a} in sequence S1 is utiRa({a},
S1) = 1748/6815 = 0.256. Because 0.256 ≥ minHuRa, the itemset {a} is a high-utility itemset in
sequence S1.

Definition 3.11. The support ratio of an itemset X in a sequence S is defined as supRa(X , S) =
sup({X}, S)/|S|, where |S| is the total number of transactions in S. Given the minimum support ratio
threshold, minSuqRa, if supRa(X , S) ≥ minSupRa, then X in S has a high support ratio.

Example 11. The user-defined threshold is set to be minSupRa = 0.6. In Table 3, the itemset {a}
appears in T 1, T 3, T 4, and T 5 in S1. The support for the itemset X in S1 is sup({a}, S1) = 4. The support
ratio of {a} in S1 is supRa({a}, S1) = sup({a}, S1)/|S1| = 0.8. Because 0.8 ≥ minSupRa, X in S1 has a
high-support ratio pattern.

Definition 3.12. Let there be four user-defined thresholds, minSupRa, maxPr, maxStd, and
minHuRa. If an itemset X in a sequence S satisfies supRa(X , S) ≥ minSupRa, maxPr(X , S) ≤ maxPr,
stanDev(X , S) ≤ maxStd, and utiRa(X , S) ≥ minHuRa, then X in S is a high-utility periodic frequent
pattern.

Example 12. Let minSupRa = 0.6, maxPr = 3, maxStd = 1, and minHuRa = 0.2. Considering
S2 in Table 3, the itemset {a, d} appears in T2, T3, and T4. Thus, supRa({a, d}, S2) = 0.6 ≥ minSupRa,
stanDev({a, d}, S2) = 0.433 ≤ maxStd, utiRa({a, d}, S2) = 0.32 ≥ minHuRa, and maxPer{2, 1, 1, 1} =
2 ≤ maxPr; thus, the itemset {a, d} is a high-utility periodic frequent pattern in S2.

Definition 3.13. In a sequence database D, the set of sequences for which an itemset X satisfies
supRa(X , S) ≥ minSupRa, stanDev(X , S) ≤ maxStd, maxPr(X , S) ≤ maxPr, and utiRa(X , S) ≥
minHuRa is defined as huPrSeq(X , D) = {S|supRa(X , S) ≥ minSupRa ∧ maxPr(X , S) ≤ maxPr ∧
stanDev(X , S) ≤ maxStd ∧ utiRa(X , S) ≥ minHuRa ∧ S ∈ D}.
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Example 13. In Table 3, the itemset {d} satisfies supRa({d}, S) ≥ minSupRa, maxPr({d}, S) ≤
maxPr, stanDev({d}, S) ≤ maxStd, and utiRa({d}, S) ≥ minHuRa in S2, S3, and S4. Thus, the huPrSeq
of {d} is huPrSeq({d}) = {S2, S3, S4}.

Definition 3.14. In a sequence database D, the number of sequences in the set huPrSeq(X ) is
|huPrSeq(X )| and the high utility periodic sequence ratio of X in D is huSeqRa(X ) = |huPrSeq(X )|/|D|,
where |D| is the number of sequences in D. Given a user-defined threshold minSeqRa, if huSeqRa(X )
≥ minSeqRa, then X is a high utility periodic frequent pattern in D.

Example 14. As shown in Table 3, let minSupRa = 0.6, maxPr = 3, stanDev = 1, and minHuRa
= 0.2. The pattern {a, d} in S2, S3, and S4 is a high utility periodic frequent pattern, and the sequence
set is huPrSeq(X ) = {S2, S3, S4}. Thus, the high-utility periodic sequence ratio of {a, d} is huSeqRa({a,
d}) = |huPrSeq(X )|/|D| = 3/4 = 0.75 ≥ minSeqRa; hence, X is a high utility periodic frequent pattern
in D.

4 Proposed Algorithm: MHUPFPS

In this section, we first described a new pruning strategy for pruning a search space. Then, we
proposed a compact data structure, HUPFPS-list, to store the transactions, sequence information,
and utility values of a pattern. Finally, we present the proposed MHUPFPS algorithm.

4.1 Pruning Strategy
To identify high utility periodic frequent patterns in a set of sequences, a method of pruning the

search space is required. Thus, in this study, periodicity and utility are combined and an upper bound,
upSeqRa, was proposed for the measure huSeqRa and two new pruning properties that were used to
prune the vast search space. Note that upSeqRa is defined by Definition 3.14.

Definition 4.1. Given three user-defined thresholds minHuRa, maxPr, and minSupRa, we say that
a pattern X is a high-utility periodic frequent candidate pattern in a sequence S if X in S satisfies
supRa(X , S) ≥ minSupRa, maxPr(X , S) ≤ maxPr, and utiRa(X , S) ≥ minHuRa.

Example 15. Let minSupRa = 0.6, maxPr = 3, and minHuRa = 0.2. According to the sequence
database in Table 3, pattern {a} satisfies the conditions supRa({a}, S1) = 0.8 ≥ minSupRa, maxPr({a},
S1) = 2 ≤ maxPr, and utiRa({a}, S1) = 0.25 ≥ minHuRa. Thus, {a} is a high-utility periodic frequent
candidate itemset in S1.

Definition 4.2. In a sequence database D, a set of sequences for which a pattern X satisfies
supRa(X , S) ≥ minSupRa, maxPr(X , S) ≤ maxPr, and utiRa(X , S) ≥ minHuRa is defined as
huCand(X , D) = {S|supRa(X , S) ≥ minSupRa ∧ maxPr(X , S) ≤ maxPr ∧ utiRa(X , S) ≥ minHuRa ∧
S ∈ D}.

Example 16. As shown in Table 3, the pattern {d} satisfies the conditions supRa({d}, S) ≥
minSupRa, maxPr({d}, S) ≤ maxPr, and utiRa({d}, S) ≥ minHuRa in S2, S3, and S4; thus, {d} is called
a high-utility periodic frequent candidate pattern in S2, S3 and S4 and is defined as huCand(X ) = {S2,
S3, S4}.

Definition 4.3. In a sequence database D, the number of sequences in the set huCand(X ) is
|huCand(X )|. The upSeqRa of X in D is upSeqRa(X ) = |huCand(X )|/|D|, where |D| denotes the number
of sequences in D.

Example 17. Let minSupRa = 0.6, maxPr = 3, and minHuRa = 0.2. As shown in Table 3, {a, d} is
a high utility period frequent candidate pattern in S2, S3, and S4. Thus, the set of candidate sequences
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huCand(X ) in which the high-utility period frequent candidate pattern is satisfied is huCand(X ) = {S2,
S3, S4}. Thus, upSeqRa({a, d}) = |huCand({a, d})|/|D| = 3/4 = 0.75.

Theorem 4.1. For a pattern X , upSeqRa(X ) is not less than huSeqRa(X ), i.e., upSeqRa(X ) ≥
huSeqRa(X ).

Proof. For an itemset X :

huSeqRa(X ) = |huPrSeq(X )|/|D|

= |{S|supRa(X , S) ≥ minSupRa ∧ maxPr(X , S) ≤ maxPr ∧ stanDev(X , S) ≤ maxStd ∧ utiRa(X ,
S) ≥ minHuRa ∧ T ∈ S ∧ S ∈ D}|/|D|

≤ |{S|maxPr(X , S) ≤ maxPr ∧ supRa(X , S) ≥ minSupRa ∧ utiRa(X , S) ≥ minHuRa ∧ T ∈ S ∧ S ∈
D}|/|D|

= |huCand(X )|/|D|

= upSeqRa(X )

Theorem 4.2. For two itemsets X ⊂ XY , upSeqRa(XY ) ≤ upSeqRa(X ).

Proof. For any sequence S in a sequence database D, if an itemset X is a subset of another
itemset XY :

upSeqRa(X) = huCand({X}, S)/|D|

= |{S|maxPr(X , S) ≤ maxPr ∧ supRa(X , S) ≥ minSupRa ∧ utiRa(X , S) ≥ minHuRa ∧ T ∈
S ∧ S ∈ D)|/|D|

≥ |{S|maxPr(XY , S) ≤ maxPr ∧ supRa(XY , S) ≥ minSupRa ∧ utiRa(XY , S) ≥ minHuRa ∧ T ∈
S ∧ S ∈ D)|/|D|

= |huCand(XY )|/|D|

= upSeqRa(XY )

Hence, if X is such that upSeqRa(X ) ≤ minSeqRa, then both X and its superset can be pruned
without further exploration.

Theorem 4.3. In a sequence database D, if upSeqRa(X ) ≤ minSeqRa for any itemset X , then the
superset X ′ of X is not a HUPFPS.

Proof. We have upSeqRa(X ) < minSeqRa ⇒ upSeqRa(X ′) < minSeqRa.

Hence, X is not a HUPFPS, because X ⊂ X ′ ⇒ upSeqRa(X ′) ≤ upSeqRa(X )

⇒ upSeqRa(X ′) < minSeqRa.

Thus, any superset of X is not a HUPFPS.

4.2 The HUPFPS-List Data Structure
To avoid repeated scanning of a database and to improve the performance of MHUPFPS, we

proposed a data structure called the HUPFPS-list, which contains four fields. MHUPFPS only scans
a database once to generate a HUPFPS-list for each pattern that appears in the sequence database.
MHUPFPS combines the HUPFPS-list of different patterns to generate a HUPFPS-list of extended
patterns.

Definition 4.4. The HUPFPS-list of a pattern X is denoted Px and contains four fields. The i − set
field is defined as Px.i − set = X . The sid − list field is defined as Px.sid − list = {S1, S2, . . ., Sw}, where
Si(1 ≤ i ≤ w) represents the equivalence number at which X appears. The tran − list field represents
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a list of stored transaction numbers Px.tran − list = {Z1, Z2, . . . , Zi}(1 ≤ i ≤ |Sw|) where Zi = {Z|X
∈ Tz ∧ Tz ∈ Si}. The uti − list field is defined as Px.uti − list = {p1, p2, . . ., pi}, where pi is the utility of
X for a particular transaction in the sequence and is defined as pi = {p|(X , pi) ∈ Tz ∧ Tz ∈ Sw}.

Example 18. Tables 4 and 5 represent the HUPFPS-lists of patterns {a} and {d}, respectively.
Table 6 shows the HUPFPS-list of pattern {a, d}, which is constructed by combining the HUPFPS-lists
of patterns {a} and {d}.

Table 4: HUPFPS-list of pattern {a}
i-set {a}
sid-list {1, 2, 3, 4}
tran-list [{1, 3, 4, 5}, {2, 3, 4, 5}, {2, 3, 5}, {1, 2, 3}]
uti-list [({456}, {380}, {608}, {304}), ({380}, {456}, {684}, {760}), ({608}, {380}, ({684}),

[({456}, {456}, {684}]

Table 5: HUPFPS-list of pattern {d}
i-set {d}
sid-list {1, 2, 3, 4}
tran-list [{2, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}]
uti-list [({533}, {410}), ({574}, {123}, {328}, {615}), ({410}, {164}, {492}, {492}, {492}),

({574}, {328}, {246}, {369}, {328})]

Table 6: HUPFPS-list of pattern {a, d}
i-set {a, d}}
usid-list {1, 2, 3, 4}
tran-list [{5}, {2, 3, 4}, {2, 3, 5}, {1, 2, 3}]
pro-list [({714}), ({503}, {784}, {1299}), ({772}, {872}, {1176}), ({1030},

{784}, {930})]

Definition 4.5. The itemsets Px.i-set and Py.i-set with the same prefix are extended to Pxy, which
is defined as Pxy = Px ∪ Py (the prefix of a single itemset is an empty itemset).

Example 19. The proposed algorithm uses an intersection procedure to combine the HUPFPS-
lists of the itemsets {a} and {d}, in Tables 4 and 5, respectively, to construct the HUPFPS-list of the
itemset {a, d}, as shown in Table 6.

4.3 Proposed MHUPFPS Algorithm
Based on the HUPFPS-list and pruning strategy, we designed an algorithm called MHUPFPS.

MHUPFPS (Algorithm 1) inputs a multisequence sequence database and five user-defined thresholds:
minSupRa, maxPr, maxStd, minHuRa, and minSeqRa. Finally, a set of high utility periodic frequent
patterns is output.
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In the proposed design, MHUPFPS first scans the database to calculate supRa(X , S), maxPr(X ,
S), stanDev(X , S), and utiRa(X , S) for each individual itemset. Then, it iterates over every itemset,
calculates whether it satisfies the high-utility periodic frequent pattern in each sequence, and stores
the sequence that satisfies the condition in the set huPrSeq(X ). After it scans all sequences, the set
huPrSeq for this pattern is used to calculate the high utility periodic sequence ratio huSeqRa(X ). If
the value of huSeqRa(X ) is not less than the threshold minSeqRa, the output pattern X is a HUPFPS.

Algorithm 1: MHUPFPS algorithm
Input: D : Multiple sequence database; user-specified thresholds: minSupRa, maxPr, maxStd, min-
HuRa, minSeqRa.
Output: Set of high-utility periodic frequent patterns.
1: Scan each sequence in the database to obtain a HUPFPS-list, and then calculate the supRa({i}, S),
pr({i}, S), maxPr({i}, S), stanDev({i}, S), u({i}, S), and su(S) for each itemset i ∈ I ;
2: I � ← ∅;
3: for item i ∈ I do
4: huPrSeq({i}, S) ← {S|supRa({i}, S) ≥ minSupRa ∧ maxPr({i}, S) ≤ maxPr ∧ stanDev({i}, S) ≤

maxStd ∧ utiRa({i}, S) ≥ minHuRa ∧ i ∈ S ∧ S ∈ D};
5: huSeqRa({i}) ← |huPrSeq({i}, S)|/|D|;
6: if huSeqRa({i}) ≥ minSeqRa then
7: output i and I � ← I � ∪ {i};
8: huCand({i}) ← {S|supRa({i}, S) ≥ minSupRa ∧ maxPr({i}, S) ≤ maxPr ∧ utiRa({i}, S) ≥
minHuRa ∧ i ∈ S ∧ S ∈ D};
9: upSeqRa({i}) ← |huCand({i}, S)|/|D|;
10: end if
11:end for
12: boundHUPFPS ← {HUPFPS − list of itemset i|i ∈ I∧upSeqRa({i}) ≥ minSeqRa};
13: Search (minSupRa, maxPr, maxStd, boundHUPFPS, minHuRa, minSeqRa).

Additionally, MHUPFPS prunes the search space using the upper bound upSeqRa(X ) of huSe-
qRa(X ). It stores the HUPFPS-list of the pattern whose upSeqRa(X ) is not less than minSeqRa in
the set boundHUPFPS. The UHPFPS-list of patterns in the set boundHUPFPS is stored in ascending
order of upSeqRa(X ). Finally, MHUPFPS performs a depth-first search, recursively searching for
larger patterns by calling the Search procedure (Algorithm 2) with a set of parameters and the set
boundHUPFPS.

The Search procedure (Algorithm 2) takes a HUPFPS-list of patterns and set of user-defined
thresholds as input and outputs the high-utility periodic expansion pattern. First, the algorithm
iteratively loops over the set boundHUPFPS and sequentially takes the HUPFPS-list of Px.i and
Py.i from the set boundHUPFPS. The HUPFPS list of patterns Px.i and Py.i is extended into Pxy
using the intersection procedure (Algorithm 3). Then, the set huCand(Pxy.i) of sequences of the
itemset Pxy.i is calculated. Finally, the algorithm calculates upSeqRa(Pxy.i) to prune the search space
if upSeqRa(Pxy.i) is not less than minSeqRa; Pxy is added to the set ExtenOfPx, which stores the
HUPFPS-list of all extended patterns of Px.i for the next iteration. Next, the value of huSeqRa(Pxy.i)
is calculated, and if huSeqRa(Pxy.i) is not less than minSeqRa, the output Pxy.i is a HUPFPS.
Subsequently, the search procedure recursively calls the HUPFPS-list (ExtenOfPx) of the extended
patterns of Px.i to explore larger patterns.
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Algorithm 2: The search procedure
Input: ExtOfP: a set of HUPFPS-lists for extensions of the itemset P; D: database of multiple
sequences;

minSupRa, maxStd, maxPr, minHuRa, minSeqRa: user-specified thresholds.
Output: extended high utility periodic frequent patterns of P.

for HUPFPS-list Px ∈ ExtOfP do
2: for HUPFPS-list Py ∈ ExtOfP such that y≺ x and Px.i-set and Py.i-set have the same prefix do

Pxy ← Intersection(Px, Py);
4: huCand({i}) ← {S|supRa({i}, S) ≥ minSupRa ∧ maxPr({i}, S) ≤ maxPr ∧ utiRa({i}, S)

≥ minHuRa ∧ i ∈ S ∧ S ∈ D};
upSeqRa({i}) ← |huCand({i})|/|D|;

6: if upSeqRa({i}) ≥ minSeqRa then
ExtOfP ← ExtOfP ∪ Pxy;

8: huPrSeq({i}, S) ← {S|supRa({i}, S) ≥ minSupRa ∧ maxPr({i}, S) ≤ maxPr ∧
stanDev({i}, S) ≤ maxStd ∧ utiRa({i}, S) ≥ minHuRa ∧ i ∈ S ∧ S ∈ D};

huSeqRa({i}) ← |huPrSeq(i, S)|/|D|;
10: if huSeqRa({i}) ≥ minSeqRa then

output Pxy;
12: end if

end if
14: end for

search (ExtOfPx, minSupRa, maxPr, maxStd, minHuRa, minSeqRa, D);
16: end for

Algorithm 3: Intersection procedure
Input: Px: the HUPFPS-list of Px.i-set and Py.i-set: the HUPFPS-list of Py.i-set
Output: the HUPFPS-list of itemset Pxy.i-set

1: Pxy.i-set ← Px.i-set ∪ Py.i-set; Pxy.tran-list ← φ; ElPxy.sid-list ← φ;
2: for each i, j where Px.sid-list(i) = Py.sid-list(j) do
3: Pxy.sid-list ← Px.sid-list(i) ∩ Py.sid-list(j);
4: if Pxy.sid-list �= φ then
5: Pxy.tran-list ← Px.tran-list ∩ Py.tran-list;
6: if Pxy.tran-list �= φ then
7: Pxy.uti-list ← Px.uti-list ∩ Py.uti-list
8: end if
9: end if
10: end for
11: return Pxy;

4.4 Concrete Example
In this example, the user-defined thresholds were set to minSupRa = 0.6, maxPr = 3, maxStd =

1.0, minHuRa = 0.2, and minSeqRa = 0.6. According to the example sequence database in Tables 4
and 5, MHUPFPS scans the database once, then uses the HUPFPS-list to calculate pr({a}, S1) = {1, 2,
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1, 1, 0}, pr({a}, S2) = {2, 1, 1, 1, 0}, pr({a}, S3) = {2, 1, 2, 0}, pr({a}, S4) = {1, 1, 1, 2}, supRa({a}, S1) = 0.8,
supRa({a}, S2) = 0.8, supRa({a}, S3) = 0.6, supRa({a}, S4) = 0.6, maxPr({a}, S1) = 2, maxPr({a}, S2) = 2,
maxPr({a}, S3) = 2, maxPr({a}, S4) = 2, stanDev({a}, S1) = 0.63, stanDev({a}, S2) = 0.63, stanDev({a},
S3) = 0.82, and stanDev({a}, S4) = 0.43, based on the HUPFPS-list of {a}. Consider the itemset {a};
because supRa({a}, S1) ≥ minSupRa, maxPr({a}, S1) ≤ maxPr, stanDev({a}, S1) = 0.63 ≤ maxStd, and
utiRa({a}, S1) ≥ minHuRa, the pattern {a} is a high-utility periodic frequent pattern in S1. Similarly,
the set huPrSeq(a) = {S1, S2, S3, S4} can be calculated, and huSeqRa(a) = |huPrSeq(a)|/|D| = 1 ≥
minSeqRa; thus, pattern {a} is output as a high-utility periodic frequent pattern in a multiple sequence
database. MHUPFPS computes patterns {a} and {d} in the same manner as HUPFPS. It adds the
HUPFPS-list of the patterns to the set boundHUPFPS to generate a larger HUPFPS. The HUPFPS-
list of patterns in boundHUPFPS is sorted in ascending order of upSeqRa values.

According to the HUPFPS-list of pattern {a} in Table 4, the sid-list of {a} is {1, 2, 3, 4}; the tran-
list is ({1, 3, 4, 5}, {2, 3, 4, 5}, {2, 3, 5}, {1, 2, 3}); and the uti-list is ([{456}, {380}, {608}, {304}], [{380},
{456}, {684}, {760}], [{608}, {380}, {684}], [{456}, {456}, {684}]). From the HUPFPS-list of pattern {d},
the sid-list is {1, 2, 3, 4}; the tid-list is ({2, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 5}); and the uti-list is
([{533}, {410}], [{574}, {123}, {328}, {615}], [{410}, {164}, {492},{492},{492}], [{574}, {328}, {246}, {369},
{328}]). MHUPFPS uses the intersection procedure, which combines the HUPFPS lists of patterns {a}
and {d} to generate a HUPFPS list of the pattern {a, d}. MHUPFPS further calculates the parameter
values using the field information in the HUPFPS-list of {a, d} and then obtains the set huCand({a,
d}) = {S2, S3, S4} and calculates upSeqRa({a, d}) = 0.75 ≥ minSeqRa based on the set huCand({a,
d}). Thus, the pattern {a, d} and its superset may be a HUPFPS. The algorithm adds the HUPFPS
list of {a, d} to the set boundHUPFPS. Finally, huSeqRa({a, d}) = 0.75 is calculated by obtaining the
sequence set huPrSeq({a, d}) = {2, 3, 4}; thus, the algorithm output {a, d} is a HUPFPS. MHUPFPS
recursively calls the pattern explorer to explore larger extensions of the patterns.

5 Experiments
5.1 Experimental Setup and Datasets

We conducted experiments on three real datasets (FIFA, Bike, and Leviathan) and a synthetic
dataset. The three real datasets were all obtained from the data mining library on the SPMF website,
and the synthetic dataset was synthesized by the data generation code provided on the SPMF website
[68]. The details of these datasets are provided below:

• The T23l67kd15k dataset was generated by a Matalab program written by Ashwin Balani that
is available on the SPMF website. This dataset contains a total of 15,000 sequences of 68 items;
each sequence contains an average of 23 transactions and each transaction contains an average
of three items. This dataset is a dense dataset.

• The FIFA dataset contains a total of 20,450 sequences of 2,990 types of items; each sequence
contains an average of 34.74 transactions.

• The Bike dataset contains a total of 21,078 sequences of 67 types of items; each sequence
contains an average of 7.27 transactions.

• The Leviathan dataset contains 5,834 sequences of 9,025 types of items; each sequence contains
an average of 33.8 transactions.

To the best of our knowledge, previous studies have only found periodic patterns that occur
together in multiple sequences, whereas the proposed MHUPFPS finds common high-utility peri-
odic frequent patterns in multiple sequences. This means that comparing MHUPFPS with existing
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approaches is not suitable. Therefore, MHUPFPS was considered to be the baseline. MHUPFPS was
implemented in Java on a Windows 11 computer with an Intel(R) Core(TM) i5-1135g7 2.42 ghz CPU
and 24 GB of running memory.

In the following, |D|,|Id|,|Tc|, and |Savg| represent the sequence number, distinct item, item count
per transaction, and average number of transactions per sequence, respectively. In experiments, the
aforementioned datasets with different characteristics were used to comprehensively evaluate the
performance of the MHUPFPS algorithm in terms of the running time, number of patterns, and
running memory.

5.2 Parameter Analysis
MHUPFPS contains five user-defined parameters: minSeqRa, minSupRa, maxStd, maxPr, and

minHuRa. maxStd is used to keep the pattern period stable, maxPr is used to limit the maximum
period of the pattern, minSupRa is used to guarantee the HUPFPS support ratio in each sequence, and
minHuRa is used to determine whether a pattern is of high utility in a sequence. In experiments, the
baseline algorithm was designed with loose settings for each parameter value with the aim of mining
more high-frequency periodic patterns. For the baseline algorithm, we set maxPr = 20, minSupRa =
0.1, maxStd = 10, minHuRa = 0.01, and minSeqRa = 0.

In our experiments, we compared the baseline algorithm with MHUPFPS for different parameter
sets of minSeqRa, minSupRa, maxStd, maxPr, and minHuRa to evaluate the influence of different
parameters and parameter values on the performance of the algorithm. The results showed that when
maxStd ≥ 10, the parameter values have almost no influence on the number of patterns, time, or
memory required. Thus, we set maxStd to a fixed value of 10. We also evaluated the influence of
minSupRa on the performance of MHUPFPS; MHUPFPS(x, y, z) is defined as MHUPFPS when
minSeqRa = x, minHuRa = y, and maxPr = z. We evaluated the influence of minHuRa on the
performance of MHUPFPS; MHUPFPS(x, y, z) is defined as MHUPFPS when minSeqRa = x,
minSupRa = y, and maxPr = z. When evaluating the influence of maxStd on the performance of the
algorithm, maxStd was used as the independent variable. To control this variable, the algorithm used
minSupRa as a fixed value of minSupRa = 0.1 when the influence of minSupRa on the algorithm was
not considered. MHUPFPS(x, y, z) is defined as MHUPFPS when minSeqRa = x, minHuRa = y, and
maxPr = z. Finally, when the influence of maxPr on the performance of the algorithm was evaluated,
minSupRa was used as the independent variable, and MHUPFPS(x, y, z) is defined as MHUPFPS
when minSeqRa = x, minHuRa = y, and maxPr = z.

We investigated the effect of the parameters minSeqRa, minSupRa, maxStd, maxPr, and minHuRa
on the algorithm. To investigate the influence of minSupRa and minHuRa on the algorithm, these
parameters were sequentially increased from small initial values; this considered the distribution of
data in different datasets and length of the sequences. The results of the experiments show that, for
both the synthetic and real datasets, the performance of the algorithm was not significantly impacted
when the values of minSupRa and minHuRa were set to be greater than 0.5. However, the performance
was slightly impacted for some of the real datasets. Thus, the values of minSupRa and minHuRa were
set to be in the intervals [0.01,0.5] and [0.1,1], respectively. Because the data in the dataset were unevenly
dispersed and relatively sparse, minSeqRa was set to be 0.001 and 0.0001, respectively. The results
indicated that these parameters had little influence on the performance of the algorithm when the
value of maxStd was above 10. Thus, to better evaluate the parameter maxStd, its value was set to
be in the interval [1,10]. Finally, the algorithm was tested with different values of maxPr. The smaller
the value of maxPr, the more stringent the filtering of patterns, i.e., a smaller number of patterns were
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filtered out for larger maxPr values. When the value of maxPr exceeded the sequence length, it had
almost no effect on the performance of the algorithm. Thus, the value of maxPr was set to be in the
interval [5,20] in experiments.

5.3 Influence Analysis of minSeqRa and minSupRa
In the experiments, we evaluated the performance of the algorithm while varying the value of

minSupRa. As the datasets have different characteristics, different values were used for different
datasets; for FIFA, T23l67kd15k, and Leviathan, minSupRa was in the interval [0.01,0.5], while for
Bike, minSupRa was in the interval [0.1,1].

Fig. 1 shows the effect of different minSupRa values on the runtime of the proposed MHUPFPS.
The runtime for the proposed algorithm for FIFA, Leviathan, Bike, and T23l67kd15k were 35%,
50%, 15%, and 18% shorter than that for the baseline algorithm, respectively. The difference between
datasets is due to FIFA and Leviathan containing more items; thus, the algorithm generates more
itemsets, resulting in a more extensive search space. While the synthetic dataset T23l67kd15k contained
fewer items, it contained more items per transaction, generating more candidate patterns and requiring
more search space to save them.
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Figure 1: MHUPFPS runtime for various minSupRa and maxStd values
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As shown in Fig. 2, the number of patterns identified decreases significantly as minSupRa
increases. For example, when minSeqRa = 0, minHuRa = 0.01, maxStd = 10, and maxPr = 20, and
the value of minSupRa increases from 0.01 to 0.3, the number of patterns found decreases from 2,297
to 45. For the Bike dataset, when minSeqRa = 0.0001, minHuRa = 0.1, maxStd = 10, and maxPr =
20, the number of patterns found decreases from 66 to 15 as minSupRa increases from 0.01 to 0.6. This
is because almost all HUPFPS in the Bike dataset are concentrated in a sequence and occur at a high
frequency. The value of minSupRa strictly filtered the number of identified patterns when executing
MHUPFPS on the synthetic dataset and three real datasets considered in this study. Hence, the results
highlight the critical importance of the parameter minSupRa in reducing the search space.
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Figure 2: Number of patterns identified for various minSupRa and minSeqRa values

Fig. 3 shows that memory usage decreased as minSupRa increased. For example, for the synthetic
dataset T23l67kd15k, the memory occupied by the algorithm reduced from 562 to 325 MB as the
value of minSupRa increased from 0.01 to 0.25. In the three real datasets, memory usage decreased
as minSupRa increased; this shows that minSupRa has strict support for patterns in the sequence,
resulting in a reduced number of candidate patterns stored in the memory. Thus, the memory
consumption of the algorithm can be reduced by limiting the value of minSupRa.
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Figure 3: Memory usage for different parameter values for different datasets

5.4 Influence Analysis of minSeqRa and minHuRa
Fig. 4 shows the effect of different minHuRa values on the runtime of the proposed MHUPFPS.

The runtime remains almost constant as minHuRa increases. For example, the results on the synthetic
dataset when minSeqRa = 0.001, minSupRa = 0.1, maxStd = 10, and maxPr = 10, and on the
real datasets when minSeqRa = 0.0001, minSupRa = 0.1, and maxStd = 10 are all represented by
almost horizontal lines. This means that the parameter minHuRa has little influence on the runtime of
MHUPFPS. Fig. 4 shows that for minSeqRa = 0.001 or minSeqRa = 0.0001, the runtime was 20% less
than that of the baseline algorithm. This suggests that the search space of MHUPFPS can be reduced
by changing the value of minSeqRa.

As shown in Fig. 5, the number of patterns mined by the algorithm varies for different values of
minHuRa. This variation is considerable compared with that of the baseline algorithm. For example,
for the FIFA dataset, when minHuRa increased from 0.01 to 0.5, the number of patterns mined by the
baseline algorithm decreased from 1,329 to 49. When minSeqRa = 0.001, minSupRa = 0.1, maxStd =
10, and maxPr = 10, and minHuRa increased from 0.01 to 0.5, the number of mined patterns decreased
from 122 to 1. Additionally, minSeqRa significantly influenced the number of HUPFPS. For example,
for the Leviathan dataset, when minHuRa = 0.01 and minSeqRa increased from 0 to 0.001, the number
of mined patterns decreased from 802 to 66. In conclusion, most of the patterns in the sequence are
non-high utility frequent periodic patterns, hence the proposed MHUPFPS can prune various non-
high utility frequent periodic patterns.
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Figure 4: MHUPFPS runtime for various minHuRa and minSeqRa values
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Figure 5: Number of patterns identified for various minHuRa and minSeqRa values
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Fig. 6 illustrates the influence of minSeqRa and minHuRa on memory consumption. This figure
shows that, for all datasets, the results are all represented by almost horizontal lines as the value of
minHuRa increases; this indicates that the value of minHuRa has nearly no influence on the memory
usage of MHUPFPS. When minHuRa was fixed, the memory consumption decreased as minSeqRa
increased. For example, for the FIFA dataset, when minHuRa = 0.15 and minSeqRa increased from
0 to 0.001, the memory usage decreased from 1,265 to 856 MB; this demonstrates that the value of
minSeqRa can reduce the number of patterns that are saved in the memory.
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Figure 6: Memory usage for different parameter values for different datasets

5.5 Influence Analysis of minSeqRa and maxStd
We evaluated the combined influence of minSeqRa and maxStd on the algorithm by varying their

values. We fixed minHuRa = 0.1, minSupRa = 0.1, and maxPr = 10. Fig. 7 shows the runtime of
MHUPFPS for different values of minSeqRa and maxStd; the runtime was 15%, 18%, 12%, and 16%
faster than that of the baseline algorithm for mining all HUPFPS in the FIFA, Leviathan, Bike, and
synthetic datasets, respectively. The items in the Leviathan dataset are more diverse and the synthetic
dataset contains more transactions per transaction; this can lead to a larger search space. Most of the
patterns in the Leviathan and T23I67KD15K datasets are non-high-utility periodic frequent patterns,
which require considerably more memory space to be saved. MHUPFPS prunes several non-high-
utility periodic frequent patterns, resulting in improved performance.

As shown in Fig. 8, the number of HUPFPS increased as maxStd increased. As maxStd increased,
the number of patterns mined by the baseline algorithm was much larger than that in the non-baseline
algorithm. For example, for the FIFA dataset, the number of patterns mined by the baseline algorithm
decreased from 1,329 to 869 as maxStd decreased from ten to three. When minSeqRa = 0.001 and
maxStd decreased from ten to three, the number of patterns mined by the non-baseline algorithm
reduced from 58 to 19. Fig. 8 also shows that for a constant minSeqRa, the number of mined patterns
decreased as maxStd increased.
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Figure 7: MHUPFPS runtime for various minSeqRa and maxStd values
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Figure 8: Number of patterns identified for various minSeqRa and maxStd values



CMES, 2023, vol.137, no.1 753

The influence of minSeqRa and maxStd on memory consumption is shown in Fig. 9; as maxStd
increased, the memory usage increased. This is because when maxStd increases, MHUPFPS requires
more space to save the HUPFPS-list of patterns. For example, for the FIFA dataset, the memory
consumption of MHUPFPS(0.001, 0.1, 10) increased from 678 to 868 MB as maxStd increased from
three to ten (Fig. 9). Our results indicate that changing the value of maxStd can control the number
of patterns that are saved in the memory.
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Figure 9: Memory usage for different parameter values for different datasets

5.6 Influence Analysis of maxPr
Fig. 10 shows the time variation of MHUPFPS for different values of maxPr. Figs. 11 and 12

compare the changes in the number of HUPFPS and memory consumption when maxPr is varied.
The four datasets had different sequence lengths; the longest was 99 and the shortest was eight. The
value of maxPr was fixed at five, ten, and 20. As shown in Fig. 10, decreasing the value of maxPr can
significantly reduce the runtime of MHUPFPS. For example, for the FIFA dataset, the runtime was
reduced by 12% when minSeqRa increased from 0 to 0.0001, and by 20% when minSeqRa increased
from 0. 0001 to 0.001. The runtime also reduced for the other datasets. Because maxPr limits the period
of the pattern, the algorithm strictly filters out patterns with a period lower than maxPr.

Fig. 11 shows that decreasing the value of maxPr can significantly reduce the number of patterns.
For example, for the synthetic dataset, the number of mined patterns was 86 for minSupRa = 0.1 and
maxPr = 20, which reduced to 54 for minSupRa = 0.1 and maxPr = 10. When minSupRa = 0.1 and
maxPr = 5, the number of mined patterns reduced to 22. This is reasonable because maxPr enforces a
very strict limit on the period of the patterns; hence, the algorithm requires that every period of every
pattern is less than maxPr. Therefore, several patterns were filtered out.
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Figure 10: MHUPFPS runtime for various maxPr and minSupRa values
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Figure 11: Number of patterns identified for various maxPr and minSupRa values
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As shown in Fig. 12, as maxPr decreased, the memory usage significantly decreased for all
datasets. This is reasonable because the algorithm has a stricter limit on the period of the patterns
as maxPr decreases. Thus, MHUPFPS requires less space and reduces the number of patterns in the
HUPFPS-list. For example, for the Leviathan dataset, the memory usage decreased from 3,948 to
783 MB as maxStd reduced from 20 to ten for supSupRa = 0.15. The memory usage decreased to 155
MB as maxStd decreased from ten to five for supSupRa = 0.15. This is because when maxPr decreases,
the algorithm has a stricter limit on the period of patterns, meaning that MHUPFPS requires less
memory to store the HUPFPS-list. Our results show that the number of patterns that are saved in the
memory can be reduced by decreasing maxPr.
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Figure 12: Memory usage for different parameter values for different datasets

6 Conclusion

Previous studies have only considered one factor, either periodicity or utility, and have yet to
identify valuable patterns in multiple sequences. In this study, we combined the utility and periodicity
and mined common high utility period frequent patterns in a set of sequences. The proposed
MHUPFPS algorithm is based on a new data structure, HUPFPS-list, and a novel pruning strategy
that is used to reduce the search space. The experimental results show that MHUPFPS is efficient
and can filter out non-high-utility period frequent patterns. In the future, we plan to further optimize
the proposed algorithm in terms of runtime and memory usage. In addition, we aim to locate other
meaningful patterns.
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