
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.028077

ARTICLE

Threshold-Based Software-Defined Networking (SDN) Solution
for Healthcare Systems against Intrusion Attacks

Laila M. Halman and Mohammed J. F. Alenazi*

Department of Computer Engineering, College of Computer Science, King Saud University, Riyadh, 11451, Saudi Arabia

*Corresponding Author: Mohammed J. F. Alenazi. Email: mjalenazi@ksu.edu.sa

Received: 29 November 2022 Accepted: 09 June 2023 Published: 17 November 2023

ABSTRACT

The healthcare sector holds valuable and sensitive data. The amount of this data and the need to handle, exchange,
and protect it, has been increasing at a fast pace. Due to their nature, software-defined networks (SDNs) are widely
used in healthcare systems, as they ensure effective resource utilization, safety, great network management, and
monitoring. In this sector, due to the value of the data, SDNs face a major challenge posed by a wide range of attacks,
such as distributed denial of service (DDoS) and probe attacks. These attacks reduce network performance, causing
the degradation of different key performance indicators (KPIs) or, in the worst cases, a network failure which can
threaten human lives. This can be significant, especially with the current expansion of portable healthcare that
supports mobile and wireless devices for what is called mobile health, or m-health. In this study, we examine the
effectiveness of using SDNs for defense against DDoS, as well as their effects on different network KPIs under
various scenarios. We propose a threshold-based DDoS classifier (TBDC) technique to classify DDoS attacks in
healthcare SDNs, aiming to block traffic considered a hazard in the form of a DDoS attack. We then evaluate
the accuracy and performance of the proposed TBDC approach. Our technique shows outstanding performance,
increasing the mean throughput by 190.3%, reducing the mean delay by 95%, and reducing packet loss by 99.7%
relative to normal, with DDoS attack traffic.
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1 Introduction

Software-defined networking (SDN) has been widely used in recent years, mainly thanks to its
nature as reliable network technology that enables the control and management of the network by
disaggregating or dividing the control and data planes. In other words, it enables data forwarding by
disaggregating it from data-forwarding devices such as routers, then handling it by the SDN controller,
which is a centralized, external, and programmable network device [1]. In contrast, in traditional
networks, devices are configured and managed through a specific method, namely the vendor specific
command (VSC), which clearly leads to more complex network management requirements [2]. As
depicted in Fig. 1, the core architecture of SDN basically consists of three main layers; (i) application,
(ii) control, and (iii) infrastructure layers.
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Figure 1: Software-defined networking 3 layer structures with interfaces

The ability to simplify systems while maintaining effective communication across them is a
cornerstone in healthcare systems. In general, traditional network consolidation is challenging since
each network device may include hundreds of configurations that must be adjusted. SDN piques a lot
of interest in sectors such as healthcare, as illustrated in Fig. 2, since it allows healthcare organizations
to smoothly access cloud services; large healthcare institutions need to have comprehensive visibility
of their Wide Area Networks (WANs), particularly when it comes to mobile, Internet of Things (IoT),
and cloud computing environments. Nowadays, electronic healthcare monitoring not only provides
in-hospital service management, but further assists healthcare service providers to serve users outside
health organizations, duly tracing patients’ health outcomes, continuing to offer high-quality services,
and detecting at-risk individuals.

Figure 2: Architecture of SDN based healthcare systems



CMES, 2024, vol.138, no.2 1471

Furthermore, it enables patients to keep online contact with healthcare providers in real time with
fast response, to be dutiful with medication schedules, and to enhance their wellness status [2,3]. Load
balancing optimization can be achieved using docker swarm mode on big data applications, due to the
massive data generated by healthcare edge devices [4].

However, healthcare organizations still suffer from security threats against sensitive information,
which may be either clinical or financial. Researchers have implemented data sharing strategies using
blockchain to share the data between healthcare edge devices without threatening patient privacy [5–7].
The most sensitive concerns are ensuring information availability, integrity, and confidentiality. A key
threat to this comes from the Distributed Denial of Service Attack (DDoS), which restricts patients’
data availability, since the main goal of a DDoS attack is not only to breach information and services,
but also to prevent a legitimate user from accessing information whenever they need it (i.e., it affects
information availability).

As reported by the Cybersecurity and Infrastructure Security Agency (CISA), identifying DDoS
attacks is problematic, as this type of attack might be carried out virtually. Sensitive data can be
modified by malicious intruders, and false information may be fed into different data streams by a
false node [8].

Medical records include financial transactions that are linked to sensitive information, such
as credit card information. Therefore, efficient detection and prevention mechanisms must be put
in place to mitigate and tackle the impact of DDoS attacks. Moreover, other concerns should be
tackled to ensure a high level of security and privacy, while allowing easy accessibility for electronic
health applications, including high-bandwidth mobile networks, low-cost cellular network links, high
availability of internet connections, and the heterogeneous platforms supported by different mobile
devices [9]. Cyberattacks have increased during the COVID-19 pandemic, resulting in data violations
for 90% of healthcare providers [10]. Consequently, there is a need for effective solutions to address
these security risks and reduce insider threats. Researchers are exploring the use of SDNs in healthcare
institutions as a means of protecting medical networks from various attacks, such as Distributed
Denial of Service (DDoS) and probe attacks [11].

Intrusion refers to any unauthorized actions that harm an information system and potentially
threaten its confidentiality, integrity, or availability [12]. An IDS is a software or hardware solution that
detects malicious actions on computer systems to maintain system security. It identifies various types
of malicious network traffic and computer usage that cannot be detected by a traditional firewall [13].
The purpose of an IDS is to provide high protection against actions that compromise the availability,
integrity, or confidentiality of computer systems. IDS classification can be based on the data sources
used to identify abnormal activities. There are two main types of IDS technologies [12]: Host-based
IDS (HIDS) and Network-based IDS (NIDS). HIDS examines data that originates from the host
system and audit sources, such as operating system logs, firewall logs, application system audits, or
database logs. HIDS is capable of detecting insider attacks that don’t involve network traffic. NIDS
monitors network traffic extracted from a network through methods such as packet capture and
NetFlow. NIDS can be used to monitor many computers connected to a network, and it can detect
external malicious activities at an early stage before they spread to other systems. However, NIDS has
limited ability to inspect all data in high bandwidth networks due to the large amount of data that
passes through these networks. When NIDS is deployed at multiple positions in a network topology,
along with HIDS and firewalls, it provides robust, multi-tier protection against both external and
insider attacks [13,14].
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Therefore, in this article, the main goal is to propose an efficient, low complexity system of
healthcare, based on a threshold-based DDoS classifier (TBDC). The contributions of this article
are summarized as follows:

• Proposing a healthcare virtualized network based on SDN to generate new dataset

• Generating a dataset that contains normal and DDoS traffic

• Proposing an efficient, low-complexity classifier using TBDC data analysis to detect and
mitigate possible DDoS attacks

• Deploying TBDC to show its impact on optimizing different network KPIs

The remaining sections are arranged as follows. In Section 2, we introduce the specific background
of the study and previous works. In Section 3, we introduce the main features of the evaluation of our
proposed approach, including network topologies, emulation environment, and performance metrics.
Section 4 presents the emulation results and a comprehensive evaluation. Finally, Section 5 offers
conclusions and suggests future work.

2 Background and Related Works

In this section, we present a brief review of related works on SDN, methods related to managing
attacks, and distributed denial-of-service (DDoS) threats.

2.1 SDNs
As mentioned earlier, SDN is a method of designing the network infrastructure to provide

dynamically efficient control and management for network devices by administrators, engineers, and
developers, through programmable and open interfaces via the REST API. For current needs, the
core requirement for SDN development is to provide the greatest possible simplicity and flexibility in
different parts of the network [15].

In SDN, the control plane controls and makes decisions where the traffic goes, while the data path
handles and sends the packages [16]. The basic idea behind SDN is not really new. The concept of server
virtualization is about establishing a layer between the physical server and operating systems executing
operations in it. A similar idea exists in relation to storage virtualization; it has now simply become the
network’s turn to be virtualized. This notion, too, is not particularly new; operators have already used
technologies such as multiprotocol label switching (MPLS) to be able to place customers’ networks on
top of the operator’s own physical network [17]. Development has been rapid, particularly in server
virtualization. A new virtual server can be created, using a ready-made template, within a few seconds.
However, if (and this is usually the case) this server is to operate on a network, a subnet must be created
and firewall rules set on how this subnet may communicate with other networks. Traditionally, this is
done by someone in the network team, and automation has not been as fast. Moreover, the benefit of
being able to quickly create a virtual server is then lost to some extent.

Another factor is scalability. Different subnets are now logically separated with the help of virtual
local area networks (VLANs). There are, according to the standard, 4096 VLANs, and this is probably
enough for a typical company, but not for a cloud provider of platforms.

The next problem is the Layer 2 protocol, Ethernet. The reason why Ethernet “won” the battle
for the local network against other technologies a few years ago is largely because it is a fairly simple
technology, and manufacturing the hardware needed is relatively cheap. However, this protocol is, in
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fact, poorly equipped for virtual environments where IP addresses move around between different
platforms and, perhaps, between different data centers.

The utilization of SDN in the healthcare sector can bring several key advantages. First, it offers
enhanced network flexibility, allowing for centralized management and the ability to quickly adapt
to changing needs. Additionally, SDN enhances network security by providing greater visibility and
facilitating the enforcement of security policies, protecting sensitive patient information. Furthermore,
it can improve network performance by optimizing resource utilization and reducing congestion. SDN
also has the potential to streamline clinical workflows and improve patient care by integrating medical
devices and systems. SDN may be employed to present patients with data security and speed in the
transfer of information from endpoint to endpoint, since the SDN controller identifies the connectivity
of the patient monitoring endpoint to the network.

2.2 DDoS Attacks
There are different types of DDoS attacks, from Smurfs and Teardrops to Pings of Death. Some

of the most common DDoS attacks are as follows:

• ICMP (ping) flood

• SYN flood

• Ping of Death

• Slowloris

• NTP amplification

• HTTP flood

• Zero-day DDoS attacks

• Volume-based attacks. Imperva counters these attacks by absorbing them with a global network
of scrubbing centers that scale, on demand, to counter multi-gigabyte DDoS attacks.

In the past, most DDoS attacks were aimed at harming the affected company or organization
by making one or more web pages inaccessible. Nowadays, it is more common for the attacker to
demand a ransom to interrupt the attack. Another common approach is to use DDoS attacks as a
pure distraction, whereby IT departments are kept busy while the attackers step in with ransomware
(hostage programs) or try to steal data.

Considering reports from the media, authorities, and the security industry itself, it can sometimes
be the case that companies focus on one type of cyber threat at a time. Unfortunately, reality is
more complex than that: companies have to deal with many parallel threats. “It is never possible to
settle down, and old approaches can easily return in a partly new suit,” comments Peter Gustafsson,
responsible for Barracuda Networks in the Nordic region [18].

A new type of attack does not require a large botnet. Some of the companies that have recently
been affected by DDoS attacks are Bandwidth, VoIP.ms, VoIP Unlimited, and Voipfone. So-called
Black Storm attacks are particularly dangerous for service providers in communications. Such attacks
do not require the attacker to use a large botnet, and are therefore relatively easy to carry out. In a
“Black Storm” attack, the attacker sends the User Datagram Protocol (UDP) request to many devices
and servers on a network. The request is “spoofed,” i.e., disguised, in this case to make it look like it
is coming from other devices in the same network.

The approach then triggers a kind of snowball effect that can quickly knock out a service
provider (CSP) with a storm of internal data traffic. Although the method has, so far, only been



1474 CMES, 2024, vol.138, no.2

described in tests, companies should ideally be prepared to handle such attacks. With the onset of
the COVID-19 pandemic and as more people started working from home, healthcare became a target.
The combination of different online services for booking and responding to tests, and the widespread
use of insufficiently protected IoT devices, have contributed to a large number of healthcare activities
being affected by DDoS attacks [19].

Devices that have not been updated become tools for cybercriminals. The recently discovered bot
network, “Meris,” which includes about 250,000 infected devices, has also become a tool for DDoS
attacks. Most of these devices are not computers but routers, switches, access points for Wi-Fi, and
other devices sold by one and the same Latvian company, MicroTik. Admittedly, MicroTik discovered
and remedied the current vulnerability as early as 2018, but due to the nature of the devices, users are
rarely in contact with MicroTik, and the majority have not made the necessary updates. This, in turn,
has made MicroTik devices a tool in the hands of cybercriminals.

Although DDoS attacks remind us how complicated everyday life has become for IT security
managers, there are good opportunities for stopping this type of attacks in time. Companies that
operate with a modern infrastructure in application and network security, in combination with active
protection against DDoS attacks, have very good chances of handling such attacks.

2.3 Previous Works
By conducting a detailed survey of existing research works regarding DDoS attacks in SDNs,

it can be observed that most of the focus has been placed on developing techniques for detecting
DDoS attacks, using different SDN-based architectures. These techniques mainly focus on using SDN
technology in different layers (principally network, application, and transport layers) to detect and
mitigate attacks. Although only minor emphasis has been given to healthcare systems, many of the
approaches with different techniques can be employed in suitable settings. Techniques vary across a
wide spectrum; for example, using a cloud environment, as in [20], that analyzes the effects of DDoS
attacks in a hybrid cloud, as in [21]. The amount of work that has been done is significant, with a
focus on using AI and machine learning, with different algorithms, to classify the traffic and detect
possible attacks using intrusion detection systems (IDS), as in [22], or to mitigate them, as in [23,24],
and [25,26].

Researchers have also developed IDS to mitigate packet drop/modification attacks, badmouthing
attacks, on-off attacks, and collusion attacks based on trust similarity [27]. Table 1 shows a summary
of related works with different types of mechanisms used against DDoS attacks.

Table 1: Summary of related works based on security against DDoS attacks

Source Defense type Location Controller Objective

Dao et al. [28] Detect and
mitigate

Both data and
control planes

ISP Propose a context-aware
security approach to detect
attacks in small networks.

Phan et al. [29] Detect Control plane Floodlight Propose a high-accuracy
detection framework that deals
with a man-in-the-middle
attack.

(Continued)
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Table 1 (continued)

Source Defense type Location Controller Objective

Chin et al. [30] Detect Data plane OpenDaylight Detect flooding in SDN
networks in an effective and
scalable manner.

Tortonesi et al. [31] Mitigate
only

Data plane Pox Propose a DDoS mitigation
approach that is able to
perform edge defense.

Ravi et al. [32] Detect and
mitigate

Both data and
control planes

Pox Propose a novel DDoS
detection and defense model
depending on real time trained
ML algorithms.

Wang et al. [33] Detect and
mitigate

Data plane Pox Orchestrate a deep learning
(DL)-based intrusion detection
system (IDS) to detect DDoS
attack traffic in SDNs.

Mbasuva et al. [34] Detect only Data plane OpenDaylight Orchestrate a DL-based IDS
to detect DDoS attack traffic
in SDNs.

3 Evaluation

In this part, we introduce our evaluation environment. This includes the network topology, metrics
used to measure the performance, and tools and methodology used for experiments.

3.1 Network Topology
In this section, we present a typical network topology (see Fig. 3) that is used for healthcare

systems to analyze the performance in a normal situation, and the performance under DDoS attacks.
In this system, OpenFlow switches, numbered as shown from 1 to 3, are connected to the SDN
controller responsible for traffic flow management. The OpenFlow protocol is mainly used for
connecting the control-plane SDN controller and forwarding plane switches. In addition, there are 18
hosts, representing different clients that generate data traffic, named either as devices or workstations.
The network includes two other hosts; one serves as the patients’ database and the other as the patient
portal server, receiving data traffic from the clients.

3.2 Performance Metrics
Network performance measurements are determined by several KPIs. In this work, we measure the

throughput of healthcare applications under different scenarios. First, we track throughput without
DDoS attacks and challenges of the proposed TBDC system, where traffic travels over different routes
with no network congestion.

After that, we track the throughput of healthcare applications without using the TBDC, then in
the case of DDoS attacks through one route to the destination with no prioritization and queuing to
split data flows. Finally, we compute the throughput of healthcare applications under DDoS attack
conditions by integrating the proposed TBDC system to analyze the performance considering network
resilience and quality of service (QoS) for multiple applications.
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Figure 3: Evaluation network topology in the absence of attacks (normal traffic)

3.3 Experimental Setup
In this work, experiments were performed on Ubuntu 20, equipped with 5.9 GB RAM and a

1.80 GHz processor. Network emulation was done using Mininet 2.3.0 with a Ryu controller, as
shown in Table 2. Mininet is a virtual network simulator that bears on OpenFlow and software-defined
networking using per-process virtualization. It provides a rapid prototyping workflow for creating and
customizing software consisting of hosts and switches on a single computer. The model is written in
Python, and traffic was generated with and intercepted using Hping3 and distributed internet traffic
generator (D-ITG). Results were analyzed with D-ITG.

Table 2: Emulation parameter values

Parameter Values

Emulator Mininet 2.3.0
Operating System Ubuntu 20.04.3
Memory 5.9 GB of RAM
CPU Intel core i7-8565U @ 1.80 GHz
Traffic Generator DITG, Hping3
Link Bandwidth 1, 2, 5 Mbps
SDN Framework Ryu
Open vSwitch 2.13.3

4 Results and Discussion

In this part, the evaluation of the proposed TBDC system is presented and discussed in detail.

4.1 Normal Network Performance of Healthcare Systems (Normal Traffic)
In this case, we implement the network shown in Fig. 3 using D-ITG. All applications installed

on the different workstations/end devices connected to the switches are set to start sending to the
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servers. These applications use paths shown in figures through the switches. These switches are typically
deployed to work using the spanning tree protocol to prevent any storming of broadcasts. They are not
implemented to increase any QoS factors. Here, we expect normal operation with no lost packets, so all
to be delivered. Figures provided here show the performance of the network without challenge. Results
in Figs. 6–8 show the normal behavior of the network, with the load assigned for this test, with extra
delay due to link limitations. The performance is stable without any abnormalities, as expected, due
to the appropriate capacity and threat-free nature. A maximum throughput of 53 packets per second
(PPS) is reached, and stays stable until the end of 50s of emulation. A packet loss of zero and a low
delay, close to zero, confirmed the stable behavior of the network in absence of attacks.

4.2 Effects of DDoS Attacks on Network Performance (Normal Traffic with DDoS Attacks)
In this scenario, we deploy the network with DDoS attacks, as shown in Fig. 4, using D-ITG

and Hping 3. The attack, which is performed by 12 hosts from H2 to H13, targets the patient portal
server connected to switch 1 using SYN and UDP attacks, through devices connected to switch 1. The
effect of the new challenge (DDoS attacks) can now be seen in extra delay and packet loss, as well
as reduced throughput, as shown in Figs. 6–8. As expected, attacks negatively affect the performance
of the network, even with low loads assigned in the emulations. Throughput decreases significantly
from 20% to 100%, leading to a 52% reduction in the mean throughput. Delay increases significantly,
reaching 2.5 s in the worst case, resulting in the mean delay increasing to 1s. Packet loss increases to a
peak of over 160 pps, increasing the mean packet loss to around 67 pps.

Figure 4: Evaluation network topology in normal traffic with DDoS attacks

4.3 TBDC Approach Deployment and Performance
In this work, we propose a threshold-based DDoS classifier (TBDC) aiming to classify suspicious

traffic to help detect the possibility of DDoS attacks and block suspicious incoming traffic. To deploy
the approach and analyze its performance, we designed a monitor application using a Ryu controller to
extract features from the network. These features include datapath ID, input port, MAC address des-
tination, output port, number of packets, number of bytes, and duration. (EventOFPFlowStatsReply)
callback has been used to request the statistics of each flow from every switch on the network. A total
of 265 samples were collected using the developed monitor application, out of which 217 represented
normal traffic, while the remaining 48 samples included DDoS attack traffic.
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The deployment included some pre-processing steps. First, samples having a value of zero in
duration or packets were replaced with 0.9. The second step involved calculating the throughput
in kbit/sec, packet rate, and bytes-to-packet ratio, using collected features. By analyzing the data in
scenarios mentioned above, it became clear that throughput and packets per second are non-linear
features; however, it can still be proved that bytes-per-packet is the only linearly separable feature
between attack and normal samples, as can be seen in Fig. 5.

Figure 5: Distribution of samples by size (bytes per packet) for an SDN with DDoS attacks

We performed a two-sample z-test, which is a statistical test used to determine whether two
population means with a sample size greater than 30 are different. The null hypothesis states that
the attack and normal packet size means are equal, while the alternative hypothesis states that the
attack and normal packet size means are not equal. The z-test can be calculated using Eq. (1), with a
significance level of 0.05 that determines whether we can accept or reject the null hypothesis. The test
statistic for the two-sample z-test is 46.315, and the corresponding p-value is 0. Since this p-value is less
than the significance level, we have sufficient evidence to reject the null hypothesis, which implies that
the mean packet size significantly differs between attack and normal samples. Therefore, it is possible
to use the feature of bytes per packet as a threshold to separate normal and attack traffic.

In the emulation scenario, we chose a threshold value of 57 bytes/packet to differentiate between
attack and normal samples, since the two classes are linearly separable using this feature, achieving
an accuracy of 99% on the collected data. Accuracy was calculated by dividing the correctly classified
samples by the total number of samples. The predictions of TBDC were compared with the ground
truth of the collected data.

The TBDC system has five main functions: GetAllFlows(network); GetFlowFeatures(flow); Zero
Replacement(feature); CalculateByteToPacket(number_of_bytes, number_of_packets); and Block-
Flow(input_port, mac_address_destination, output_port).

The pseudocode of the TBDC algorithm is illustrated in Algorithm 1. Initially, GetAllFlows
(network) determines all the active flows on network topology. The function results in a set of
active flows. This function is followed by a “for” loop iterating over all the active flows. For each
iteration, input port (input_port), receiver Mac address (mac_address_destination), output port
(output_port), number of packets (number_of_packets) and number of bytes (number_of_bytes) are
collected using GetFlowFeatures(flow). The preprocessing method was implemented using ZeroRe-
placement(feature), which replaces zero values of the number of packets with 0.9.
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This method was followed by CalculateByteToPacket (number_of_bytes, number_of_packets),
which performs division feature transformation on number_of_bytes and number_of_packets. Finally,
the proposed threshold is compared to the transformed features which block the flow of the attacker,
using the BlockFlow (input_port, mac_address_destination, output_port) function if they fall behind
the threshold.

Z = (x1 − x2) − (μ1 − μ2)√
σ2

1
n1

+ σ2
2

n2

(1)

Equation 1: Two-sample z-test equation

where x1, μ1, and σ 2
1 are the sample mean, population mean and population variance respectively for

the attack sample. x2, μ2, and σ 2
2 are the sample mean, population mean and population variance

respectively for the normal sample.

Algorithm 1: TBDC algorithm.
Functions:
GetAllFlows(network): get the active flows for a given network.
GetFlowFeatures(flow): get the statistics for a given flow.
ZeroReplacement(feature): replace zero values for a given feature with 0.9.
CalculateByteToPacket(number_of_bytes, number_of_packets): calculate bytes to packet ratio.
BlockFlow(input_port, mac_address_destination, output_port): generate a rule to block a given flow.
Input:
network: the switches in the proposed topology.
Output:
decision _block: Decide whether to allow or block a given flow.
begin

Flows = GetAllFlows(network)
for flow in Flows do

input_port, mac_address_destination, output_port, number_of_packets, number_of_bytes
=\
GetFlowFeatures(flow)
number_of_packets = ZeroReplacement(number_of_packets)
packet_size = CalculateByteToPacket(number_of_bytes, number_of_packets)
if packet_size <= 57 do

decision _block = True
BlockFlow(input_port, mac_address_destination, output_port)

else do
decision_block = False

end
end
return decision_block

end

When looking at Figs. 6–8, it is clear that the performance of the network was significantly
improved by applying the proposed TBDC approach to block unwanted traffic. The significant
throughput increase reached 190.3% on average. Packet loss was reduced by 99.7% on average due to
mitigation using the TBDC approach. Similarly, delay was also reduced by 95.5% on average relative
to the normal level associated with DDoS attack traffic.
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Figure 6: Throughput evaluation for normal traffic scenario vs. normal traffic with DDoS attacks vs.
TBDC

Figure 7: Packet loss evaluation for normal traffic scenario vs. normal traffic with DDoS attacks vs.
TBDC

Figure 8: Delay evaluation for normal traffic scenario vs. normal traffic witt DDoS attacks vs. TBDC
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TBDC also outperformed other IDSs on the accuracy metric, achieving an accuracy of 99% as
shown in Table 3.

Table 3: Comparison between related work and TBDC

Source Accuracy

Phan et al. [29] 98.13%
Ravi et al. [32] 96.28%
Wang et al. [33] 95.41%
TBDC 99%

5 Conclusions and Future Work

To conclude, in this paper, we proposed a low-complexity mitigation technique for DDoS attacks
in healthcare systems’ SDNs. Despite the existence of various complex mitigation techniques, the low-
complexity TBDC approach can be used easily and efficiently to achieve a performance similar to that
in attack-free traffic. Throughput has increased by 190.3% on average, while packet loss and delay were
reduced by 99.7% and 95.5% on average respectively relative to the normal level associated with DDoS
attack traffic. By making use of a generic healthcare SDN model, we showed that using a threshold-
based technique is efficient in mitigating possible attacks. By analyzing network performance using
the TBDC technique, significant improvement was observed in the total system throughput, as well as
a reduction in both delay and packet loss, which leads to performance similar to that of an attack-free
network.

TBDC still has limitations as it is currently dedicated to DDoS attacks only. Furthermore, the
estimation of the threshold value is dependent on the network usage and behavior. TBDC has a
beneficial impact on the whole spectrum of the health sector in defense against the increasing rate
of cybersecurity threats such as phishing, ransomware, and especially DDoS attacks, not only during
a healthcare crisis such as the COVID-19 pandemic but also in the long term.

For the next steps, we intend to analyze the TBDC approach performance for different, more
diverse network topologies, because we only showed here a limited healthcare system network example
to measure the performance of the TBDC solution. In addition, we plan to extend system deployment
and emulations while dynamically rerouting traffic in the presence of DDoS attacks and present an
IDS using ML algorithms.
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