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ABSTRACT

Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,
people, transportation infrastructure, and networks, thereby realizing a more intelligent and efficient transportation
system. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topological
structure of IoV to have the high space and time complexity. Network modeling and structure recognition for 3D
roads can benefit the description of topological changes for IoV. This paper proposes a 3D general road model based
on discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles are
analyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed and
acceleration are studied. Finally, a general 3D road network model based on road section features is established.
This paper also presents intersection and road section recognition methods based on the structural features of
the 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted to
create the simulation scenario, and the simulation results validate the general 3D road network model and the
recognition method. Therefore, this work makes contributions to the field of intelligent transportation by providing
a comprehensive approach to modeling the 3D road network and its topological changes in achieving efficient traffic
flow and improved road safety.
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1 Introduction

Internet of Vehicles (IoV) refers to the connection of vehicles with the internet, creating an inter-
connected network. This enables communication between vehicles and their surroundings, facilitating
information sharing [1,2]. Furthermore, wireless communication between vehicles can be utilized for
collaborative and automatic control, reducing traffic congestion, accidents, and energy consumption
[3]. IoV provides a new approach to solving traffic problems. However, the data generated by vehicle
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requires real-time processing, as vehicle movement is constrained by road space and time [4,5]. Three-
dimensional (3D) road network modeling can describe the topology of IoV and predict the location
information of vehicles more accurately. Therefore, studying 3D road modeling in IoV can provide
more accurate road network topology for vehicles to obtain time-varying relative position information
[6] and improve wireless channel estimation [7], resource coordination and optimization [8], as well as
provide computationally intensive and delay-sensitive applications for resource-constrained mobile
devices in Multi-Access Edge Computing (MEC) to solve multi-data computing [9–11], which is of
great practical significance.

Traditional road network research focuses on the typical road network structure, dividing it into
geometric and topological structures for evaluation. However, this research lacks comprehensiveness
and cannot meet the demands of the intelligent traffic environment [12,13]. Some studies have utilized
satellite remote sensing data to establish road extraction models, but image quality and resolution
can affect accuracy, and connection between different roads is not considered [14,15]. With the
development of artificial intelligence, some literatures are established road network models to predict
traffic flow in intersections and other scenarios, but factors such as sampling rate can impact accuracy
and reliability [16,17]. Furthermore, some researchers have tested network protocols and algorithms on
road models based on real maps, without examining how different road network structures and road
features affect [18,19]. Therefore, this paper comprehensively considers road network structure and
features to establish a general 3D road network mathematical model. This modeling approach is more
realistic and intuitive, providing higher accuracy and reliability for intelligent transportation systems.
Additionally, it can offer more precise spatial information for smart city planning and management.

To facilitate the exploration of the constraints imposed on vehicle moving by the structure
features of the 3D road network, this paper utilizes available GIS road discrete points to establish
a general mathematical model for 3D road network that is suitable for IoV scenarios. Additionally, it
designs a regional 3D road network structure recognition and feature extraction algorithm. The main
contributions of this paper can be summarized as follows:

• By analyzing how the road structure constrains the vehicle’s movement, this paper classifies the
3D road into intersections and road sections. A general mathematical model of the 3D road
network is established to provide a theoretical basis for vehicle trajectory prediction in IoV, and
four features are defined to depict different 3D road section structures.

• Based on the data obtained from the GIS, this paper analyzes the discrete points of road source
data and proposes an intersection node extraction algorithm. The structure and features of the
road sections in the region are identified based on the topological relationships between the
intersection nodes.

• Finally, this paper uses the real discrete point data of a certain region in Beijing to establish a
simulation scenario that evaluates the general 3D road model and the recognition methods of
intersection and road section. The experiments verify the effectiveness of the proposed model
and methods.

The rest of the paper is organized as follows: Section 2 reviews the related work; Section 3 analyzes
how the 3D road constrains the movement of vehicles and establishes a general model of the 3D road
network; Section 4 explores the intersection and road section recognition method and road feature
extraction method used for the 3D road; Section 5 validates the model and methods; finally, Section 6
provides conclusions.
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2 Related Work

Road network modeling forms the basis for the analysis of road networks, mainly including the
structure of road networks, road data support, and road network attribute features. In a systematic
study of road network structure, Li et al. studied cities with typical road networks, summarized
four basic road network forms, and clarified the importance of reasonable urban road network
structures in road network planning [20]. To achieve an accurate description of the urban road
network shape, Tsiotas et al. divided road network shape characteristics into two categories, namely
geometric shape and topological structure, and compared modern urban road networks with computer
technologies such as Origin and DepthMap X [21]. Courtat et al. contended that cities should combine
topological structures with geometric shapes and introduced geometric graphs and hypergraphs based
on simplified streets for road network modeling [22]. Turner recognized that the road centerline can
be applied in GIS, a corner segment analysis method is proposed and combined with axial and road
centerline representation [23]. Lu et al. proposed a method based on point cloud generate a 3D
vulnerable road model with geometric shape and texture information. However, the model does not
consider complex road scenes and lacks discussion on the application and impact in the actual traffic
safety field [24].

For the support of road data in road networks, the traditional methods of road information
extraction can be divided into four categories: GPS trajectory clustering methods, area methods,
knowledge models, and artificial mapping methods [25]. Among the commonly used GPS trajectory
clustering methods, road networks are mostly obtained by sample sparsity and GPS data center fitting
processing. But the road networks generated by this method cannot directly reflect the morphological
changes of roads and other features [26]. In recent years, relevant scholars have used deep neural
networks to extract high-resolution road information from urban road remote-sensing images. Some
scholars used a convolutional neural network (CNN) to classify the pixels of the road image of the
input network into road and non-road categories. However, this method was costly and labor-intensive
[27]. Wang et al. conducted initial semantic segmentation of images based on road scenes to extract
road information [28]. He et al. proposed a loss function-optimized UNet network to completely
extract urban roads without object occlusion [29]. The ResNet network simplifies the deep neural
network learning framework and can achieve excellent road extraction performance [30,31].

For the research on road network attribute features, Rivera-Royero et al. performed an investiga-
tion of connectivity, redundancy, accessibility, reliability, and the other performance indicators used to
establish a program that can evaluate the advantages and disadvantages of the road network and draw
more attention to reliability [32]. Scott et al. argued that a traffic network should not only satisfy origin-
destination requirements, but provide sufficient connectivity to avoid interference with individual road
sections within the system [33]. Yin et al. argued that connectivity was not related to the dynamic
characteristics of the network, etc., but to its topology [34]. Cheng et al. argued that existing studies
did not consider road scenarios and could not effectively solve the connectivity problem in large-scale
connectivity problems in heterogeneous vehicular networks, so a connectivity model for vehicular
networks in intersection scenarios was developed [35]. Emami et al. comprehensively reviewed the
latest developments and characteristics of IoV related technologies. By comparing pilot tests around
the world, they found that although there were many research projects in this area, there was a single
study and few practical applications [36]. Zheng et al. presented mathematical modeling of lanes
and intersections for lane-level road networks for autonomous vehicle driving. Unfortunately, the
mathematical model that describes the different type of road sections like straight line and arc curve
is ignored during the modeling process [37].
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This paper not only focuses on the structure of typical road network, but constructs a general
mathematical model for 3D road networks that can be applied to all road structures by incorporating
their relevant attributes. In establishing the mathematical model, we have utilized GIS discrete points
with higher precision and ease of analysis to fit the road centerline. Moreover, we proposed intersection
and road section recognition algorithms as well as road feature extraction algorithms to further
enhance the reliability of the model.

3 Modeling

As both communication and data processing nodes, the continuous movement of a vehicle will
impact the relative position of the node, thus resulting in dynamic changes to the topology in IoV [38].
A 3D road model is capable of providing a more precise depiction of actual roads compared to a two-
dimensional (2D) model, which can more effectively predict vehicle trajectories [39]. Consequently,
by analyzing the constraints imposed by the 3D road on vehicle trajectories, we found that the 3D
road composed of road sections with different features and the connected intersection structure will
constrain the vehicle driving. Then, a general 3D road network model is established for constraining
vehicle movements in IoV based on the topological relationship between the intersection and road.

3.1 Analysis of Constraints on Vehicle Movement by 3D Roads
3D road network is an interconnected network composed of intersections and roads between

intersections. Since this paper uses the available road discrete points to model the road network, the
road is defined as starting from the center point of one intersection to the center point of another
intersection, which is composed of sections with similar or identical features. When a vehicle travels as
a node in IoV, it may traverse various types of road sections and intersections. A road network region
example is presented in Fig. 1. The vehicle V1, V2 and V3 travel on roads A, B, C and D, which are
connected by Intersection 1, 2 and Intersection 3. The current positions of the vehicles are P1, P2 and
P3, respectively. During the driving process, they will be assisted by the base station and the roadside
unit for information interaction. Road A includes a straight section of road, which is called Section 1
and a curved road section is Section 2. Road B and C are straight roads, and Road D is curved road.

Figure 1: Example of road network region
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Suppose that vehicle V1 is currently traveling on the curved Section 2 of Road A with an initial
velocity. As V1 continues to move along this section, the curvature and length of Section 2 will impact
both the direction and value of the vehicle’s acceleration. Upon entering the straight Section 1, V1 will
determine its acceleration value based on the length of the upcoming straight road, and its acceleration
direction based on the center line of the straight road. Then, when V1 enters the Intersection 1
connected to Section 1, V1 will have three choices: turn left, go straight, or turn right. Consequently,
the number and distribution of connected branches will determine the vehicle’s trajectory. At this
time, the change of acceleration depends not only on the features of the current section, but on the
connectivity and topology of the road region in the direction of motion. Furthermore, while driving
on 3D roads, such as overpasses, mountain roads, and other scenes, the vehicle will also be influenced
by the slope of the road.

Based on the above analysis, different 3D road features will constrain the vehicle’s trajectory in
different ways by changing the value and direction of the vehicle’s acceleration, thereby affecting the
relative distance between nodes in IoV. So the main features of the road section are summarized as
its radius of curvature, slope, length and starting and ending position. Meanwhile, the features of the
intersection are its location information and connected road indicators. A 3D road network can be
described as a collection of roads and intersections made up of road sections.

3.2 Model of 3D Road Network
To simplify the 3D road model, the width of the road and the number of lanes is ignored, such that

the road network is modeled with the centerline of the road in the data source. The paper establishes
a 3D road and intersection model to form a network model through integration.

Each 3D road is composed of all road sections inside the road along with the center points of the
intersections that connected with the road. The general model for a 3D road is represented as:

Road = fRd (Roadsection, node) , (1)

where Roadsection = {rodesec0, . . . , rodeseci, . . . , rodesecI} i ∈ [0, I ] is the set of all sections of the road,
I + 1 represents the number of the contained sections, and node is the center point of the intersection
connecting the road. It should be noted that the cover of the center point in Road is intended to connect
to the intersection. And fRd() is the function that matches Roadsection and node to Road.

Here, the model rodeseci by mapping the features of position information (Pos), radius of
curvature (Ra), longitudinal slope (Slo), and length (Len) to the 3D section model through a function
fRs() is given as:

roadseci = fRs (Posi, Rai, Sloi, Leni) , (2)

We assume that the vehicle is initially located on a certain section rodeseci with J + 1 discrete
points and the position of the vehicle is Posm = (xm, ym, zm) m ∈ [1, J − 1], Posm−1 = (xm−1, ym−1, zm−1)

and Posm+1 = (xm+1, ym+1, zm+1) are two adjacent discrete points of Posm.

Feature Rai of roadseci is the average of the radius of curvature values ram of every three adjacent
discrete points projected onto a 2D plane. Therefore, the curvature radius Rai can be expressed as:

Rai = 1
J − 1

∑J−1

m=1
ram, (3)

where the ram and the center (xm
i , ym

i ) of the 2D plane can be represented as:

ram = (xm − xm
i )2 + (ym − ym

i )2, (4)
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xm
i = de − bg

bc − ad
, (5)

ym
i = ag − ce

bc − ad
, (6)

where a = xm−1 − xm, b = ym−1 − xm, c = xm−1 − xm+1, d = ym−1 − xm+1,
e = {[(xm−1)

2 − (xm)2] − [(ym−1)
2 − (ym−1)

2]}/2, g = {[(xm−1)
2 − (xm+1)

2] − [(ym+1)
2 − (ym−1)

2}/2.

Sloi is the average of the longitudinal slope values between every two adjacent discrete points.

When xm = xm+1 or
ym − ym−1

xm − xm−1

= ym+1 − ym

xm+1 − xm

, the section is a straight section and its Ra does not exist;

thus, the above equation is not needed for calculation. The method for calculating the Sloi of roadseci

is given as:

Sloi = 1
J + 1

∑J

m=0
slom, (7)

where slom = zm+1 − zm

‖(xm+1 − xm)2 + (ym+1 − ym)2‖ 2

.

Leni is the sum of the Euclidean distances between every two adjacent discrete points. Specially,
the Euclidean distance between two discrete points is calculated as:

EM
Posj
Posi

= ∥∥(xj − xi)
2 + (yj − yi)

2 + (zj − zi)
2
∥∥

2
. (8)

The calculation for the length value Leni of rodeseci be expressed as:

Leni = 1
J + 1

∑J

m=0
lenm, (9)

where lenm = EM
Posm+1
Posm .

The model of intersections with K (K ≥ 3) branches can be expressed as:

Intersection = fIs(roadsec1, . . . , roadseck . . . , roadsecK , node), K ≥ 3, (10)

where roadseck is the k-th branch of the intersection, node represents the central node of the
intersection, and fIs() is the match relationship.

3D general road network model can be expressed as:

RNmodel = fRm (Road, Node, Intersecion) , (11)

Notably, the function fRm() combines the models of Intersection an Road with the intersection
center node set Node = {node0, . . . , nodec, . . . , nodeC} , c ∈ [0, C]. C + 1 indicates that the contained
intersection central nodes.

4 Methods

Previously, the paper analyzed how 3D roads constrain vehicle motion in IoV and summarized
the features of roads and intersections. Additionally, a mathematical model of 3D road networks
was established by utilizing the topological association between roads and intersections. To estab-
lish the corresponding model of each region, this section further uses the relationship between
discrete points to propose an intersection recognition algorithm and a road section recognition
algorithm. Furthermore, a structural feature extraction algorithm is proposed for various sections
and intersections to facilitate a more comprehensive description of the modeling of 3D road networks
in different regions.
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4.1 Analysis of Source Data
In IoV, vehicles can acquire 3D discrete point data of surrounding roads from GIS. The 3D discrete

points possess longitude, latitude, and elevation properties, represented as x, y, and z. By utilizing the
3D information of the data points, the Euclidean distance between two points can be determined, and a
sequence of adjacent points, consisting of the nearest points, can be established. Adjacent point groups
are made up of two continuous adjacent points. On the road section, there is a tiny phase difference
between adjacent point groups. However, because there are several branches of roads, there may be a
huge phase difference between adjacent point groups in a crowded region. To create a 3D road network
that incorporates both the intersection model and the 3D road model in the vehicle driving region, this
paper then uses the difference of vector angles to recognize the intersection and the road section, then
uses the road topology to extract the road structural features.

4.2 Intersection Recognition Algorithm
In IoV, vehicles act as information sources or task-initiating nodes, which need to acquire

information about the roads within a certain region to infer the future change of the network topology.
Assume that at any time t, the current location of the vehicle is denoted as Pos0, while the set of
discrete road points within the driving region centered at Pos0 and with a radius of r is denoted
as Dr,poso = {Pos0, . . . , Posi, . . . , PosR}, i ∈ [0, R]. Here, the initial value of r is denoted as r0, Posi

represents the i-th 3D discrete point in Dr,poso . To judge which point is the center of the intersection, the
observation range radius r should be smaller than the width of the road lane d and be greater than the
average Euclidean distance between the successive road discrete points, i.e., 1

R+1

∑i=R−1

i=0,j=i+1EM
Posj
Posi

≤ r ≤ d.
When r is not appropriate to make Dr,poso empty, we increase r by �r in turn, and the value of �r is half
of r each time until Dr,poso is not empty. The direction angle difference θ (Pos0, Posi) is defined as the
value of the angle between the vector formed by Pos0 and any point Posi in set Dr,poso projected onto the
horizontal direction and the x-axis of the Cartesian coordinate system. The minimum threshold value
for θ (Pos0, Posi) is given as δ. And the existence of an intersection center point within the road region
is determined by comparing δ with θ (Pos0, Posi). If an intersection center point is found, it is stored in
the intersection center point set Node. By traversing the source data and using the above algorithm, it
is possible to find all intersections in the region. The algorithm is obtained by continuously outputting
the intersection nodes. The average time complexity of the algorithm is n 2. The specific implementation
steps are presented in Algorithm 1.

Algorithm 1: Intersection recognition algorithm based on Euclidean distance and vector angle
Input: vehicle location Pos0, initial radius r0, discrete point dataset Dr,poso , δ, �r
Output: intersection center point set Node.
Begin Node = ∅, Dr,poso = ∅;

Find the set of discrete points adjacent with point Pos0 as the center r0 as the radius Dr,poso ;
if

(
Dr,poso == ∅

)
then

r = r0 + �r;
end if
while

(
Dr,poso �= ∅

)
do

Find the nearest point Posd in Dp0,r from Pos0;
Calculate the directional angle difference θ0 = θ (Pos0, Posd);
Find the set of discrete points Dr,posd

in the direction of travel with point Posd as the center
and r as the radius;

if
(
Dr,Posd

== ∅

)
then

(Continued)
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Algorithm 1 (continued)
r = r + �r;

end if
while

(
Dr,Posd

�= ∅

)
do

Find the direction vector angle θi = θ(Posd, Posi), Posi ∈ Dr,Posd
;

if (∀Posi,|θi − θ0| ≤ δ) then
Find the nearest Posi points Posmin;
Posd = Posi, θ0 = θmin (Posd, Posmin)

else if (Node == p) then
while Node �= ∅

Return Node
end while

end if
end while

end while
End

4.3 Road Section Recognition Algorithm
In the current region, after using Algorithm 1 to recognize intersections, the boundary points set

Lim = {lim0, . . . , limm, . . . , limM}, m ∈ [0, M] and all discrete points set D = {Pos0, . . . , Posu, . . . , PosU},
u ∈ [0, U ] of the road network can be obtained, along with the set Node obtained by Algorithm 1.
The Euclidean distance and vector angle relationship between discrete points can be further utilized
to recognize the road sections from the road. We propose Algorithm 2 to traverse the region from
the boundary point and sequentially stores the obtained section discrete points in set Roadsection and
remove from Lim. When the traversal encounters an intersection node, it is stored in the set Roadsection
and the current section is ended, but not removed the intersection node. If it encounters a boundary
point, the search for the current section end and is removed. This process is repeated until the set Lim
are traversed. Assuming that there are other discrete points in set D besides intersection nodes, we think
that there are sections between intersections that have not been recognized. Then, our algorithm selects
the nearest intersection center point of any discrete point except the intersection node, defines it as a
new initial boundary point to traverse the section in set D until all the remaining discrete point sets are
intersection points. Through the above algorithm, all road sections in the region can be recognized and
stored in set Roadsection. The algorithm finds the Posnd according to the basic operation and calculates
the average time complexity log2n. The specific implementation steps are shown in Algorithm 2.

Algorithm 2: Road section recognition algorithm
Input: road boundary point set Lim, road discrete point set D, and intersection node set Node.
Output: road section set Roadsection.
Begin

Initialization: i = 0, ∀i ∈ [0, I ], m = 0, ∀m ∈ [0, M], Posstart = Lim0;
while (D �= Node) do

Delete Posstart from Lim;
Delete Posstart from D;
Find Posstart adjacent point Posnext with Euclidean distance, Posstart = Posnext;
roadseci[0] = roadseci ∪ {Posstart};
while (Lim �= ∅) do

(Continued)
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Algorithm 2 (continued)
if (Posstart /∈ Lim or Posstart /∈ Node) then

roadseci = roadseci ∪ {Posstart};
Delete Posstart from D;
Find Posstart adjacent point Posnext, Posstart = Posnext;
if (Posstart ∈ Node) then

roadseci++[0] = roadseci ∪ {Posstart};
else if (Posstart ∈ Lim)then

Delete Posstart from Lim;
Delete Posstart from D;
Posstart = Lim++m;
roadseci++[0] = roadseci ∪ {Posstart};

end if
end if

end while
if (D �= Node) then

for s = 0, 1, . . . , len(D) − 1, Posstart = Ds++ do
if (Posstart /∈ Node) then

Find Posstart near intersection node Posnd by Algorithm1;
Posstart = Posnd;
Limm = Posstart;

end if
end for

end if
end while

Return Roadsection;
End

4.4 Road Structural Feature Extraction Algorithm
In the previous, recognition of intersection and road sections was completed. Then we intro-

duce Algorithm 3 to match additional sections according to the position of the intersection center
point. This method achieves structural recognition of intersection branches in different regions. The
mathematical model of intersections and road sections described in Section 3.2 is used to extract
the curvature radius, longitudinal slope, length, and position features of the section and the specific
structure and features of the road network are obtained. In this paper, we define the road sections that
are connected to the current vehicle to be stored in the connected set Conroadsec = {}. By matching
the vehicle position with the road section set Roadsection, the current road section of the vehicle can
be recorded as roadsec0. The average time complexity n of the algorithm is obtained by calculating the
output of the algorithm. Specific implementation as Algorithm 3, while Fig. 2 displays the flow chart
of road structure feature extraction.

Algorithm 3: Road structure feature extraction algorithm
Input: road section set Roadsection, roadsec0.
Output: connected set Conroadsec, Ra, Slo, Len.
Begin

Initialization: Conroadsec = ∅, Ra = ∅, Slo = ∅, Len = ∅;
(Continued)
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Algorithm 3 (continued)
for (i = 1 to N) do

if (roadseci ∩ roadsec0 ∩ Node �= ∅) then
Conroadseci = rodeseci;

end if
end for
for (i = 0 to N) do

Calculate ra of the roadseci by using Eqs. (3)–(5);

if
(

ym − ym−1

xm − xm−1

= ym+1 − ym

xm+1 − xm

or ( xm = xm−1 and xm = xm+1)

)
then

rodeseci[1] = 0;
else

rodeseci[1] = ra;
Calculate slo of the roadseci by using Eq. (7);

rodeseci[2] = slo;
Calculate len of the roadseci by using Eq. (9);

rodeseci[3] = len;
end for

Return Conroadsec, Ra, Slo,Len
End

Figure 2: Flowchart of road structure feature extraction algorithm
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5 Discussions on Experimental Results

This section simulates the real road region to verify the general model of 3D road network and
the proposed algorithm. The measured indicators include the compatibility of the intersection region
with the region’s intersection region, the model whether can recognize the structure of the region’s
road, and the connectivity between the roads. The simulation results compared with real maps data
demonstrates excellent performance.

5.1 Simulation Setup
The 2D GIS data from the main roads in Beijing’s Fourth Ring Road were used in this paper and

obtained from OpenStreetMap (OSM). The 2D geographic data of road network was separated with
the ArcMap software package, while the generation of the road centerlines was processed with the
sampling tool Arc Toolbox. The reasonable engineering specifications and constraints were adopted
to extend 2D discrete points to 3D road data for the simulation environment. For demonstration,
two complex overpass regions, Wanghe Overpass and Siyuan Overpass, as well as the main road of
East North Fourth Ring Road connecting the two overpass regions, are selected for the subsequent
simulation. The geographical region extends from longitude 116°25′16′′ to 116°29′52′′ and latitude
39°57′43′′ to 39°59′40′′, and was processed by the 3D road network platform as the testing region.

5.2 Verification of Intersection and Road Section Recognition
To verify the effectiveness of Intersection and Road Section Recognition Algorithms, three

locations were selected as the vehicle’s position in the 3D map. As Fig. 3 shows, the geographical coor-
dinates of the vehicle are as follows: Location A (116.452153, 39.977029, 0); Location B (116.436289,
39.986742, 0); and Location C (116.462122, 39.970931, 4.5).

Figure 3: Simulation region with selected location

The experimental of this paper considers the constraints of the communication range of vehicles
in IoV, and uses a circular region with r of 50 m to recognize intersections and road sections. In the
Locations A, B and C, we recognized the roads in the region of Location A between Beijing Wanghe



1376 CMES, 2024, vol.138, no.2

Overpass and Siyuan Overpass, Location B of Wanghe Overpass and Location C of Siyuan Overpass,
which compared them with the actual road structure, respectively, as shown in Figs. 4–6. At Location
A, our model successfully recognized three roads. At Location B, our model can accurately identify five
roads and one intersection. However, the road on the left side of Section 5 looks close in the 2D plane,
but beyond the 3D spherical area is not recognized. At Location C, our model successfully identified
two intersections and seven roads, including sections of the overpass. The experimental results of this
paper show that the proposed 3D road and intersection recognition model has high accuracy and
reliability, and can accurately identify the road structure in different regions. In the future, it can be
effectively applied to traffic management and real-time traffic monitoring in vehicle communication
range.

Figure 4: Road section recognition and map comparison-Location A
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Figure 5: Road section and intersection recognition and map comparison-Location B
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Figure 6: Road section and intersection recognition and map comparison-Location C

5.3 Verification of Road Structural Feature Extraction
The extraction results for the three regions in terms of road structure feature with

Algorithm 3 are presented in Tables 1–3. The output results include the following: the latitude,
longitude, and elevation of the location, as well as the intersection center point; whether the
intersection or section is connected to the road section; and the curvature radius (m), longitudinal
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slope (%), length (m), and lowest point elevation (m) of the road section. A feature that does not exist
is denoted by “−”. For example, Curvature Radius does not exist when the road section is straight.

Table 1: Road structural feature extraction results-vehicle position A

Location Intersection
nodes

Connectivity Section
number

Connectivity Curvature
radius

Slope Length L-point
elevation

(116.452153,
39.977029, 0)

— — 1 Not connected — 2.3 98.48 0
2 Not connected — 2.3 91.69 0
3 Not connected — 2.3 70.49 0

Table 2: Road structural feature extraction results-Location B

Location Intersection
nodes

Connectivity Section
number

Connectivity Curvature
radius

Slope Length L-point
elevation

(116.45215,
39.977029, 0)

(116.435415,
39.983709, 0)

Connections 1 Connections — 1.2 49.01 0
2 Connections — 1.3 49.63 0
3 Connections — 5.5 49.67 0
4 Not connected 343.06 1.2 93.38 0
5 Not connected — 1.2 94.02 0

Table 3: Road structural feature extraction results-Location C

Location Intersection
nodes

Connectivity Section
number

Connectivity Curvature
radius

Slope Length L-point
elevation

(116.462122,
39.970931,
4.5)

(116.461913,
39.970815,
4.5)

Connections 1 Connections — 4.3 49.94 4.5
2 Connections — 4.3 49.15 4.5
3 Connections 100.09 4.1 50.70 4.5

(116.462122,
39.970931,4.5)

Connections 4 Not connected — 4.3 50.43 4.5
5 Not connected — 4.3 39.10 4.5
6 Not connected — 4.1 31.28 4.01

Not connected 7 Not connected 232.03 1.4 99.63 9.0

Table 1 shows the road structural feature extraction results in the region of Location A. The results
explain that there is no intersection node and no road connectivity in this region. The longitudinal
slopes of Sections 1, 2 and 3 are 2.3%; The longitudinal slopes of all road sections are all 2.3%. Section
1 is 98.48 m in length, Section 2 is 91.68 m, Section 3 is 70.49 m. The lowest elevation of all three road
sections in this region is 0. The road features extracted from the Location A region are compared on
the map, showing that the features extracted in this paper have an error of less than 1 m, and the results
are accurate.

The road structural feature extraction results in Table 2 are for Location B in the region. The
results show that there is one intersection node at the geographical coordinate of (116.435415,
39.983709, 0), which connects Sections 1, 2, and 3. Sections 1, 2, 3, and 5 are all straight, while Section
4 has a curvature radius of 343.06 m. The slope of Section 1 is 1.2%, Section 2 is 1.3%, Section 3 is
5.5%, Section 4 is 1.2%, and Section 5 is 1.3%. Moreover, the length of Section 1 is 49.01 m, Section
2 is 49.63 m, Section 3 is 49.67 m, Section 4 is 93.38 m, and Section 5 is 83.67 m. The lowest elevation
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for all road sections is 0. The road features extracted from the Location B region were meticulously
compared on the map, demonstrating that the feature length extracted in this paper has negligible
error of less than 0.5 m, an impressively low curvature of less than 1 m and a slope of just 0.01. This
indicates that the model is exceptionally reliable.

Table 3 shows the road structural feature extraction output results in the region of Location C,
which contains two intersection nodes, and the geographical coordinates are (116.461913, 39.970815,
4.5) and (116.462122, 39.970931, 4.5), respectively. The intersection 1 is connected to the Sections 1, 2
and 3. Intersection 2 connects Sections 4, 5, and 6, but there is no connectivity between intersections
1 and 2. Except for Sections 3 and 7, all road sections are straight. The curvature radius of Section 3
is 100.09 m, and Section 7 is 232.03 m. The slope of the Section 1, Section 2, Section 4, and Section 5
is all 4.3%, Section 3 and Section 6 are 4.1%, and Section 7 is 1.4%. The length of Section 1 to Section
7 is 49.94, 49.15, 50.7, 50.7, 39.10, 31.28, and 99.63 m. The lowest elevations of Sections 1, 2, 3, 4, and
5 are all 4.5 m, but the lowest elevation of Section 6 is 4.01 m, and the lowest elevation of Section 7
is 9 m. The road features extracted from the location C region are compared with the distance on the
map, which proves that the feature error extracted in this paper is within a reasonable range and can
be used for subsequent research.

5.4 Verification of 3D Road Network
To illustrate the establishment of the 3D road network model, this paper selects a representative

overpass as an example due to the presence of elevation differences in space and complex road
structures. The simulation verification is carried out in the Wanghe Overpass where vehicle B is
located. Algorithms 1 and 2 are utilized to identify intersections and roads in the selected region,
while Algorithm 3 extracts structural features of road sections. Fig. 7 illustrates the recognized road
network structure.

Figure 7: Verification of 3D road network—Wanghe overpass
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To assess the accuracy of the simulation results, Fig. 8 displays the matching degree of the
recognized road network against the real image of the overpass, using different colors to distinguish
various roads. The comparison reveals that the simulation results effectively capture the road type
features like straight roads, curves, and ramps in the overpass region, thus demonstrating the efficacy
of the road network model proposed in this study.

Figure 8: Comparison diagram of Wanghe overpass and simulation model

6 Conclusions and Future Works

In this paper, a general 3D road network mathematical model based on discrete points by GIS
is proposed, which can extract road features and recognize road structures. To extract the essential
features of roads, the paper has analyzed their impact on vehicle travel and created road network
models that comprise a 3D road section model and an intersection model. A road structure featured
extraction algorithm is proposed that leverages vector angles and Euclidean distances between 3D
discrete points to identify intersections and road sections. It is promising to realize vehicle trajectory
prediction and relay node selection within the constraints of the road network in IoV, thereby
providing more accurate and comprehensive information on traffic flow, congestion, and accessibility
in different regions, and providing more accurate map data for intelligent transportation systems such
as autonomous driving. However, the current research strategy has some limitations. Firstly, this paper
simplifies the constraint of road structure on vehicle driving to a linear structure of road centerline
without considering multi-lane models or road width. Secondly, even though this paper considers
objective factors that restrict vehicle driving, the limitations on vehicle driving conditions also include
subjective characteristics.
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In future work, we aim to improve the algorithm, consider additional road features and structures,
and establish an even more intelligent road network model.
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