
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.027085

ARTICLE

Activation Redistribution Based Hybrid Asymmetric Quantization Method of
Neural Networks

Lu Wei, Zhong Ma* and Chaojie Yang

R&D Innovation Center, Xi’an Microelectronics Technology Institute, Xi’an, 710065, China

*Corresponding Author: Zhong Ma. Email: mazhong@mail.com

Received: 21 October 2022 Accepted: 19 April 2023 Published: 22 September 2023

ABSTRACT

The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.
Quantization is one of the most promising solutions to reduce computational cost and memory storage on
embedded devices. In order to reduce the complexity and overhead of deploying neural networks on Integer-
only hardware, most current quantization methods use a symmetric quantization mapping strategy to quantize
a floating-point neural network into an integer network. However, although symmetric quantization has the
advantage of easier implementation, it is sub-optimal for cases where the range could be skewed and not symmetric.
This often comes at the cost of lower accuracy. This paper proposed an activation redistribution-based hybrid
asymmetric quantization method for neural networks. The proposed method takes data distribution into consider-
ation and can resolve the contradiction between the quantization accuracy and the ease of implementation, balance
the trade-off between clipping range and quantization resolution, and thus improve the accuracy of the quantized
neural network. The experimental results indicate that the accuracy of the proposed method is 2.02% and 5.52%
higher than the traditional symmetric quantization method for classification and detection tasks, respectively. The
proposed method paves the way for computationally intensive neural network models to be deployed on devices
with limited computing resources. Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-
Quantization.

KEYWORDS
Quantization; neural network; hybrid asymmetric; accuracy

1 Introduction

Artificial intelligence with deep convolutional neural networks has made significant break-
throughs in many fields, which will be widely used in the aerospace field, such as situational awareness
[1], intelligent obstacle avoidance [2], and remote sensing image in-orbit detection [3]. The biggest
challenge for applying artificial intelligence in the aerospace field is that these artificial intelligence
algorithms based on deep convolutional neural networks require a lot of memory and computational
cost. In order to efficiently deploy neural networks on embedded devices, several model compression
methods have been widely explored. Quantization is an essential technique for adopting deep neural
networks in energy- and memory-constrained devices.

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.027085
https://www.techscience.com/doi/10.32604/cmes.2023.027085
mailto:mazhong@mail.com
https://github.com/ycjcy/Hybrid-Asymmetric-Quantization
https://github.com/ycjcy/Hybrid-Asymmetric-Quantization

982 CMES, 2024, vol.138, no.1

This paper is focused on Integer-only quantization for inference. Quantization is a method of
quantizing the high-precision parameters of the neural network into low-precision parameters in a
finite set, thereby speeding up the computation. High-precision parameters have a more extensive
dynamic range, so the 32-bit floating-point data type is usually used in training. After training, in
order to reduce the size of the neural network algorithm, the 32-bit floating-point neural network is
quantized to an 8-bit or even lower bit integer network.

How to quantize a floating-point network to an integer network requires designing a proper
mapping method. Quantization usually results in a loss of accuracy due to information lost. How
to improve the accuracy of the quantized neural network considering hardware efficiency is the
key problem that needs to be solved. A good quantization mapping method should resolve the two
following questions to improve the deployment performance.

The first question is the trade-off between the accuracy of the quantized neural network and the
difficulty of deployment and implementation. The simpler the mapping strategy is, the easier and faster
the deployment on embedded devices will be, but the loss of accuracy will increase. The more complex
the mapping strategy is, the lower the loss of accuracy will be. However, the deployment on embedded
devices will be more difficult and result in enormous computational overhead. The commonly used
quantization method is symmetric quantization for easy implementation on embedded devices. This
method works well only for symmetric distributions, but most distributions of the neural networks are
asymmetric.

The second question is the trade-off between range and quantization resolution, which signifi-
cantly influences quantization parameters’ computation. The larger the clipping range is, the lower
the data clipping loss will be. However, the quantization resolution will be lower. The smaller the
data clipping range is, the higher the quantization resolution will be, but the data clipping loss will be
greater. Range and quantization resolution affect each other, and there is no suitable method to guide
how to balance them.

We propose an activation redistribution hybrid asymmetric quantization mapping method for
Integer-only inference to resolve these two questions. Our contribution can be listed as follows:

Firstly, we propose a hardware-friendly hybrid asymmetric quantization method for Integer-only
inference of neural networks, of which the activation uses asymmetric activation quantization and the
weights use symmetric quantization. The proposed method can avoid the additional data-dependent
computation, achieve higher accuracy without any computational overhead on embedded accelerators,
and resolve the contradiction between the accuracy of the quantized neural network and the ease of
deployment and implementation.

Secondly, we introduce an activation redistribution method to compute the quantization parame-
ters achieving lower quantization error. This method has no restrictions on data distribution, and can
get the balance between range and quantization resolution.

2 Related Works

Most of the existing quantization approaches asymmetric quantization or symmetric quantization
[4]. The asymmetric quantization function is as follows:

r = f (Q) = s · Q + D (1)

Q = f −1(r) = round
(

r − D
s

)
(2)

CMES, 2024, vol.138, no.1 983

where f and f −1 are the quantization mapping function, f −1 is the inverse function of f , round is the
rounding operation, r is the floating point real value, Q is the integer value after quantization, s and
D are quantization parameters. s is the scaling factor, and D is the zero point, chosen such that the 0
value would exactly map to quantized values.

Symmetric quantization is a simplified version of the general asymmetric case [5]. The symmetric
quantizer restricts the quantization parameter D to 0 [6].

On the one hand, different quantization mapping functions are applicable for different data
distributions. The data distributions of each layer in the neural network are not same. Figs. 1 and 2
illustrate the activation distributions for each convolutional layer in the Yolo-v3 tiny model. We divide
the data distributions into two categories: one is approximately symmetric, as shown in Fig. 2, and
the other is asymmetric, as shown in Fig. 1. Symmetric quantization is much simpler and hardware-
friendly, but is only effective for symmetric distribution. The asymmetric quantization does not require
the data distribution to be symmetric around zero, but it is more expressive because there is an
extra quantization parameter D and a computational overhead. The activation distributions of twelve
convolutional layers (layer 3, layer 5, layer 7, layer 9, layer 11, layer 13, layer 14, layer 15, layer 16, layer
21-1, layer 21-2, layer 23) are asymmetric. Only two activation distributions of convolutional layers
(layer 1 and layer 19) are approximately symmetric. Most activation distributions of the Yolo-v3 tiny
model for detection are asymmetric, so the traditional symmetric quantization method suffers from a
considerable loss of accuracy for the small target detection tasks.

On the other hand, the quantization parameters are very important for both asymmetric and
symmetric quantization and affect the performance of the quantized neural network. The quantization
parameters depend on the clipping range, and the scaling factors divides the given range of real values
into a number of partitions. Usually, a series of calibrations are used as the input of a neural network
to compute the typical range of activations [7,8]. A straightforward choice is to use the min/max of the
data for the clipping range [7], which may unnecessarily increase the range and reduce the quantization
resolution. One approach is to use the i-th largest/smallest value instead of the min/max value as the
clipping range [9]. Another approach is to select the clipping range by some kinds of information loss
between the original real values and the quantized values [10,11], including KL divergence [12,13],
Mean Squared Error (MSE) [14–17], or entropy [18]. There are other methods to get the clipping
range by learning the clipping range during training, including PACT [19], LQNets [20], LSQ [21],
and LSQ+ [22]. When computing the data clipping range by KL, MSE, or other methods between the
original real value and the quantized value, the absolute value of the data is first taken. Therefore, the
data distribution in the range of positive and negative values cannot be effectively measured, and there
is a problem of wasting the dynamic range of the data. At the same time, simply and directly taking
the maximum and minimum values as the clipping thresholds cannot reflect the data distribution. So
for the hybrid asymmetric quantization mapping strategy, there is no suitable method to compute the
clipping range.

Therefore, the data distribution is not taken consideration in the current one-size-fits-all quan-
tization methods, and there is no guiding principle on how to choose the most suitable method to
compute the clipping range, so the current quantization methods cannot adapt to different neural
network structures, and perform poorly for tasks with higher accuracy requirement.

984 CMES, 2024, vol.138, no.1

Figure 1: The activation distributions of four representative convolutional layers (layer 5, layer 9, layer
16, layer 23) of the Yolo-v3 tiny model for detection. These activation distributions are asymmetric.
The horizontal axis is the activation value, and the vertical axis is the activation density

Figure 2: The activation distributions of two convolutional layers (layer 1 and layer 19) of the Yolo-v3
tiny model for detection. These activation distributions are approximately symmetric. The horizontal
axis is the activation value, and the vertical axis is the activation density

CMES, 2024, vol.138, no.1 985

3 Design
3.1 Overall Design Scheme

We propose an activation redistribution hybrid asymmetric quantization method for Integer-only
inference of neural networks with simplicity and efficient implementation to hardware. The activation
uses asymmetric activation quantization and the weights use symmetric quantization that avoids the
additional data-dependent computation. A neural network usually consists of various layers, including
the convolutional layer, the relu layer, the leaky-relu layer, the relu6 layer, the sigmoid layer, the tanh
layer, and the FC layer, etc. We propose a hybrid asymmetric quantization method for neural networks
and the corresponding method to compute the quantization parameters. For the computationally
expensive layers, including the convolutional layer and the FC layer, we propose how to effectively
quantize these layers according to the hybrid quantization parameters. For the non-linear layers, such
as the relu layer, the leaky-relu layer, the relu6 layer, the sigmoid layer, etc, we propose a quantization
template. All the non-linear layers can be quantized according to this template.

3.2 The Hybrid Asymmetric Integer-Only Quantization Method
In order to take into account the inference speed, accuracy, and convenience of the deployment

for a quantized neural network, we propose a hybrid quantization method with asymmetric activation
quantization and symmetric weight quantization. So the quantization mapping functions of the
activation and weights are:

inputq
i,j,k = round

(
inputf

i,j,k − Din

sin

)
(3)

wq
k,n = round

(
wf

k,n

sw

)
(4)

where inputf
i,j,k is the activation of the neural network, wf

k,n represents the weights of the k-th input
channel and the n-th output channel, inputq

i,j,k is the quantized input and wq
k,n is the quantized weight,

sw is the quantization parameter of the weights, sin and Din are the quantization parameters of the
convolution input.

For the computationally expensive layers, including the convolutional layer and the FC layer, we
propose how to effectively quantize these layers according to the hybrid quantization parameters. The
quantization of the FC layer is as same as the convolutional layer.

For the non-linear layers, such as the relu layer, the leaky-relu layer, the relu6 layer, the sigmoid
layer, etc., we propose a quantization template. All the non-linear layers can be quantized according to
this template. The proposed method can achieve higher accuracy without any execution time overhead
on embedded accelerators.

3.2.1 The Method to Quantize the Convolutional Layer

How to quantize the convolutional layer needs to be inferred from the computational principles
of the convolutional layer. The computation principle of the convolutional layer is:∑(

inputf
i,j,k · wf

k,n

) + biasf
k = outputf

l,m,n (5)

where biasf
k is the k-th bias of the convolutional layer, and outputf

m,n,l is the output of the convolutional
layer. All the above data types are floating-point.

986 CMES, 2024, vol.138, no.1

According to the computation principle of the convolution layer and the proposed hybrid
asymmetric quantization strategy, how to quantize the convolutional layer can be inferred. The
activations of the convolutional layer (including the input and output) adopt asymmetric quantization
mapping, and the weights of the convolutional layer adopt symmetric quantization mapping. The
computation principle of the quantization for the convolutional layer is:{(

sin · sw

sout

· 2S

)(∑(
inputf

i,j,k − Din

sin

· wf
k,n

sw

))
+ biasf

k + Din · ∑
wf

k,n − Dout

sout

· 2S

}
· 2−S

= outputf
l,m,n − Dout

sout

(6)

where sout and Dout are the quantization parameters of the convolution output, and S is the shift
parameter for the inference process of the convolution layer.

The method to quantize the convolutional layer can be divided into 5 steps according to Eq. (6),
as shown in Algorithm 1. Algorithm 1 is based on Eq. (6), and Eq. (6) illustrates how to get the
integer output of the convolution layer from the integer input and the integer weights. In Eq. (6), the

integer output is represented as
outputf

l,m,n − Dout

sout

, the integer input is represented as
inputf

i,j,k − Din

sin

,and

the integer weight is represented as
wf

k,n

sw

.
inputf

i,j,k − Din

sin

and
wf

k,n

sw

should be on the left side of

Eq. (6),
outputf

l,m,n − Dout

sout

should be on the right side of Eq. (6), and in order to make both sides

of Eq. (6) equal and involve only integer arithmetic, we can get that the left side of Eq. (6) should

be

{(
sin · sw

sout

· 2S

) (∑ (
inputf

i,j,k − Din

sin

· wf
k,n

sw

))
+ biasf

k + Din · ∑
wf

k,n − Dout

sout

· 2S

}
· 2−S on the basis

of Eq. (5). The first step to quantize the convolutional layer is to compute the hybrid asymmetric
quantization parameters, including sin, Din, sw, sout and Dout. The second step is to quantize the floating-
point activations and weights into integer with the hybrid asymmetric quantization parameters
according to Eqs. (7)–(10). The third step is to execute the multiplication and accumulation operations
of the integer activations and weights, which is represented as conv in Fig. 3. The fourth step is to
compute the dequantization parameters, including shift parameter S, multiplication parameter MUL,
and addition parameter ADD. Dequantization is the procedure proposed in this paper to get the
integer convolutional output from the results of the third step. The Dequantization procedure consists
of multiplication, addition and shift. The last step is to complete the dequantization on the results
of the third step in order of multiplying, adding and shifting. The multiplier is MUL. Adding uses
parameter ADD, means Adding ADD. Shifting uses parameter S, means Multiplying 2−S, so 2−S can
be implemented with an efficient bit-shift. The procedure for quantizing the convolutional layer is
shown in Fig. 3.

CMES, 2024, vol.138, no.1 987

Figure 3: The procedure for quantizing the convolutional layer

Algorithm 1: Quantizing a convolutional layer
Inputs: the convolutional activation and weights
Outputs: the convolutional output
1. Compute quantization parameters. How to get the hybrid asymmetric quantization parameters
is shown in Section 3.3.
2. Quantize the floating-point inputs and weights of the convolutional layer to integers.
inputf

i,j,k = MAX
(
MIN

(
inputf

i,j,k, maxin

)
, minin

)
(7)

wf
k,n = MAX

(
MIN

(
wf

k,n, maxout

)
, minout

)
(8)

inputq
i,j,k = round

(
inputf

i,j,k − Din

sin

)
(9)

wq
k,n = round

(
wf

k,n

sw

)
(10)

3. Execute the multiplication and accumulation operations of the integer activations and weights.
4. Compute dequantization parameters, including shift parameter S, multiply parameter MUL, and
add parameter ADD.

S = floor
(

−log2
(

sin · sw

sout

))
+ (8 − 1) (11)

MUL = round
(

sin · sw

sout

· 2S

)
(12)

bias_newf
k = biasf

k + Din ·
∑

wf
k,n (13)

ADD = round
(

bias_newf
k − Dout

sout

· 2S

)
(14)

5. Execute dequantization to get the convolutional output.

In step 2, inputf
i,j,k and outputf

m,n,l are clipped according to their respective thresholds, as shown in
Eqs. (7) and (8), and then they are quantized to integer according to Eqs. (9) and (10). MAX in Eqs. (7)
and (8) is to take the maximum value and MIN in Eqs. (7) and (8) is to take the minimum value.

988 CMES, 2024, vol.138, no.1

In step 4, the shift parameter S, multiply parameter MUL, and add parameter ADD are computed
according to Eqs. (11)–(14). A convolution layer has several groups of dequantization parameters, the
number of dequantization parameters is the same as the number of output channels. We should convert
the floating-point biases of a convolutional layer to add parameters. In order to simplify the process
of inference, we modify the floating-point biases biasf

k to bias_newf
k, thereby accelerating the inference

speed of the convolutional layer.
∑

wf
k,n is the sum of the weights in units of output channels, that is,

how many output channels there are, how many
∑

wf
k,n values are computed.

3.2.2 The Method to Quantize the Non-Linear Layers

This section introduces how to quantize the non-linear layers. We propose a quantization template
for the non-linear layers. All the non-linear layers can be quantized according to this template. We
introduce how to quantize the relu layer, the leaky-relu layer, the relu6 layer, the sigmoid layer, and the
tanh layer according to the proposed quantization template.

The computation principle of the nonlinear layers can be expressed as:

outputf
l,m,n = F(inputf

i,j,k, x) (15)

where F is the function of a non-linear layer, x is the fixed floating-point real value. For the relu layer
and the leaky-relu layer, x is 0. For the relu6 layer, x is 6. The floating-point input is represented by
inputf

i,j,k, and the floating-point output is represented by outputf
l,m,n.

The quantization method of the non-linear layers is based on the lookup table. The proposed
quantization template to compute the lookup table for the non-linear layers is:

outputq
l,m,n = round

(
f −1

(
F

(
f

(
inputq

i,j,k

)
, round

(
x − Dout

sout

))))
(16)

where f is the quantization mapping function as in Eq. (1), f −1 is the inverse function of mapping
function f as in Eq. (2), the integer input is represented by inputq

i,j,k, and the integer output is represented
by outputq

l,m,n.

How to use the proposed quantization template to compute the lookup tables for the relu layer, the
leaky-relu layer, the relu6 layer, the sigmoid layer and the tanh layer is shown in Table 1. Negative_slope
is the parameter of the leaky-relu layer.

Table 1: Quantization method for non-linear layers

Layer type Computation principle Proposed quantization method for non-linear layers

relu if inputf
i,j,k < 0: outputf

l,m,n = 0;
if inputf

i,j,k ≥ 0:
outputf

l,m,n = inputf
i,j,k

if inputq
i,j,k < Round(−Din/sin), outputq

l,m,n =
round(−Dout/sout);
if inputq

i,j,k ≥ Round(−Din/sin),

outputq
l,m,n = round

(
sin · inputq

i,j,k + Din − Dout

sout

)
(Continued)

CMES, 2024, vol.138, no.1 989

Table 1 (continued)

Layer type Computation principle Proposed quantization method for non-linear layers

leaky-relu if inputf
i,j,k < 0,

outputf
l,m,n =

inputf
i,j,k · negative_slope;

if inputf
i,j,k ≥ 0,

outputf
l,m,n = inputf

i,j,k

if inputq
i,j,k < Round(−Din/sin),

outputq
l,m,n =

round
(

(sin · inputq
i,j,k + Din) · negative_slope − Dout

sout

)
;

if inputq
i,j,k ≥ Round(−Din/sin),

outputq
l,m,n = round

(
sin · inputq

i,j,k + Din − Dout

sout

)

relu6 if inputf
i,j,k < 0: outputf

l,m,n = 0;
if inputf

i,j,k ≥ 0:
outputf

l,m,nMIN(outputf
l,m,n,6)

if inputq
i,j,k < Round(−Din/sin),

outputq
l,m,n = round(−Dout/sout) ;

if inputq
i,j,k ≥ Round(−Din/sin),

outputq
l,m,n =

MIN(round
(

sin · inputq
i,j,k + Din − Dout

sout

)
,

round((6 − Dout)/sout))

sigmoid outputf
l,m,n = 1

1 + e−input
f
i,j,k

outputq
l,m,n = round

⎛
⎜⎜⎜⎝

1

1 + e−
(

sin·input
q
i,j,k+Din

) − Dout

sout

⎞
⎟⎟⎟⎠

tanh outputf
l,m,n =

2

1 + e−2·input
f
i,j,k

− 1 outputq
l,m,n = round

⎛
⎜⎜⎜⎝

2

1 + e−2·(sin ·input
q
i,j,k+Din)

− 1 − Dout

sout

⎞
⎟⎟⎟⎠

3.3 The Method to Compute Quantization Parameters
This section introduces how to compute the hybrid asymmetric quantization parameters. Select

several pictures as the calibration set to compute the quantization parameters for the neural network.
The method to compute quantization parameters is divided into two steps. The first step is to get
the clipping thresholds, and the second step is to compute the quantization parameters according
to the clipping thresholds. The clipping thresholds significantly influence quantization parameters’
computation.

The method to compute the clipping thresholds should balance the trade-off between range and
quantization resolution. Whether the data clipping thresholds are determined by KL, MSE or other
methods between the original real values and the quantized values, there is a problem of wasting
the dynamic range of the data. Because these methods are on the premise that data distribution is
symmetric. But most of the activation distributions are asymmetric. These methods take the absolute
value of the data first when computing the clipping range, and then select the data thresholds by a

990 CMES, 2024, vol.138, no.1

certain measurement method. The operation of taking the absolute value makes these methods unable
to truly reflect the data distribution both in the positive and negative range. The quantization of non-
negative activations may be less effective at this point because the clipping range includes values that
never appear in the input.

In order to adopt asymmetric activation distributions, and balance the trade-off between range
and quantization resolution, we propose an activation redistribution method to compute the clipping
thresholds achieving lower quantization error, because this method takes data distribution into
consideration. The optimal clipping range for the input is [minin, maxin], the optimal clipping range
for the output is [minout, maxout], the threshold of the weights is thw. The procedure for computing these
clipping thresholds is shown in Algorithm 2 and Fig. 4.

Algorithm 2: Computing the optimal clipping thresholds
Inputs: the data distribution of activation and weights
Outputs: clipping thresholds [minin, maxin], [minout, maxout] and thw.
1. Transform the input activation distribution into a gaussian-like distribution by Box-Cox [23] as
shown in Fig. 4. λ determines the specific type of transformation, such as square root transformation,
reciprocal transformation, etc. Different distributions should choose different λ.

y = BC (x)

⎧⎨
⎩

(x + c)λ − 1
λ

, if λ �= 0

log (x + c) , if λ = 0
(17)

2. Compute the clipping thresholds by KL divergence to get [−maxKL, maxKL] [10].
3. Get [minin, maxin] by the inverse transformation as shown in Fig. 4.
4. The method to get the final output clipping range [minout, maxout] is the same as [minin, maxin].
5. The weight clipping threshold thw is the maximum value of the absolute of the weights of a channel
for the convolution layer. A convolution layer has several thw, the number of thw is the same as the
number of output channels.

Fig. 4 shows how to get the clipping thresholds [minin, maxin] of the input. c is a constant to ensure
that the input is positive. All of the inputs plus c, and then transform the input into a gaussian-
like distribution by Box-Cox, which is represented as BC in Fig. 4. d is a constant to ensure that
the transformed gaussian-like distribution is symmetric. We use KL divergence to balance the trade-
off between range and quantization resolution. Get the clipping thresholds [−maxKL, maxKL] by KL
divergence [10] of the symmetric gaussian-like distribution. In this way, the data both in the positive
and negative range is taken into consideration. At last, get [minin, maxin] by the inverse transformation
of Box-Cox, which is represented as BC−1.

As can be seen from the above figure, when the data distribution is not symmetrical around 0,
for example, the negative values are small, then the data thresholds determined by the KL divergence
are not suitable, because the threshold selected for the negative value area is affected by the positive
value, which cannot match the actual data distribution of negative values. The proposed method
transforms an asymmetric and skewed activation distribution into a gaussian-like distribution, then
get the clipping thresholds by KL divergence, and finally gets the final clipping range by the inverse
transformation.

CMES, 2024, vol.138, no.1 991

Figure 4: The activation redistribution method to compute the optimal clipping thresholds

How to compute the quantization parameters according to the clipping thresholds is as follows.
The quantization parameters sin, Din, sout, Dout, sw of a layer are computed according to Eqs. (18)–(22).

sin = maxin − minin

2bwin − 1
(18)

Din = minin − maxin

2bwin − 1
· round

(
(2bwin−1 − 1) · minin + 2bwin−1 · maxin

minin − maxin

)
(19)

sout = maxout − minout

2bwout − 1
(20)

Dout = minout − maxout

2bwout − 1
· round

(
(2bwout−1 − 1) · minout + 2bwout−1 · maxout

minout − maxout

)
(21)

sw = thw

2bww−1 − 1
(22)

where bwin, bwout and bww are the bit width of input, output and weight, of which 8 is commonly used.

4 Implementation and Experimental Results

The purpose of the experiments is to verify the effectiveness of the proposed hybrid asymmetric
Integer-only quantization method.

992 CMES, 2024, vol.138, no.1

4.1 Experimental Setting
The neural networks adopted in the experiments are the image classification models and the small

target detection model. All of the neural networks are quantized to INT8.

Firstly, the experiments are implemented on the TIANJI NPU3.0 neural network accelerator
proposed by Xi’an Microelectronics Technology Institute [24] and Cambricon MLU220 [25]. TIANJI
NPU3.0 accelerator is implemented based on Xilinx ZCU102 FPGA, with self-controllable IP and
application development tool chain [26]. The FPGA is Zynq UltraScale + XCZU9EG, and there are
2520 DSP slices, and the DDR4 in the programmable logic is 4 Gb. MLU220 is Based on the Cambrian
MLUv02 architecture. The theoretical peak performance is 8TOPS and the power consumption is
8.25 W. These two accelerators can be widely used in edge computing scenarios to support diverse AI
applications. The image classification models and the small target detection model are deployed on the
neural network accelerators, and the speed and accuracy are verified. The purpose of the experiments
is to verify the effectiveness of the proposed hybrid asymmetric Integer-only quantization method on
embedded devices. The expected experimental results are that the proposed quantization method can
improve the accuracy without affecting the speed on embedded devices compared with the traditional
symmetric quantization method adopted by most embedded neural network accelerators.

Secondly, we compare the proposed method with PyTorch and NNI [27] on image classification
models and the small target detection model, and the accuracy is verified on software. The CPU is
Intel(R) Core(TM) i7-8700K, 3.70 GHz, and the GPU is NVIDIA GeForce GTX1070. In order to get
the experimental results conveniently, software with fake-quantization [28] modules is used to simulate
the accuracy on the neural network accelerator. Fake-quantization models quantization errors in the
forward passes. The reason to apply fake-quantization is to quickly simulate the effects of quantization
using simulated quantization operations. Codes will be available on https://github.com/ycjcy/Hybrid-
Asymmetric-Quantization, from which the experimental results of the proposed method, PyTorch, and
NNI can be obtained. The purpose of the experiments is to verify the effectiveness of the proposed
hybrid asymmetric quantization method with the state-of-art. The expected experimental results are
that the proposed hybrid asymmetric quantization method can improve the accuracy compared with
PyTorch and NNI.

4.2 Dataset
The dataset for image classification application is ImageNet. ImageNet is an image database

organized according to the WordNet hierarchy, in which each node of the hierarchy is depicted by
hundreds and thousands of images. The dataset has been instrumental in advancing computer vision
and deep learning research.

The dataset for is small target detection application is HRSID. HRSID is a dataset for ship
detection, semantic segmentation, and instance segmentation tasks in high-resolution SAR images.
The dataset contains 5604 SAR images with resolutions of 0.5, 1, and 3 m.

4.3 Evaluation Metrics
In order to verify the accuracy of quantification methods extensively, we evaluate two aspects

of quantization errors. One is the quantization error of a particular layer. The second is the overall
quantization error of a model.

For the first aspect of quantization error, there are no ideal metrics that can perfectly measure the
quantization error. Different metrics reflect the quantization error from different points. We adopt the
following three metrics to measure the quantization error, including Manhattan distance, Euclidean

https://github.com/ycjcy/Hybrid-Asymmetric-Quantization
https://github.com/ycjcy/Hybrid-Asymmetric-Quantization

CMES, 2024, vol.138, no.1 993

distance, and Signal to Noise Ratio. The range of Manhattan distance and Euclidean distance is 0 to
+∞, and the range of Signal to Noise Ratio is −∞ to +∞. The smaller the Manhattan distance and
the Euclidean distance are, the lower the error will be. The higher the signal-to-noise ratio is, the lower
the error will be.

• Manhattan distance (sum of the absolute values of the difference between the original real
values and the corresponding floating-point values after quantization):

d1 =
i=t∑
i=1

|ri − qi| (23)

• Euclidean distance (the square root of the sum of the square of the difference between the
original real values and the corresponding floating-point values after quantization):

d2 =
√√√√ i=t∑

i=1

(ri − qi)
2 (24)

• Signal to Noise Ratio:

SQNR = 10 · log10

(∑i=t

i=1 ri
2∑i=t

i=1 (ri − qi)
2

)
(25)

where ri is the original real value of floating point, qi is the corresponding real value after quantization,
and the size of the input or output data is t.

For the second aspect of quantization error, the evaluation metrics are the accuracy metrics of
that model. For image classification application, we use Top-1 Accuracy (the one with the highest
probability must be exactly the expected answer). For small target detection application, we use mAP
(Mean Average Precision). The calculation of mAP is the same as in the internationally renowned
target detection competition PASCAL VOC Challenge.

4.4 Baseline
Firstly, we use a traditional symmetric quantization method as a baseline. This method adopts

symmetric quantization for both activation and weights, with the clipping range determined by KL
divergence. This method is adopted by most embedded neural network accelerators, such as Nvidia’s
TensorRT [12], TVM [13], etc.

Secondly, as a baseline, we compare the proposed method with PyTorch and NNI on PC. PyTorch
supports INT8 quantization compared to typical FP32 models allowing for a 4x reduction in the model
size and a 4x reduction in memory bandwidth requirements. Hardware support for INT8 computations
is typically 2 to 4 times faster compared to FP32 computing. PyTorch supports multiple approaches
to quantize a deep learning model. In most cases, the model is trained in FP32 and then the model is
converted to INT8. In addition, there are three functions in PyTorch to compute the clipping range.
The torch.quantization.observer module in Pytorch integrates three calibration strategies, including
MinMaxObserver, MovingAverageMinMaxObserver, and HistogramObserver. There is no guide on
how to get the most suitable strategy. The easiest way (and the default option in Pytorch) is to directly
take the minimum and maximum values by the MinMaxObserver function. The method in NNI to
compute the clipping range is also to take the minimum and maximum values.

994 CMES, 2024, vol.138, no.1

4.5 Results
4.5.1 Results on FPGA

• Classification Application

The models used for image classification are GoogleNet, MobileNetV2, and VGG16. For fair
comparison and ease of reproducibility, we use well-trained models on the ImageNet dataset. For
image classification application, we test Top-1 Accuracy and FPS (How many frames can be processed
per second).

TIANJI NPU3.0 accelerator runs at a frequency of 200M. The resources consumption on FPGA
of TIANJI NPU3.0 is shown in Table 2, including LUT, FlipFlops, Block RAMs and DSPs.

Table 2: Resources Consumption on FPGA of TIANJI NPU3.0

Total resources Consumption Consumption
percentage

LUT 274080 186174 67.93%
FlipFlops 548160 167977 60.64%
Block RAMs 912 547 59.98%
DSPs 2520 2048 81.27%

The results for the classification application on TIANJI NPU3.0 are shown in Table 3. A basic
requirement of inference on TIANJI NPU3.0 is that it permits implementation of all arithmetic
using only integer arithmetic operations, so it is a big challenge for the quantization method to
reduce the accuracy loss. The proposed method ensures that all the layers of the neural network are
inferenced by integer. For the three classification models, the FPS of the proposed hybrid asymmetric
quantization method is the same as the FPS of the traditional symmetric quantization method. So
the proposed hybrid asymmetric quantization method can improve the classification accuracy by an
average of 2.02% without affecting the speed on FPGA. It can meet the accuracy requirements of
image classification tasks.

Table 3: Experimental results of the proposed hybrid asymmetric quantization method and the
traditional symmetric quantization method for classification application on TIANJI NPU3.0

Model PC
accuracy
(FP32)

Traditional symmetric quantization
(INT 8)

Proposed hybrid asymmetric
quantization (INT 8)

Top-1
accuracy

FPS Power Top-1
accuracy

FPS Power

GoogleNet 67.04% 65.91% 36.63 14.44 W 66.65% 36.63 14.44 W
MobileNetV2 70.24% 61.54% 38.02 14.48 W 63.79% 38.02 14.48 W
VGG16 66.13% 62.53% 9.65 14.72 W 65.61% 9.65 14.72 W

The results for the classification application on MLU220 are shown in Table 4. MLU220 only
supports symmetric quantization, and only convolutional layers and FC layers can be quantized to

CMES, 2024, vol.138, no.1 995

INT8, others types of layers are all executed in FP32. The traditional method on MLU220 to compute
the clipping range is to take the minimum and maximum values. We compare the proposed activation
redistribution method with the traditional method on MLU220. The methods proposed in this paper
are all computed offline and do not increase the computational overhead of the embedded devices,
which is the same as other traditional methods. It is valid for different embedded devices,because this
method proposes a new way to compute quantization parameters from a mathematical point of view,
which has no effect on embedded devices.

Table 4: Experimental results of the proposed hybrid asymmetric quantization method and the
traditional symmetric quantization method for classification application on MLU220

Model PC
accuracy
(FP32)

Traditional symmetric
quantization
(Only convolutional and FC
layers are INT8)

Proposed activation
redistribution method (Only
convolutional and FC layers
are INT8)

Top-1 accuracy Top-1 accuracy

GoogleNet 67.04% 66.97% 67.23%
MobileNetV2 70.24% 69.88% 69.92%
VGG16 66.13% 65.83% 65.81%

• Small Target Detection Application

The small target detection task is very challenging because the loss of accuracy is very sensitive to
quantization. The model we choose for this small target detection task is Yolo-v3 tiny, a typical object
detection model that has been widely adopted.

The experimental results measuring the quantization error of convolutional layers and relu layers
for the small target detection application on TIANJI NPU3.0 are shown in Tables 5 and 6. It can
be seen that the Manhattan distance and the Euclidean distance of the proposed hybrid asymmetric
method are lower, and the signal-to-noise ratio SQNR of the proposed hybrid asymmetric method is
higher.

Table 5: Comparison of quantized error of the proposed hybrid asymmetric quantization method and
the traditional symmetric quantization method for convolutional layers on TIANJI NPU3.0

Methods to measure
quantization error

Symmetric quantization
error

Proposed hybrid asymmetric
quantization error

Manhattan distance 3.2468 0.3617
Euclidean distance 2.1446 0.2723
Signal to Noise Ratio 41.1668 59.0920

996 CMES, 2024, vol.138, no.1

Table 6: Comparison of quantized error of the proposed hybrid asymmetric quantization method and
the traditional symmetric quantization method for RELU layers on TIANJI NPU3.0

Methods to measure
quantization error

Symmetric quantization
error

Proposed hybrid asymmetric
quantization error

Manhattan distance 1177.0 823.5
Euclidean distance 4.0216 2.8923
Signal to Noise Ratio 38.6908 41.0279

The speed and accuracy experimental results for the small target detection application on TIANJI
NPU3.0 are shown in Fig. 5 and Table 7. For the small target detection model, the FPS of the
proposed hybrid asymmetric quantization method is the same as the FPS of the traditional symmetric
quantization method. So the proposed hybrid asymmetric quantization method can improve the
detection accuracy by 5.52% without affecting the speed on embedded devices. It can meet the accuracy
requirements of small object detection tasks.

Figure 5: Small object detection on HRSID dataset

Table 7: Experimental results of the proposed hybrid asymmetric quantization method and the
traditional symmetric quantization method for small target detection application on TIANJI NPU3.0

Model PC
accuracy
(FP32)

Traditional symmetric quantization
(INT 8)

Proposed hybrid asymmetric
quantization (INT 8)

mAP FPS Power mAP FPS Power

Yolo-v3 tiny 90.70% 80.12% 17.89 14.48 W 85.64% 17.89 14.48 W

The results for the small target detection application on MLU220 are shown in Table 8. The
proposed activation redistribution method can improve the detection accuracy from 82.67% to 82.83%.

CMES, 2024, vol.138, no.1 997

Table 8: Experimental results of the proposed hybrid asymmetric quantization method and the
traditional symmetric quantization method for small target detection application on MLU220

Model PC accuracy
(FP32)

Traditional symmetric
quantization
(Only convolutional and
FC layers are INT8)

Proposed activation
redistribution method
(Only convolutional and
FC layers are INT8)

mAP mAP

Yolo-v3 tiny 90.70% 82.67% 82.83%

4.5.2 Results on PC

• Classification Application

The models used for image classification to compare with PyTorch and NNI are the same
as Section 4.5.1. The evaluation metric is Top-1 Accuracy. There are three ways in PyTorch to
compute the clipping range, including MinMax, MovingAverage, and Histogram. We compare the
proposed hybrid asymmetric quantization method with PyTorch and NNI, and compare the proposed
activation redistribution method with MinMax, MovingAverage, and Histogram in PyTorch on fake-
quantization software.

The results for the classification application are shown in Table 9 and Fig. 6. For the three
classification models, the accuracy of the proposed hybrid asymmetric quantization method (66.85%,
67.38%, 66.26%) is the highest compared with PyTorch (66.50%, 66.82%, 65.22%) and NNI (66.74%,
66.50%, 65.20%). At the same time, there are three ways in PyTorch and NNI to compute the clipping
range. For different models, the best strategy of PyTorch and NNI to compute the clipping range is
different. The proposed activation redistribution method outperforms the three strategies of PyTorch
and NNI.

Table 9: Experimental results of the proposed hybrid asymmetric quantization method, pyTorch and
NNI for classification application on fake-quantization software

Model PC accuracy
(FP32)

NNI accuracy
(fake INT 8)

PyTorch
accuracy
(fake INT 8)

Proposed hybrid asymmetric quantization accuracy
(fake INT 8)

MinMax Moving
MinMax

Histogram Proposed
activation
redistribution

GoogleNet 67.04% 66.74% 66.50% 66.82% 66.82% 66.77% 66.85%
MobileNetV2 70.24% 66.50% 66.82% 66.23% 66.60% 66.99% 67.38%
VGG16 66.13% 65.20% 65.22% 65.12% 66.20% 65.31% 66.26%

998 CMES, 2024, vol.138, no.1

Figure 6: Comparison of the proposed method and PyTorch for image classification application. The
vertical axis is the Top-1 Accuracy

• Small Target Detection Application

The model used for small target detection to compare with PyTorch is the same as Section 4.5.1.
The evaluation metric is mAP. We compare the proposed hybrid asymmetric quantization method with
PyTorch, and compare the proposed activation redistribution method with MinMax, MovingAverage,
and Histogram in PyTorch on fake-quantization software.

The results for small target detection model application are shown in Table 10. The proposed
hybrid asymmetric quantization method can improve the detection accuracy compared with PyTorch.

Table 10: Experimental results of the proposed hybrid asymmetric quantization method, pyTorch and
NNI for small target detection application on fake-quantization software

Model PC accuracy
(FP32)

NNI accuracy
(fake INT 8)

PyTorch
accuracy
(fake INT 8)

Proposed hybrid asymmetric quantization accuracy
(fake INT 8)

MinMax Moving
MinMax

Histogram Proposed
activation
redistribution

Yolo-v3 tiny 90.70% 85.7% 83.2% 86.7% 85.6% 86.1% 90.12%

5 Conclusion and Future Directions

We propose an activation redistribution hybrid asymmetric quantization method for Integer-only
inference of neural networks. This method is suitable for both symmetric distributions and asymmetric
distributions. When the proposed hybrid asymmetric Integer-only quantization method is applied to
classification models, we can achieve an average accuracy improvement up to 2.02% compared with
the traditional symmetric quantization method. When the proposed hybrid asymmetric Integer-only
quantization method is applied to Yolo-v3 tiny model for detection, the accuracy improvement is

CMES, 2024, vol.138, no.1 999

5.52% compared with the traditional symmetric quantization method. So, our method can make the
neural networks quickly and easily deployed on the resource-constrained embedded devices.

For further work, we believe that making the distribution more friendly to quantization is a
promising research direction to improve the quantization performance further.

Acknowledgement: The Authors acknowledge the support received from the Qian Xuesen Youth Inno-
vation Foundation of China Aerospace Science and Technology Corporation under grant 2022JY51.

Funding Statement: The Qian Xuesen Youth Innovation Foundation from China Aerospace Science
and Technology Corporation (Grant Number 2022JY51).

Author Contributions: The authors confirm contribution to the paper as follows: study conception and
design: Lu Wei, Zhong Ma; data collection and experiment: Chaojie Yang; analysis and interpretation
of results: Lu Wei, Chaojie Yang; draft manuscript preparation: Lu Wei, Zhong Ma. All authors
reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are available from
the accessible website https://github.com/ycjcy/Hybrid-Asymmetric-Quantization.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Tang, L., Ma, Z., Li, S., Wang, Z. X. (2022). The present situation and developing trends of space-

based intelligent computing technology. Microelectronics & Computer, 39(4), 1–8. https://doi.org/10.19304/
J.ISSN1000-7180.2021.1229

2. Zhou, X. S., Wu, W. L. (2021). Unmanned system swarm intelligence and its research progresses. Microelec-
tronics & Computer, 38(12), 1–7. https://doi.org/10.19304/J.ISSN1000-7180.2021.1171

3. Uçar, F., Korkmaz, D. (2020). A ship detector design based on deep convolutional neural networks for
satellite images. Sakarya University Journal of Science, 24(1), 197–204.

4. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W. et al. (2021). A survey of quantization methods
for efficient neural network inference. arXiv preprint arXiv.2103.13630.

5. Nagel, M., Fournarakis, M., Amjad, R. A., Bondarenko, Y., Baalen, M. V. et al. (2021). A white paper on
neural network quantization. arXiv preprint arXiv:2106.08295.

6. Li, Y., Dong, X., Wang, W. (2020). Additive powers-of-two quantization: An efficient non-uniform
discretization for neural networks. arXiv preprint arXiv:1909.13144.

7. Jacob, B., Kligys, S., Chen, B., Zhu, M. L., Tang, M. et al. (2018). Quantization and training of neural
networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2704–2713. Salt Lake City, UT, USA.

8. Yao, Z. W., Dong, Z., Zheng, Z., Gholaminejad, A., Yu, J. et al. (2020). HAWQV3: Dyadic neural network
quantization. arXiv preprint arXiv:2011.10680.

9. McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani, D., Arthur, J. V. et al. (2018). Discovering
low-precision networks close to full-precision networks for efficient embedded inference. arXiv preprint
arXiv:1809.04191.

10. Krishnamoorthi, R. (2018). Quantizing deep convolutional net-works for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342.

11. Wu, H., Judd, P., Zhang, X., Isaev, M., Micikevicius, P. et al. (2020). Integer quantization for deep learning
inference: Principles and empirical evaluation. arXiv preprint arXiv:2004.09602.

https://github.com/ycjcy/Hybrid-Asymmetric-Quantization
https://doi.org/10.19304/J.ISSN1000-7180.2021.1229
https://doi.org/10.19304/J.ISSN1000-7180.2021.1171

1000 CMES, 2024, vol.138, no.1

12. Migacz, S. (2017). 8-bit inference with TensorRT. GPU Technology Conference, vol. 2, pp. 7.
https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

13. Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. (2018). TVM: An automated end-to-end optimizing
compiler for deep learning. 13th fUSENIXg Symposium on Operating Systems Design and Implementation
(fOSDIg 18), pp. 578–594. Carlsbad, CA, USA.

14. Choukroun, Y., Kravchik, E., Yang, F., Kisilev, P. (2019). Low-bit quantization of neural networks for
efficient inference. ICCV Workshops, pp. 3009–3018. Seoul, Korea.

15. Shin, S., Hwang, K., Sung, W. (2016). Fixed-point performance analysis of recurrent neural networks.
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 976–980.
Shanghai, China.

16. Sung, W., Shin, S., Hwang, K. (2015). Resiliency of deep neural networks under quantization. arXiv preprint
arXiv:1511.06488.

17. Zhao, R., Hu, Y. W., Dotzel, J. (2019). Improving neural network quantization without retraining using
outlier channel splitting. arXiv preprint arXiv:1901.09504.

18. Park, E., Ahn, J., Yoo, S. (2017). Weighted-entropy-based quantization for deep neural networks. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5456–5464. Honolulu, Hawaii.

19. Choi, J., Zhuo, W., Venkataramani, S., Chuang, I. J., Gopalakrishnan, K. (2018). PACT: Parameterized
clipping activation for quantized neural networks. arXiv preprint arXiv:1805.06085.

20. Zhang, D., Yang, J., Ye, D., Hua, G. (2018). LQ-Nets: Learned quantization for highly accurate and compact
deep neural networks. European Conference on Computer Vision (ECCV), pp. 373–390. Munich, Germany.

21. Esser, S., McKinstry, J. L., Bablani, D., Appuswamy, R., Modha, D. S. (2019). Learned step size quantiza-
tion. arXiv preprint arXiv:1902.08153.

22. Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T., Kwak, N. (2020). LSQ+: Improving low-bit quantization
through learnable offsets and better initialization. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 696–697.

23. Box G.E., P., Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society:
Series B (Methodological), 26(2), 211–243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x

24. Jiao, F., Ma, Y., Bi, S. Y., Ma, Z. (2022). Design of instruction control system for neural network accelerator.
Microelectronics & Computer, 39(8), 78–85.

25. Cambricon (2023). https://www.cambricon.com
26. Ma, Y., Bi, S. Y., Jiao, F., Ma, Z. (2021). A CNN accelerator with high bandwidth storage. Chinese invention

patent, CN20210921363.9.
27. Microsoft (2022). Neural network intelligence (version v2.10). https://github.com/microsoft/nni
28. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M. et al. (2017). Quantization and training of neural networks

for efficient integer-arithmetic-only inference. arXiv preprint arXiv:1712.05877.

https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://www.cambricon.com
https://github.com/microsoft/nni

	Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks
	1 Introduction
	2 Related Works
	3 Design
	4 Implementation and Experimental Results
	5 Conclusion and Future Directions
	References

