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ABSTRACT

PHT-splines are defined as polynomial splines over hierarchical T-meshes with very efficient local refinement
properties. The original PHT-spline basis functions constructed by the truncation mechanism have a decay
phenomenon, resulting in numerical instability. The non-decay basis functions are constructed as the B-splines
that are defined on the 2 × 2 tensor product meshes associated with basis vertices in Kang et al., but at the cost of
losing the partition of unity. In the field of finite element analysis and topology optimization, forming the partition
of unity is the default ingredient for constructing basis functions of approximate spaces. In this paper, we will show
that the non-decay PHT-spline basis functions proposed by Kang et al. can be appropriately modified to form a
partition of unity. Each non-decay basis function is multiplied by a positive weight to form the weighted basis. The
weights are solved such that the sum of weighted bases is equal to 1 on the domain. We provide two methods for
calculating weights, based on geometric information of basis functions and the subdivision of PHT-splines. Weights
are given in the form of explicit formulas and can be efficiently calculated. We also prove that the weights on the
admissible hierarchical T-meshes are positive.
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1 Introduction

Polynomial splines over hierarchical T-meshes (PHT-splines for short) [1] are a kind of global C1

continuous polynomial splines that can be locally refined. PHT-splines possess a very efficient local
refinement algorithm and inherit many good properties of T-splines such as adaptivity and locality.
PHT-splines are now widely applied in adaptive geometric modeling [2–4], adaptive finite element [5],
iso-geometric analysis [6–13] and topology optimization [14].

With further in-depth application, the improvement of PHT-splines has also been underway.
One of the limitations of PHT-splines is the restrictions from hierarchical T-meshes, which require
the underlying meshes to start with tensor product meshes and be refined by inserting crosses. The
generalization of PHT-splines on general T-meshes [15] and modified hierarchical T-meshes (allowing
split-in-half in mesh refinement) [16] is precisely aimed at overcoming the restrictions from meshes.
Another improvement regard to PHT-splines is the construction of basis functions. The original basis

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.027171
https://www.techscience.com/doi/10.32604/cmes.2023.027171
mailto:chenfl@ustc.edu.cn


740 CMES, 2024, vol.138, no.1

functions [1] have a decay phenomenon (the function values decay as the level increases) when the level
difference is big in the underlying support. The decay of basis functions when applied in iso-geometric
analysis leads to ill-conditioned stiffness matrices, and thus unstable numerical solutions. A new set of
basis functions is defined by the B-splines that defined on the 2 × 2 tensor product meshes associated
with basis vertices [2] to overcome the decay phenomenon that occurs in basis functions, but at the
cost of losing the partition of unity.

The partition of unity is a default ingredient in the construction of approximating functions
in finite element methods [17–19]. Moreover, in the field of topology optimization [14], the density
variable takes value in the range of [0, 1]. The basis functions that form a partition of unity are more
suitable for designing density variables that meet the range condition. In this paper, we aim to provide
basis functions that form a partition of unity and also have no decay phenomenon, facilitating more
effective applications for PHT-splines.

The truncation mechanism is a common way of constructing basis functions for hierarchical spline
spaces that form a partition of unity, such as the original PHT-splines [1], THB-splines (the truncated
hierarchical B-splines) [20] and truncated T-splines [21]. But as mentioned above, the truncation
mechanism causes the decay in basis functions. In this paper, we will show that the basis functions that
form the partition of unity and have no decay can be constructed without the truncation mechanism.
The weighted bases that satisfy the required properties are defined by the bases constructed in
[2] multiplied by positive weights. The weight for each basis function can be computed explicitly
and efficiently based on the geometric information of the basis function. Moreover, when the level
difference is not greater than 2, the weights can also be computed by the PHT subdivision scheme.

In [22], the authors also proposed a method to define new basis functions to overcome the decay
problem and guarantee the partition of unity. However, their method only considers specific cases that
the original truncated basis functions have rectangular supports, in which case they are replaced by
the associated tensor product B-splines. Instead, our method is more versatile and can be applied to
arbitrary T-meshes easily.

The rest of this paper is organized as follows. In Section 2, some basics of PHT-splines are
reviewed. In Section 3, we introduce the weighted bases in detail. In Section 4, the subdivision scheme
of PHT-splines is introduced as an alternative algorithm for calculating weights. In Section 5, some
hierarchical T-meshes are demonstrated to verify the effectiveness of the proposed method. Finally,
we conclude the paper with a summary in Section 6.

2 PHT-Splines

In this section, we give a brief review of the definition of PHT-splines. The readers are recom-
mended to refer to [1] for more details.

2.1 Definition of PHT-Splines
Given a T-mesh T, F denotes all the cells in T and � denotes the region occupied by F . The

polynomial spline space over T is defined as

S(m, n, α, β,T) : = {s(x, y) ∈ Cα,β(�)|s(x, y)|φ ∈ Pmn for any φ ∈ F}, (1)

where Pmn is the space of all the polynomials with bi-degree (m, n), and Cα,β(�) is the space consisting
of all the bivariate functions which are continuous in � with order α in the x-direction and with order
β in the y-direction. In particular, in the case of m ≥ 2α +1, n ≥ 2β +1, S(m, n, α, β,T) is well studied
and its dimension is given in [23].
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PHT is defined by S(3, 3, 1, 1,T) with T being a hierarchical T-mesh. Here, a hierarchical T-mesh
is a special type of T-mesh that has a natural hierarchical structure and defined in a recursive fashion.
One generally starts from a tensor product mesh (level 0). From level k to level k + 1, a cell at level k
is subdivided into four sub-cells which are cells at level k + 1.

The dimension formula of PHT has a concise expression with

S(3, 3, 1, 1,T) = 4(V b + V+), (2)

where V b and V+ represent the number of boundary vertices and interior crossing vertices in T

respectively. As defined in [1], a boundary vertex or an interior crossing vertex is called a basis vertex.
This dimension formula implies that each basis vertex should be associated with four basis functions.
Thus, the construction of PHT is to construct four bicubic C1,1 continuous functions for each basis
vertex so that the functions span the PHT and retain some good properties.

2.2 Basis Construction
The original PHT basis functions are constructed by truncation mechanism in [1] level by level

in order to make basis functions vanish at other basis vertices. Fig. 1 shows two typical hierarchical
meshes, where the basis functions associated the marked vertices have undesired decay as level
increases. In Fig. 1a, the maximum values decay rapidly as the level increases. In Fig. 1b, the maximum
value does not decrease, but the basis function decays sharply along the refinement direction as level
increases. This decay phenomenon of basis functions is first noted in [2]. The decay phenomenon makes
the stiffness matrix have large condition number and thus produces unstable solutions.

Figure 1: (Continued)
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Figure 1: The decay phenomenon of PHT-spline basis functions associated with the vertex marked by
a yellow circle

A new basis functions are proposed in [2] to amend the decay phenomenon. In the following, we
give a brief review of the construction.

Definition 1 Suppose v is a basis vertex in T, the support mesh of v, denoted by Tv, is defined as
the minimal 2 × 2 tensor product mesh, where v is the central vertex and all edges are subordinate to
T.

Note that if vis a boundary vertex, the support mesh is actually a 2 × 1, 1 × 2 or 1 × 1 tensor
product mesh. For any given hierarchical T-mesh, the support mesh of each basis vertex exists and is
unique. The support mesh can be found efficiently.

Fig. 2 illustrates the support meshes of six basis vertices including three boundary vertices and
three interior crossing vertices, where the six basis vertices are marked by solid circles and the
corresponding support meshes are marked by bold lines.

The basis functions associated with a basis vertex are then defined by the four B-spline functions
that defined on the support mesh. Specifically, for a basis vertex v = (

si, tj

)
, suppose the support mesh

is defined by (si0, si, si1) × (
tj0, tj, tj1

)
, then the four bases are defined as follows:

b0(s, t) = N3
[
si0

, si0
, si, si, si1

]
[s] × N3

[
tj0

, tj0
, tj, tj, tj1

]
[t] ,

b1(s, t) = N3
[
si0

, si, si, si1
, si1

]
[s] × N3

[
tj0

, tj0
, tj, tj, tj1

]
[t] ,

b2(s, t) = N3
[
si0

, si0
, si, si, si1

]
[s] × N3

[
tj0

, tj, tj, tj1
, tj1

]
[t] ,

b3(s, t) = N3
[
si0

, si, si, si1
, si1

]
[s] × N3

[
tj0

, tj, tj, tj1
, tj1

]
[t] .

(3)

These four basis functions are linearly independent and have the same support [si0, si1] × [
tj0, tj1

]
.

This way of definition has been confirmed in [2] without decay phenomenon.
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Figure 2: Support meshes of six basis vertices

3 Weighted Bases for PHT-Splines
3.1 Geometric Information

For any basis function b(s, t), we define a geometric information (the function value, the first order
partial derivatives and the mixed partial derivative) operator by

Lb(s, t) = (b(s, t), bs(s, t), bt(s, t), bst(s, t)). (4)

For a basis vertex v = (
si, tj

)
, the associated four PHT-splines basis functions are defined by (3).

We collect the geometric information of b0, b1, b2, b3 at the basis vertex v into the matrix G,

G =

⎛
⎜⎜⎝

Lb0(v)
Lb1(v)
Lb2(v)
Lb3(v)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

λμ −3αμ −3βλ 9αβ

(1 − λ)μ 3αμ −3β(1 − λ) −9αβ

λ(1 − μ) −3α(1 − μ) 3βλ −9αβ

(1 − λ)(1 − μ) 3α(1 − μ) 3β(1 − λ) 9αβ

⎞
⎟⎟⎠ , (5)

where

α = 1
�s1 + �s2

, β = 1
�t1 + �t2

, λ = α�s2, μ = β�t2,

�s1 = si − si0
, �s2 = si1

− si, �t1 = tj − tj0
, �t2 = tj1

− tj. (6)

The sum of the geometric information of the four basis functions b0, b1, b2, b3 at the associated
basis vertex is equal to (1, 0, 0, 0), because the sum of the four basis functions is identically equal to 1.
This can also be verified by the column sums in G. As non-vanishing basis functions at basis vertices
are not limited to the associated four basis functions, so the basis functions defined in [2] do not form
a partition of unity generally.

Suppose that the maximal subdivision level of T is N and Tk denotes the hierarchical T-mesh at
level k, k = 0, · · ·, N. Then we have T = TN. For a basis vertex v, if v ∈ Tk but v /∈ Tk−1, then it is called
a basis vertex at level k, k = 1, · · ·, N. Specially, every vertex in T0 is a basis vertex at level 0. The ith
basis vertex at level k is denoted by vk

i and the four basis functions associated with vk
i are denoted as

bk
4i+j, j = 0, 1, 2, 3.

According to the definitions of support meshes and hierarchical T-meshes, the basis function
proposed in [2] has the following property:

• A basis vertex at level l can not be in the interior of the support of any basis function at level
k > l, that is
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when l < k, bk
4i+j

(
vl

g

) = 0, for j = 0, 1, 2, 3, i = 1, · · · , nk, g = 1, · · · , nl, (7)

where nk and nl are the number of basis vertices on level k and l, respectively.

• The basis functions bk
4i+j vanish at the basis vertices on level k, except for the vertices associated

with them, that is

when l = k, bk
4i+j

(
vl

g

) = 0, for g �= i, j = 0, 1, 2, 3, k = 0, · · · , N. (8)

3.2 Computing Weights
The proposed weighted bases are defined by multiplying the basis functions constructed in [2]

by positive weights. This ensures that the weighted bases not only have no decay, but also form the
positive partition of unity. In the following, we are going to compute weights wl

4i+j > 0 for each basis
function such that

f (s, t) : =
N∑

l=0

nl∑
i=1

3∑
j=0

wl
4i+jb

l
4i+j(s, t) ≡ 1, (s, t) ∈ [0, 1] × [0, 1]. (9)

This problem can be understood as the PHT fitting problem of a constant function. Since a PHT-
spline space spans the bicubic polynomial space P33, the weights wl

4i+j satisfying (9) exist. As described
in [1], the control points of the PHT-spline surface, here we call them weights, can be determined based
on the geometric information at the basis vertices.

The weights are computed level by level. First, we evaluate the PHT-spline surface at the basis
vertices on level 0, that is

N∑
l=0

nl∑
i=1

3∑
j=0

wl
4i+jb

l
4i+j

(
v0

g

) =
3∑

j=0

w0
4g+jb

0
4g+j

(
v0

g

) = 1, g = 1, · · · , n0, (10)

since the basis functions on level l > 0 vanish on any basis vertex on level 0. Furthermore, B-spline
basis functions b0

4g+j, j = 0, 1, 2, 3 form a partition of unity, thus we obtain w0
4g+j = 1, for j = 0, 1, 2, 3

and g = 1, · · · , n0.

For a basis vertex vk
g on level k > 0, the non-vanishing basis functions at vk

g are composed of two
parts: the non-vanishing basis functions at vk

g on level l < k and the four basis functions associated
with vk

g. The indices of basis vertices associated with the first part are denoted by K,

K = {
j|bl

j

(
vk

g

) �= 0, l < k
}

,

and the weighted sum of the basis functions in K is denoted by h(s, t),

h(s, t) =
∑

l<k,j∈K

wl
jb

l
j(s, t). (11)

Because the geometric information operator is linear, one has

(Lf )
(
vk

g

) = L

(
h(s, t) +

3∑
j=0

wk
4g+jb

k
4g+j(s, t)

)
|vk

g
(12)

= Lh
(
vk

g

) +
3∑

j=0

wk
4g+jLbk

4g+j

(
vk

g

)
.
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Thus, the weights of the four bases bk
4g+j are determined by the following linear equations:

GT

⎛
⎜⎜⎜⎝

wk
4g

wk
4g+1

wk
4g+2

wk
4g+3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − h
(
vk

g

)
−∂h

∂s

(
vk

g

)
−∂h

∂t

(
vk

g

)
− ∂2h

∂s∂t

(
vk

g

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G =

⎛
⎜⎜⎜⎜⎝

Lbk
4g

(
vk

g

)
Lbk

4g+1

(
vk

g

)
Lbk

4g+2

(
vk

g

)
Lbk

4g+3

(
vk

g

)

⎞
⎟⎟⎟⎟⎠ . (13)

The matrix G is invertible, so the solution of (13) exists and is unique. Specifically, the weights are
explicitly expressed by

⎛
⎜⎜⎜⎜⎝

wk
4g

wk
4g+1

wk
4g+2

wk
4g+3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1

λ − 1
3α

λ

3α

λ − 1
3α

λ

3α

μ − 1
3β

μ − 1
3β

μ

3β

μ

3β

−λ + μ − λμ − 1
9αβ

−λ − λμ

9αβ
−μ − λμ

9αβ

λμ

9αβ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − h
(
vk

g

)
−∂h

∂s

(
vk

g

)
−∂h

∂t

(
vk

g

)
− ∂2h

∂s∂t

(
vk

g

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The non-vanishing basis functions at vk
g can be found easily owing to the simple construction.

The weights can be computed explicitly based on (14) without the need to solve a linear system of
equations.

Fig. 3a shows a typical hierarchical mesh where the diagonal elements are refined. The support
meshes of some marked basis vertices are shaded in orange color. We discuss the weights of the basis
functions associated with colored vertices.

Figure 3: (Continued)
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Figure 3: (a) The weights associated v0
0, v1

0, v2
0 (marked by red circles) are all equal to [1, 1, 1, 1]. The

weights for v2
i are equal to

[
7
16

,
13
16

,
13
16

,
15
16

]
. There are two non-vanishing basis functions (associated

with the vertices marked by green squares) at v2
i . (b) One element on level 1 is refined. The weights

associated v2
i are equal to [0, 0, 0, 0]. (c) The weights associated v2

i are equal to [0.5625, 0.1875, 0.1875,
0.0625]

• The weights of v0
0, v1

0 and v2
0 (marked by red circles) are all equal to [1, 1, 1, 1], since all

basis functions are zeros at these three vertices, except for the basis functions associated with
themselves, which means h(s, t) ≡ 0.

• The weights for v1
i1

are computed as follows: (1) the right term h(s, t) = ∑3

j=0 w0
4i0+jb

0
4i0+j since

only the support of v0
i0

contains v1
i1

; (2) the elements in G are constructed with Δs1 = Δs2 =
0.125, Δt1 = Δt2 = 0.125, λ = μ = 1

2
, α = β = 4, based on (6). To sum up,

⎛
⎜⎜⎜⎜⎝

w1
4i1

w1
4i1+1

w1
4i1+2

w1
4i1+3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1

− 1
24

1
24

1 1

− 1
24

1
24

− 1
24

− 1
24

1
576

− 1
576

1
24

1
24

− 1
576

1
576

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

Then, we obtain
[
w1

4i1
, w1

4i1+1, w1
4i1+2, w1

4i1+3

]
=

[
7

16
,

13
16

,
13
16

,
15
16

]
.

• The non-vanishing basis functions at v2
i (marked by red circles) are denoted by v0

i0
and v1

i1
(marked

by green squares). The weighted sum is expressed as
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h(s, t) =
3∑

j=0

(
w0

4i0+jb
0
4i0+j + w1

4i0+jb
1
4i0+j

)
. (16)

Submitting h(s, t) into (14), the weights associated with v2
i are equal to

[
7
16

,
13
16

,
13
16

,
15
16

]
.

Fig. 3b shows a case where the weights for v2
i are equal to [0, 0, 0, 0]. The non-vanishing basis

functions on F (the refined element) are also the non-vanishing basis functions at v2
i . Notice that the

weights on level 1 are computed such that the basis functions form a partition of unity, so h(s, t)|F ≡ 1,
which means the right term in (14) is a zero vector. Since G is invertible, the weights associated with v2

i

are thus zeros.

The basis functions correspond to zero weights has no contribution in the entire representation.
Notice that zero weights occur if and only if the function g form a partition of unity on the domain
occupied by the support mesh of the considered basis vertex. Therefore, to avoid this, the isolated
refined elements, like the case in Fig. 3b, are not allowed.

In Fig. 3c, two adjacent elements are refined. The support of v1
i1

is shaded by yellow color in
Figs. 3b and 3c. The support of v1

i1
in Fig. 3c becomes smaller, thus h(s, t) do not form a partition

of unity on F anymore. Therefore, the weights for v2
i are non-zeros.

Based on the above analysis, we made the following assumptions for the hierarchical T-mesh to
define positively weighted bases that form a partition of unity.

Definition 2 A hierarchical T-mesh is called an admissible hierarchical T-mesh if there are not any
isolated refined elements in the hierarchical T-mesh. If an element on level l is refined, but none of its
adjacent elements are refined, it is called an isolated refined element. Here, if two elements of the same
level share at least one edge, they are called adjacent elements.

Figs. 3a and 3c are two admissible hierarchical T-meshes, while Fig. 3b is not an admissible
hierarchical T-mesh. A hierarchical T-mesh can become an admissible hierarchical T-meshes by
performing refinement on adjacent elements of isolated refined elements.

To ensure the refinement is highly localized, we generally require the refinement level between
any two neighboring elements cannot be greater than one, which is also required in [18]. Under this
requirement, hierarchical T-meshes are admissible.

Proposition 1 There uniquely exists a set of positive weights for the bases constructed in [2] on the
admissible hierarchical T-mesh such that the weighted bases form a partition of unity, that is there
uniquely exists w1, w2, · · ·, wn > 0 such that

∑n

i=1 wibi(u, v) ≡ 1 for (u, v) ∈ [a, b] × [c, d].

Proof The existence and uniqueness of the weights wl
4i+j are implied by the linear system (13). In

the following, we only prove wl
4i+j > 0.

For the basis functions b0
i associated with the basis vertices on level 0, the function h(s, t) defined

in (11) is equal to zero, i.e., h(s, t) = 0, then the weights solved by (13) are all equal to ones.

For an element F in the initial mesh T0, we denote the B-spline functions associated with the four
corners of F by b4i0+j, b4i1+j, b4i2+j, b4i3+j, j = 0, 1, 2, 3. Remember that these basis functions are defined
over T0, instead of the final hierarchical T-mesh T. Then, the non-vanishing basis functions on F are
only these basis functions, which also form a partition of unity on F . As the refinement proceeds, the
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supports of some of these basis functions are changed, and some new basis functions are added. The
PHT-spline space defined overT0 are contained in the PHT-spline defined overT, then b4i0+j, b4i1+j, b4i2+j,
b4i3+j can be exactly represented by the basis functions bl

4i+k on level l by knot insertion algorithm, that
is, for j = 0, 1, 2, 3,

b4i0+j =
N∑

l=0

nl∑
i=0

3∑
k=0

cl
ikb

l
4i+k, b4i1+j =

N∑
l=0

nl∑
i=0

3∑
k=0

dl
ikb

l
4i+k,

b4i2+j =
N∑

l=0

nl∑
i=0

3∑
k=0

el
ikb

l
4i+k, b4i3+j =

N∑
l=0

nl∑
i=0

3∑
k=0

f l
ikb

l
4i+k. (17)

Since
3∑

j=0

b4i0+j + b4i1+j + b4i2+j + b4i3+j ≡ 1, on F,

then
N∑

l=0

nl∑
i=0

3∑
k=0

(
cl

ik + dl
ik + el

ik + f l
ik

)
bl

4i+k ≡ 1 on F .

This implies that the weights

wl
4i+k = cl

ik + dl
ik + el

ik + f l
ik ≥ 0, (18)

because cl
ik, dl

ik, el
ik and f l

ik are the coefficients in the knot insertion algorithm, thus are nonnegative
values. On an admissible hierarchical T-mesh, all the weights are non-zeros, thus wl

4i+j > 0.

In Fig. 4, we show the PHT surfaces defined over the same hierarchical T-mesh and by the same
control points, but using different bases: the proposed weighted bases and non-decay bases [2]. The
control points are designed on the plane z = 1. We see that the PHT surface defined by weighted basis
functions form a partition of unity.

Figure 4: The weighted PHT-splines proposed in this paper form the partition of unity, while the PHT-
splines defined by the non-decay bases [2] cannot form a partition of unity
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We conclude the method of computing the weights such that the weighted basis functions form a
partition of unity in Algorithm 1.

Algorithm 1: Calculation of weights
Input: k−th level hierarchical T-mesh with basis vertices set V

while vi ∈ V
Find the support mesh of vi and compute α, β, λ, μ based on the formula (6);
Find all the basis functions that are not equal to zeros at vi and get h(s, t) defined by (11);
Calculate the weight wk

4i+j of vi according to the formula (14);
Output: A weighted k−th hierarchical T-mesh with basis function that forma partition of unity.

4 Subdivision Scheme for PHT-Splines

Considering a knot vector {s0, s0, s1, s1, s2, s2, s3, s3}, we insert a double knot s′ ∈ [s1, s2] in it. Then,
we get the following relationship of B-splines before and after s′ is inserted based on the B-spline knot
insertion algorithm,

⎛
⎜⎜⎜⎜⎝

N3[s0, s0, s1, s1, s2][s]

N3[s0, s1, s1, s2, s2][s]

N3[s1, s1, s2, s2, s3][s]

N3[s1, s2, s2, s3, s3][s]

⎞
⎟⎟⎟⎟⎠ = W

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N3[s0, s0, s1, s1, s′][s]

N3[s0, s1, s1, s′, s′][s]

N3[s1, s1, s′, s′, s2][s]

N3[s1, s′, s′, s2, s2][s]

N3[s′, s′, s2, s2, s3][s]

N3[s′, s2, s2, s3, s3][s]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

W =

⎛
⎜⎜⎜⎜⎝

1 αs αsβs 0 0 0

0 1 − αs (2 − αs − βs)βs β2
s 0 0

0 0 (1 − βs)
2 (1 − βs)(βs + γs) γs 0

0 0 0 (1 − βs)(1 − γs) 1 − γs 1

⎞
⎟⎟⎟⎟⎠ , (19)

where αs = s2 − s′

s2 − s0

, βs = s2 − s′

s2 − s1

and γs = s3 − s′

s3 − s1

.

Based on the above formula, we derive the subdivision scheme for PHT-splines as follows. The
support mesh of a basis vertex vk

i is supposed to be [si0, si, si1] × [
tj0, tj, tj1

]
. The knot intervals of the

support mesh are denoted by d0 = si − si0, d1 = si1 − si, e0 = tj − tj0, e1 = tj1 − tj. When elements are
refined, new basis vertices are added. The new basis vertices lying in the interior of the refined elements
are called face vertices, while the new basis vertices lying on the edge of the mesh are called edge
vertices. The old basis vertices are called vertex points. Under the assumption that the level difference
in an admissible hierarchical T-mesh is not greater than 1, the subdivision scheme of PHT-splines are
deduced as follows.
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• Vertex-points

If the refinement changes the support mesh associated with vk
i , the control points associated with

vk
i are updated as follows:⎛
⎜⎜⎜⎜⎝

Pk+1
4i

Pk+1
4i+1

Pk+1
4i+2

Pk+1
4i+3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

ws1wt1 (1 − ws1) wt1 ws1 (1 − wt1) (1 − ws1) (1 − wt1)

ws2wt1 (1 − ws2) wt1 ws2 (1 − wt1) (1 − ws2) (1 − wt1)

ws1wt2 (1 − ws1) wt2 ws1 (1 − wt2) (1 − ws1) (1 − wt2)

ws2wt2 (1 − ws2) wt2 ws2 (1 − wt2) (1 − ws2) (1 − wt2)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Pk
4i

Pk
4i+1

Pk
4i+2

Pk
4i+3

⎞
⎟⎟⎟⎟⎠ . (20)

where ws1 = μ0d0 + 2μ1d1

2μ0d0 + 2μ1d1

, ws2 = μ1d1

2μ0d0 + 2μ1d1

, wt1 = λ0e0 + 2λ1e1

2λ0e0 + 2λ1e1

and wt2 = λ1e1

2λ0e0 + 2λ1e1

.

The parameters μ0, μ1, λ0, λ1 are used to indicate whether the knot intervals d0, d1, e0, e1 are refined,
respectively. The parameter is equal to 1 implies the corresponding knot interval is subdivided.
Especially when the parameters μ0, μ1, λ0, λ1 are zeros, control points are not updated, that is Pk+1

4i+j =
Pk

4i+j, j = 0, 1, 2, 3. Fig. 5 shows different cases of refinement. In Fig. 5a, four elements in the support
mesh of vk

i are refined, now the parameters are set as [μ0, μ1, λ0, λ1] = [1, 1, 1, 1]. In Figs. 5b and 5c,
three elements are refined and the corresponding parameters are set as [μ0, μ1, λ0, λ1] = [0, 1, 0, 1]
and [μ0, μ1, λ0, λ1] = [1, 0, 1, 0]. In Figs. 5d and 5e, two elements are refined and the corresponding
parameters are set as [μ0, μ1, λ0, λ1] = [0, 0, 1, 0] and [μ0, μ1, λ0, λ1] = [1, 0, 0, 0]. In Fig. 5f, one element
is refined. If vk

i is on the boundary, [μ0, μ1, λ0, λ1] = [0, 1, 0, 1]. Otherwise, [μ0, μ1, λ0, λ1] = [0, 0, 0, 0],
which means the old vertex vk

i is not updated.

Figure 5: Subdivision scheme of vertex points
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• Edge-points

Suppose vk+1
i is a edge point lying on the edge with endpoints vk

i1
and vk

i2
, referring to Fig. 6. Since

the level difference is assumed to be less than 2, vk
i1

and vk
i2

are two basis vertices. As shown in Fig. 6a,
the knot intervals for vk

i1
and vk

i2
are denoted by {d0, d1; e0, e1} and {d1, d2; e0, e1}, respectively. We have

the following edge-points updating formula.

Pk+1
4i = 1

8 (d0 + d1) (e0 + e1)

[
(3d0 + 2d1) (e0 + 2e1) Pk

4i1+1 + d1e0Pk
4i1+2 + d1 (2e1 + e0) Pk

4i1

+ (3d0 + 2d1) e0Pk
4i1+3 + (d0 + d1) (e0 + 2e1) Pk

4i2
+ (d0 + d1) e0Pk

4i2+2

]
,

Pk+1
4i+1 = 1

8 (d1 + d2) (e0 + e1)

[
(2d1 + 3d2) (e0 + 2e1) Pk

4i2
+ d1e0Pk

4i2+3 + d1 (e0 + 2e1) Pk
4i2+1

+ (2d1 + 3d2) e0Pk
4i2+2 (d1 + d2) (e0 + 2e1) Pk

4i1+1 + (d1 + d2) e0Pk
4i1+3

]
,

Pk+1
4i+2 = 1

8 (d0 + d1) (e0 + e1)

[
(3d0 + 2d1) (2e0 + e1) Pk

4i1+3 + d1e1Pk
4i1

+ d1 (2e0 + e1) Pk
4i1+2

+ (3d0 + 2d1) e1Pk
4i1+1 + (d0 + d1) e1Pk

4i2
+ (d0 + d1) (2e0 + e1) Pk

4i2+2

]
,

Pk+1
4i+3 = 1

8(d1 + d2)(e0 + e1)

[
(2d1 + 3d2)(2e0 + e1)Pk

4i2+2 + d1e1Pk
4i2+1 + d1(2e0 + e1)Pk

4i2+3 (21)

+(2d1 + 3d2)e1Pk
4i2

+ (d1 + d2)e1Pk
4i1+1 + (d1 + d2)(2e0 + e1)Pk

4i1+3

]
.

Figure 6: The subdivision scheme of edge points and face points

When the edge point lies on a vertical edge, as shown in Fig. 6b, the update formula is similar to
the above one, except that eis and dis are swapped.
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• Face-points

Since we assume the level difference in the mesh is not greater than 1, so when an element is
refined, the four corners are exactly basis vertices. Suppose the four basis vertices of the refined
face F are denoted by vi1

, vi2
, vi3

, vi4
. The knot intervals of these four basis vertices are denoted by

{d0, d1, d2; e0, e1, e2}, see Fig. 6c for a reference. Here, we use the parameter aj = 1 and aj = 0 to indicate
the support mesh of vij is changed and unchanged, respectively. Let Pk

4ij+l : = ajPk
4ij+l. We have the

following formulas:

Pk+1
4i = 1

16 (d0 + d1) (e0 + e1)

[
d1e1Pk

4i1
+ (3d0 + 2d1) e1Pk

4i1+1 + d1 (3e0 + 2e1) Pk
4i1+2

+ (3d0 + 2d1) (3e0 + 2e1) Pk
4i1+3 + (d0 + d1) e1Pk

4i2
+ (d0 + d1) (3e0 + 2e1) Pk

4i2+2 + d1 (e0 + e1) Pk
4i3

+ (3d0 + 2d1) (e0 + e1) Pk
4i3+1 + (d0 + d1) (e0 + e1) Pk

4i4

]
,

Pk+1
4i+1 = 1

16 (d1 + d2) (e0 + e1)

[
(2d1 + 3d2) e1Pk

4i2
+ d1e1Pk

4i2+1 + (2d1 + 3d2) (3e0 + 2e1) Pk
4i2+2

+ d1 (3e0 + 2e1) Pk
4i2+3 + (d1 + d2) e1Pk

4i1+1 + (d1 + d2) (3e0 + 2e1) Pk
4i1+3

+ (2d1 + 3d2) (e0 + e1) Pk
4i4

+ d1 (e0 + e1) Pk
4i4+1 + (d1 + d2) (e0 + e1) Pk

4i3+1

]
,

Pk+1
4i+2 = 1

16 (d0 + d1) (e1 + e2)

[
d1 (2e1 + 3e2) Pk

4i3
+ d1e1Pk

4i3+2 + (3d0 + 2d1) (2e1 + 3e2) Pk
4i3+1 (22)

+ (3d0 + 2d1) e1Pk
4i3+3 + d1 (e1 + e2) Pk

4i1+2 + (3d0 + 2d1) (e1 + e2) Pk
4i1+3 + (d0 + d1) (2e1 + 3e2) Pk

4i4

+ (d0 + d1) e1Pk
4i4+2 + (d0 + d1) (e1 + e2) Pk

4i2+2

]
,

Pk+1
4i+3 = 1

16(d1 + d2)(e1 + e2)

[
d1(2e1 + 3e2)Pk

4i4+1 + d1e1Pk
4i4+3 + (2d1 + 3d2)e1Pk

4i4+2

+ (2d1 + 3d2)(2e1 + 3e2)Pk
4i4

+ (d1 + d2)(2e1 + 3e2)Pk
4i3+1 + (d1 + d2)e1Pk

4i3+3 + (e1 + e2)Pk
4i2+2

+d1(e1 + e2)Pk
4i2+3 + (d1 + d2)(e1 + e2)Pk

4i1+3

]
.

The weights satisfying (9) can be computed by this subdivision scheme. The control points
(weights) at level 0 are all set to be 1. In the following, we take the hierarchical T-mesh shown in
Fig. 3a as an example to show how to use subdivision scheme to compute weights.

The weights are computed level by level. Fig. 7 shows the refinement process. The weights of the
basis functions on level 0 are set as [1, 1, 1, 1], that is we set P0

4i+j = w0
4i+j = 1 in the three formulas (20)–

(22). Then we compute the weights associated with the basis vertices on level 1, see Fig. 7b. The weights
of the edge-point v1

i1 are calculated by (21) with d0 = 0.25, d1 = 0.25, d2 = 0.25, e0 = 0.25, and
e1 = 0.25. Consequently, we obtain

[
w1

4∗i1, w1
4∗i1+1, w1

4∗i1+2, w1
4∗i1+3

] = [1, 1, 1, 1]. The weights of other
edge-points are calculated similarly and are all equal to [1, 1, 1, 1].
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Figure 7: The weights of each level of mesh in Fig. 3a are calculated by the PHT-splines subdivision
scheme

For the face point v1
i0, the indicators ajs for the corners v0

i1, v0
i2 and v0

i3 are all equal to 1, since their
support meshes are changed, that is a1 = a2 = a3 = 1. While a0 = 0. The knot intervals for this case are
set as d0 = 0.25, d1 = 0.25, d2 = 0.25, e0 = 0.25, e1 = 0.25, e2 = 0.25. The weights are thus computed

based on (22) and are equal to
[
w1

4∗i1, w1
4∗i1+1, w1

4∗i1+2, w1
4∗i1+3

] =
[

7
16

,
13
16

,
13
16

,
15
16

]
.

For the vertex point v0
i3, which is also a basis vertex of level 0, is updated based on (20), where

[μ0, μ1, λ0, λ1] = [1, 1, 1, 1], d0 = d1 = e0 = e1 = 0.25 and P0
4∗i3+j = 1, j = 0, · · · , 3. The weights of this

vertex are all equal to 1. Notice here the support mesh of v0
i0 is not changed, thus the weights are still

equal to 1.

On level 2, the mesh is shown in Fig. 7c, the face points and edge points of level 1 now become
vertex points. For example, the vertices marked by blue circles are vertex points and updated based
on (20). Since all the support meshes of these vertices are not changed, their weights are equal to
the weights computed on level 1. For the update of v1

i1, v1
i2, v0

i3, because their weights are all [1, 1, 1, 1],
combined with sum of the coefficients of the update formula is 1, we easily obtain the updated weights
of the three vertex-points are still [1, 1, 1, 1]. It is worth noting that if one of the basis functions of the
three vertices has a weight other than 1, its weight will change after it is updated.

For the face point v2
i , the support of the basis vertex v1

i0 is not changed, so its weight is also set to
0 in the face-points formula, and the weights of the other three vertices are not changed. With their
knot intervals d0 = 0.125, d1 = 0.125, d2 = 0.125, e0 = 0.125, e1 = 0.125, e2 = 0.125, according to the

formula of the face point, the weight of the new face point v2
i is also

[
7

16
,

13
16

,
13
16

,
15
16

]
.

5 Numerical Experiments

The weighted basis functions not only avoid the decay phenomenon, but also form a partition of
unity. The non-decay property reduces the condition number of the stiffness matrix, thus gives better
numerical stability. This advantage has been explored in [2] and will not be repeated in this paper. The
focus of this paper is to provide a way to efficiently calculate weights for non-decay basis functions so
that non-decay PHT splines can be used in specific applications, such as topology optimization [14].

In this section, three typical hierarchical T-meshes demonstrate the validity of the proposed
methods. We see that the weights on admissible hierarchical T-meshes are all positive.
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The hierarchical T-meshes here are produced in the context of iso-geometric analysis. The Poisson
equation is defined as{

−�u(x, y) = f (x, y), (x, y) ∈ �,
u |
 = g, 
 = ∂�.

(23)

The exact solution u(x, y) is chosen as three functions defined on [0, 1] × [0, 1]. The first one is a
C1–continuous function defined by

u1 (x, y) =
{

(x − y)
2
(1.0 − x) y, x > y,

− (x − y)
2
(1.0 − y) x, x < y.

(24)

The other two are smooth functions with large gradients at some local regions,

u2 (x, y) = − tanh

(
−0.25 +

√
(x − 0.5)2 + (y − 0.5)2 + 0.01)

0.03

)
, (25)

and u3(x, y) = 1000x6y6(1.0 − x)2(1.0 − y)2. The non-decay PHT-splines are adopted to adaptively
solve the Poisson problem. Based on Algorithm 1 or the subdivision scheme, we compute the weights
for the non-decay basis functions defined over the hierarchical T-meshes produced during the adaptive
solving.

Fig. 8a shows the plot of u1 (x, y). The diagonal elements are refined in each level to capture the
feature of the solution. Figs. 8b and 8c show the hierarchical T-meshes at levels 2 and 4, where the
weights of the basis vertices are equal to ones, except for the basis vertices that are marked by colored
circles. Notice that there are two basis functions with zero weights on level 4 (Fig. 8c), because the
underlying refined elements are isolated elements. This can be avoided by a further refinement of the
adjacent elements. For this example, the level difference is less than 2. As the level increases, the weights
of the old basis vertices are not changed. The weights of new basis vertices on each level have two kinds
of values, except for the four ones at the corners.

Figure 8: (Continued)
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Figure 8: The weights of the basis functions on the hierarchical T-mesh with diagonal elements refined

Fig. 9a shows the plot of u2 (x, y). This function has very large gradients around the circle centered
at (0.5, 0.5) and decays very fast from the value 1 to the value −1. One can easily observe significant
refinement around the large gradient area. Figs. 9b and 9c show the hierarchical T-meshes at level 2
and 4, where the weights of the basis vertices are equal to ones, except for the basis vertices that are
marked by colored circles. As the level increases, the weights of the old basis vertices are not changed.
The weights of new basis vertices on each level have two kinds of vales.

Figure 9: (Continued)
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Figure 9: The weights of the basis functions on the hierarchical T-mesh solved from u2 (x, y)

Fig. 10a shows the plot of u3 (x, y). For this example, the elements near the right-top corner are
refined on each level to get hierarchical T-meshes that have greater level difference. Figs. 10b–10d show
the hierarchical T-meshes at level 1, 2, 3, where the weights of the basis vertices are equal to ones, except
for the basis vertices that are marked by colored circles. As the level increases, the weights of the old
basis vertices are changed. This can be seen from Fig. 10e, where the weights of the basis vertex v1

i0 are
changed as the refinement proceeds. Moreover, the closer to the left-down corner of the element, the
smaller the weights of the face points, such as the weights of v2

i0, v3
i0 and v4

i0. This is caused by a greater
level difference.

Figure 10: (Continued)
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Figure 10: (Continued)
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Figure 10: The weights of the basis functions on the hierarchical T-mesh solved from u3 (x, y). The level
difference in these meshes is larger than 2

6 Conclusion

In this paper, we proposed two efficient ways of computing weights for the PHT-splines basis
functions constructed in [2] such that the weighted basis functions form a partition of unity. The
weights are expressed explicitly based on the geometric information of related basis functions or by the
subdivision formula of HT-splines. Both algorithms can effectively compute weights. We proved that
the weights are positive on the admissible hierarchical T-meshes. Three typical hierarchical T-meshes
are demonstrated to verify the effectiveness of the proposed methods.

There are several problems worthy of further discussion. The first one is to derive the subdivision
scheme in the case of arbitrary level differences. Another issue worthy of exploring is the application
of PHT-splines defined by a weighted basis in topology optimization and isogeometric collocation.
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