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ABSTRACT

The concept of the digital twin, also known colloquially as the DT, is a fundamental principle within Industry
4.0 framework. In recent years, the concept of digital siblings has generated considerable academic and practical
interest. However, academia and industry have used a variety of interpretations, and the scientific literature
lacks a unified and consistent definition of this term. The purpose of this study is to systematically examine the
definitional landscape of the digital twin concept as outlined in scholarly literature, beginning with its origins in the
aerospace domain and extending to its contemporary interpretations in the manufacturing industry. Notably, this
investigation will focus on the research conducted on Industry 4.0 and smart manufacturing, elucidating the diverse
applications of digital twins in fields including aerospace, intelligent manufacturing, intelligent transportation, and
intelligent cities, among others.
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1 Introduction

Digital twin technology is a digital mirroring technology that extends information with 3D digital
models throughout the lifecycle, ultimately synchronizing and aligning the virtual and physical worlds.
In 2003, Michael Grieves of the University of Michigan [1] introduced the “mirror space model” (later
renamed the “information mirror model”) in his product lifecycle management course [2]. According
to the concept, the digital representation of a physical product should be able to depict it abstractly
and provide testing of the physical product in real-world or simulated environments. This concept was
published in 2011 in his book titled “Virtually Perfect: Driving Innovative and Lean Products through
Product Lifecycle Management.” This conceptual paradigm was referred to as the “digital twin” by
the paper’s co-authors [3]. The literature considers digital twins to be a mathematical model that can be
constructed to characterize a physical device by accumulating its biological data. In addition, compare
the differences between engineering design and model modification to gain a better understanding
of the theoretical design and actual production, thereby enhancing the administratiorefern of the
equipment’s entire lifecycle. The development roadmap for digital twins is shown in Fig. 1.
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Figure 1: Digital twin development roadmap

With the maturation and industrialization of the Internet of Things and Big Data technologies in
the 1910s, digital twins were ready to be applied in practice. NASA adopted in 2010 a flight system
simulation analysis model based on the digital twin concept as outlined in the space technology
roadmap [4] in order to accomplish comprehensive flight system diagnostics and predictable flight
status. Thus, the safety of the entire mission is ensured within the system’s reliable timeframe. In
2010, NASA first defined the digital twin in the context of aerospace, elucidating on its strategic
significance to American space science and the Air Force. NASA aims to have a fully operational,
adaptable digital twin spacecraft by 2035 [5]. On the other hand, the U.S. Air Force has released
several new research findings regarding the use of digital twins in fleet management, feasibility
analysis, and flight diagnostics and prediction. Meanwhile, digital twin-driven smart manufacturing
became a popular Industry 4.0 direction in 2010. The U.S. Air Force Research Laboratory introduced
the digital duplicate in a presentation in March 2011 and began investigating it in the Condition-
based Maintenance Plus (CBM+) project [6] that followed. In 2012, NASA published its “Modeling,
Simulation, Information Technology, and Processing” road map, and the concept of the digital
counterpart entered the public domain [7]. In 2013, the U.S. Air Force published the Global Horizon
high-level planning document, which identified digital twin and digital thread as “game-changing”
disruptive opportunities [8]; beginning in 2014, the Air Force organized a series of applied research
projects for Boeing, General Electric, and other companies. The digital twin theory and technology
system was established in this manner. Then, GE began to adapt this military technology for civilian
use, employing the digital twin to provide asset management services and to construct an industrial
Internet system. The definition of the digital counterpart has been refined and updated in recent years.

The digital twin lacks a universally recognized definition, and the concept is still developing and
evolving. Since 2012, the following digital twin has emerged as defined in Table 1:

Table 1: Definitions of digital twin

Author Year Definition

Edward et al. 2012 A Digital Twin is an integrated multiscale, multiphysics, probabilistic
simulation of a vehicle or system in its as-built state. It employs the
finest available physical models, sensor updates, fleet history, etc., to
replicate the life of its flying twin [7].

(Continued)
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Table 1 (continued)

Author Year Definition

Eric 2012 A cradle-to-grave model of the structural capability of an aircraft to
meet mission requirements, including submodels of the avionics, flight
controls, propulsion system, and other subsystems [9].

Lee et al. 2013 A digital twin is a coupled model of the actual machine that operates
on a cloud platform and simulates its health condition using
data-driven analytical algorithms and other physical knowledge [10].

Prasun et al. 2013 Digital twin stands for a structural model which will include
quantitative data of material level characteristics with high sensitivity
[11].

Grieves 2014 The Digital Twin concept model contains three main parts: (a)
physical products in Real Space, (b) virtual products in Virtual Space,
and (c) the connections of data and information that ties the virtual
and real products together [12].

Department of
Defense Defense
Acquisition
University

2015 An integrated multi-physics, multi-scale, probabilistic simulation of an
as-built system, enabled by Digital Thread, that uses the best available
models, sensor information, and input data to mirror and predict
activities/performance over the life of its corresponding physical twin
[13].

Boschert et al. 2016 The vision of the Digital Twin itself refers to a comprehensive physical
and functional description of a component, product or system, which
includes more or less all information which could be useful in all-the
current and subsequent-lifecycle phases [14].

Schluse et al. 2016 Digital twins are digital representations of real-world objects
comprised of virtual representations and communication capabilities
that make up intelligent entities within the Internet of Things and
services [15].

Negri et al. 2017 The Digital Twin is a virtual representation of a production system
that can run on different simulation disciplines, thanks to connected
smart devices and real-time data elaboration [16].

Grieves et al. 2017 The Digital Twin is a collection of virtual information constructs that
completely describe a potential or existing physical product. At its
peak, any information that could be obtained by digitally scrutinizing
an object can also be extracted from its Digital Twin [3].

Yu et al. 2018 The concept of DT has both vast and narrow meanings. The limited
sense is equivalent to the digital shadow and is part of the DT system
that describes physical products. The broad sense is part of the CPS
but has a greater degree of fidelity than the narrow sense [17].

Kritzinger et al. 2018 Based on the given definitions of a Digital Twin in any context, one
might identify a common understanding of Digital Twins, as digital
counterparts of physical objects [18].

(Continued)
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Table 1 (continued)

Author Year Definition

Demkovich et al. 2018 The Digital Twin of a production system is a multi-level digital
representation of the product, processes, and resources in their
operational environment. It enables the simulation of natural system
processes and the collection and display of real-time information on
the status of objects gathered from the PLC and sensors [19].

Renjen 2018 A digital twin can be defined, fundamentally, as an evolving digital
profile of the historical and current behaviour of a physical object or
process that helps optimize business performance [20].

Tao et al. 2018 DT should include five parts: physical part, virtual part, connection,
data, and service [21].

Borth et al. 2019 Digital twin is a connected and synchronized digital replica of
physical assets that represents the elements and dynamics of how
systems and devices operate within their environment and exist for the
duration of their lifecycle [22].

Liu et al. 2019 Virtual object or a set of virtual things defined in the digital virtual
space, which has a mapping relationship with real things in the
physical space [23].

Zhuang et al. 2020 Digital twin is the most intuitive and exhaustive digital description of
the internal and external characteristics of a corresponding physical
entity. It is also the mechanism through which physical entities
integrate and fuse all data and models with information and data
throughout their lifecycles [24].

Fotland et al. 2020 Digital copy of a physical asset, collecting real-time data from the
asset and deriving information not being measured directly in the
hardware [25].

Liu et al. 2020 Digital entity that reflects physical entity’s behaviour rule and keeps
updating through the whole lifecycle [26].

Peng et al. 2021 A digital replica of a physical system [27].
Shohin et al. 2021 DTaaS is a service that enables access to Digital Twin capabilities,

where physical, digital, and cyberspace are used to provide access to
phyber. Web services such as REST, COBRA, Apache River, and
SOAP can be utilized to implement DTaaS. It integrates IoT, AR, the
Cloud, and analytics, making the service accessible via standard
internet protocols [28].

It is evident from the preceding definition that digital twin technology consists of the following
elements:

(1) The relationship between the physical and digital worlds.

(2) Dynamic mapping.

(3) In addition to the physical mapping, logic, behavior, and process mapping, such as production
processes, business processes, etc., must also be performed.
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(4) The two-way mapping relationship between the physical world and the digital world, i.e., the
digital world through calculation, processing, but also to provide instructions, computation.

(5) The entire life cycle, the digital twin used to create a virtual digital model, and the actual
physical entity are synchronized to accomplish interactive feedback throughout the entire
process.

In the context of “digitizing everything that can be digitized,” the author considers digital twins
to be virtual objects generated in the digital virtual space via software definition and data drive.
Regarding their shape, state, texture, behavior, and development laws, the items establish a real
mapping relationship with their physical counterparts. It enables the physical duplicate to have a
mapping relationship with the digital twin that has varying degrees of fidelity (realistic, abstract,
etc.). In order to better comprehend the definition of digital twins, a brief introduction to the primary
digital thread is provided. Digital strands and digital twins are both interrelated and distinct concepts.
The digital twin is a digital representation of a physical product, allowing us to predict potential
outcomes for the physical product based on the digital product. This includes technologies such as
augmented reality and virtual reality. Digital twins permit the transfer of a complete 3D geometric
model of the product definition to the digital production line for transformation into a physical
product. During the design and production phases, the simulation analysis model’s parameters are
reflected in the final product via an online digital inspection/measurement system, which feeds back
into the simulation model. The United States Air Force and Lockheed Martin proposed the digital
thread concept during the development of the F-35 [29]. The digital home run, according to them,
is an enterprise-level analytical framework that expedites the controlled interaction of authoritative
technical data, software, information, and knowledge. It is founded on the Digital System Model
template to provide decision-makers with access to, integration of, and transformation of disparate
data into actionable information throughout a system’s life cycle [30]. Digital Master Line technology
enables unprecedented access to design and manufacturing data, thereby substantially enhancing the
fighter jet manufacturing automation.

With the advent of the digital age, an increasing number of businesses are concentrating on the
concept of digital threads. According to PTC, “A digital thread creates a closed loop between the
digital and physical worlds in order to optimize products, people, processes, and places.”; iBASEt
demonstrates that digital thread refers to the communication infrastructure that enables a connected
data flow and an integrated view of the asset’s data across traditionally siloed functional perspectives
throughout its lifecycle. The digital thread concept raises the threshold for delivering “the right
information to the right place at the right time.” According to Cognizant, a digital thread is the flow of
information about a product’s performance and use from design to production, sale, use, and disposal
or recycling. This provides insights into how consumers utilize products, how those products perform,
how those products could be improved, and what new features customers may desire.

Digital strands permeate the entire product lifecycle, particularly the integration between product
design, production, operation, and maintenance. Digital twins resemble the intelligent product concept
in that they emphasize feedback from product operation and maintenance to design. It is a digital
shadow of the physical product, reflecting all of the object’s characteristics from microscopic to
macroscopic through the integration of external sensors and illustrating the evolution of the product
life cycle. Not only the product, but also the systems that produce the product, such as production
apparatus, production lines, and systems in use and maintenance, should be constructed with digital
twins on demand.
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2 Digital Twin Development Status

This paper uses the WOS core collection database to conduct a statistical analysis of the literature
on digital twin technology that has been compiled over the past five years. It generates a knowledge
graph using the visual network analysis tool VOSviewer to illustrate recent research on digital twin
technology. Included among the categories of literature retrieved are articles, conference papers,
conference abstracts, and so on. Using the advanced search tool in WOS, the following search formula
was constructed using field identifiers, Boolean operators, brackets, and search result sets: TS =
(“digital twin” OR “digital twins”). ANDPY2018-2022, i.e., search for subjects (including titles,
abstracts, and keywords) whose publication year falls between 2018 and 2022 and whose subject
contains “digital twin” or “digital twins”.

Between 2018 and 2022, 425 documents that were publicly accessible in the WOS Core Collection
database were obtained. In 2018, there were only nine publications, compared to twenty in 2019. In
2020, with 67 releases per year, the digital counterpart entered a period of gradual expansion. Fig. 2
indicates that as of November, 154 publications were published in 2021 and 173 in 2022. The number
of publications in 2019 represents 40.0% of the previous five years, and the number of publications in
2020 represents 48.26% of the previous five years, indicating a rapid rate of development in the coming
years.

Figure 2: Overall trends in digital twin technology development from 2018 to 2022

Fig. 3 shows the co-occurrence of the keywords used in the DT literature based on the WOS search
results. The search results were optimized by implementing year constraints (2018–2022) and selecting
only English-language journal articles. At least 200 of 1125 terms from a dataset of 425 previously
published journal articles were utilized for this analysis. The figure depicts the digital twin-related
topics that have emerged in recent years, such as Industry 4.0, big data, machine learning, 5G, 6G, and
artificial intelligence.

3 Digital Twins Related Technologies
3.1 Digital Twin Technology System

The digital twin is an innovative application that combines diverse technologies, including sensing,
transmission, computing, modeling, and simulation [31]. As shown in Fig. 4, its architecture consists
of a physical, data, model, and functional layer. The tangible layer refers to physical world objects. It
is divided into tangible things (such as the human body, physical space, and objects) and intangible
things (such as business procedures). The data layer includes data acquisition, transmission, and
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administration. The model layer is the central component of the digital twin application, employing
modeling and other technologies to digitally replicate the representation of natural objects (digital
twins). The functional layer is the direct value manifestation of the digital twin. It satisfies the
requirements of each application scenario by encapsulating simulation, visualization, etc., results and
providing them to business system applications.

Figure 3: Co-occurrence of keywords in the literature from 2018 to 2022

Functional layer

Description Analyse Forecast
Decision
making

Modeling layer

Geometric

twins
Physical twins Rule twins

Functional layer

Description Analyse Forecast

Functional layer

Description

Figure 4: Digital twin technology system
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Data layer technologies include data acquisition and transmission, PLM-based data management,
lifecycle data management, and others. The model construction technology is the core technology of
the digital twin in the model layer, and its purpose is to construct a multidimensional model, i.e., the
digital twin, using digital technology. According to the dimensions of the model layer, siblings can
be classified as geometric, physical, or regular. Following is an overview of sophisticated modeling
and simulation techniques, as well as multi-domain multi-scale modeling. The functional layer is then
implemented utilizing various interaction and collaboration strategies.

3.2 Key Technologies for Digital Twins
3.2.1 Advanced Modeling and Simulation Technology

Advanced modeling and simulation refers to a multidisciplinary, coupled simulation of a product’s
geometry, function, and performance. Connecting physical processes at distinct time scales in order
to construct models that accurately represent the shape, behavior, and performance of physical
entities such as atoms, molecules, and atoms. Research on advanced modeling and simulation tech-
nologies consists primarily of refined geometric modeling, logic modeling, finite element modeling,
multi-physics field modeling, multi-disciplinary coupled modeling and simulation experiments, etc.
Feature-based 3D modeling technology; SysML-based logic modeling technology; finite element-
based multi-physics field coupling simulation technology; multi-disciplinary coupling performance
simulation technology; database-based micro-kernel digital twin platform architecture, automatic
model generation, and online simulation are the primary methods used to achieve high-fidelity
simulation and real-time prediction of physical entities [32].

3.2.2 Multi-Domain and Multi-Scale Fusion Modeling

Under normal and abnormal operating conditions, multi-domain modeling refers to the cross-
domain fusion modeling of physical systems from diverse domain perspectives. It combines models
from various subject areas into a larger simulation model. Most contemporary modeling techniques
conduct model development and maturation within a particular domain. Later, they use methods of
integration and data fusion to combine independent models from diverse domains into a compre-
hensive system-level model [33]. However, this fusion approach lacks sufficient fusion depth and a
reasonable explanation, limiting its capacity to profoundly fuse models from distinct domains. The
complexity of multi-domain fusion modeling stems from the large degree of freedom in the system
equations that results from the fusion of multiple properties. Simultaneously, the data collected by
sensors must be highly consistent with the actual system data in order to assure dynamic updating of
the model using high-precision sensing measurements. Numerous scientific problems can be simulated
using multi-scale modeling, which connects physical processes at various time scales. Multi-scale
models can represent fundamental. These computational models are more precise than simulation
models with a single-dimensional scale that disregard multi-scale division [34]. The challenges of multi-
scale modeling are reflected simultaneously in three dimensions: length, time scale, and coupling range;
overcoming these challenges can aid in the development of more accurate digital twin systems.

3.2.3 Data Acquisition Technology Transmission

The acquisition and rapid transmission of data is the foundation of the entire digital twin system.
To replicate the state of operation of the physical target system, the performance of each type of sensor,
such as temperature, pressure, and vibration, should be optimal. The distribution of sensors and the
construction of sensor networks must be rapid, secure, and precise, and distributed sensors must collect
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data on various physical quantities of the system to characterize its state [35]. Simultaneously, it is
crucial to construct a rapid and dependable information transmission network for transmitting the
system state information to the host computer in a secure and real-time manner for its application.
The digital twin system is a dynamic, surreal, and real-time mapping of the physical entity system.
Acquisition, transmission, and update of data in real time are essential for the digital duplicate. Many
dispersed high-precision sensors of various types are at the vanguard of the entire twin system and play
a crucial role in the twin system’s sensory capabilities. The current level of technological advancement
restricts the type, precision, dependability, working environment, and data acquisition method of
sensors. Real-time data transmission is crucial, but the current level of technology limits security,
network transmission hardware, and network architecture to accommodate a higher transmission
rate. In addition to the network security guarantee, the practical application must also take network
security into account. Priority should be given to network security in practical applications. As sensor
technology advances, an increasing number of microelectromechanical system sensors become more
affordable and integrated. Application of high-bandwidth and low-cost wireless transmissions, such
as the Internet of Things and other technologies, to enhance the characterization and evaluation of
the operating state or abnormalities and malfunctions of the object system. The distance between
the construction of cyber-physical systems and intelligent systems must be increased. Sensors are an
integral component of the digital companion system and can be indispensable for comprehending how
objects interact. A system or platform that integrates sensing, data acquisition, and data transmission
at a low cost can be constructed using a variety of new sensing means or modules that are compatible
with the existing object system.

3.2.4 PLM-Based Data Management

PLM-based data management refers to the formulation of a framework for integrating product
information based on the architecture of the platform, so that all product-related data are highly
coordinated, integrated, and shared. PLM-based data management technologies primarily consist
of object-oriented incorporation and integration technologies with application software. Object
modeling technologies that facilitate the modeling and management of product lifecycle data. Data
warehouse administration systems facilitate data integration and decision-making [36].

3.2.5 Life-Cycle Data Management

The complex system’s entire life cycle data must be stored and managed in order to support the
digital counterpart system. The use of cloud servers for the distributed administration of the system’s
massive operational data, which enables high-speed data reading and redundant, secure backup, offers
sufficient and trustworthy data sources for intelligent parsing algorithms [37]. By recording its entire
life cycle, the system may be capable of historical state replication, structural health deterioration
analysis, and intelligent analysis of any historical moment. This can also provide sufficient data for
data analysis and presentation. The enormous quantity of historical data also provides abundant
examples for data mining. By extracting the data’s practical characteristics and analyzing their
correlations, it is possible to obtain a great deal of unknown but potentially valuable information. It is
increasing knowledge and comprehension of the system’s mechanism and data characteristics, as well
as realizing the fantastic properties of the digital counterpart. The implementation of long-term data
storage and management necessitates redundant and distributed server-based storage. For the digital
twin system, it is difficult to optimize the data distribution architecture, storage methods, and retrieval
methods to achieve real-time and reliable data reading performance. Constructing a data center or data
management system with a secure private cloud at its core is currently the more practical technical
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solution, particularly when considering the data security of industrial enterprises and information
protection in the equipment industry.

3.2.6 Interaction and Collaboration Technology

Interaction and collaboration refer to the use of Virtual Reality (VR), Augmented Reality
(AR), and Mixed Reality (MR), as well as other immersive experience human-computer interaction
technologies, to achieve interaction and collaboration between the digital counterpart and the actual
entity. VR technology can provide a hyper-realistic depiction of the system’s manufacturing, operation,
and maintenance status. It can provide multi-domain and multi-scale monitoring and evaluation of
each complex system’s off-weight subsystem. The superimposition of digital analysis yields a virtual
mapping to the constructed twin system while precisely replicating the physical system [38]. VR
technology enables users to comprehend and acquire diverse information regarding the target system’s
principle, structure, characteristics, and change trends. The structure and status of a system’s various
levels will be presented to the user via straightforward clicks and taps. This can be very essential for
monitoring and guiding the production of complex equipment. The complexity of VR technology for
complex systems resides in the arrangement of numerous high-precision sensors for system operation
data collection. The virtual reality technology impediment must be eliminated and enhanced to provide
a more realistic virtual reality system experience. These data presentation technologies can be utilized
or borrowed by industrial data analysis to improve the efficacy and effectiveness of data analysis
visualization.

3.2.7 Secure Interconnection Technology

Secure interconnection technology is the technology to secure and protect the integrity, validity,
and confidentiality of digital twin models and data from tampering. Current research includes
predicting and obtaining optimal defense strategies for possible attacks on digital twin models and
data management systems, organizing and ensuring tamper-proof, traceable, and traceable twin data
based on blockchain technology [38].

3.2.8 High-Performance Parallel Computing Technology

High-performance parallel computing refers to the optimization of the data structure and
algorithm structure in order to increase the computing speed, transmission network real-time, and
digital computing capabilities of the computing platform upon which the digital twin system operates.
Real-time efficacy is a crucial performance indicator for digital twin systems. A distributed computing-
based cloud server platform is an essential assurance. In order to ensure the system’s real-time
performance, it is also essential to optimize the data structure and algorithm structure to enhance
task execution speed [39]. An important aspect of its application to the digital twin is designing the
optimal system computing architecture to meet the real-time analysis and computing requirements
of the system, considering the computing performance of the system’s computing platform, the time
delay of the data transmission network, and the computing capacity of the cloud computing platform.
The level of digital computing capability of the platform directly influences the overall performance
of the system, and its significance as the computing foundation of the entire system is undeniable. The
real-time nature of the digital twin system necessitates a high level of computational performance,
which is contingent upon the system’s computing platform and structure being optimized. Therefore,
advancements in these two areas are required for the advancement of digital twin technology. The
quantity of computer development and algorithm design optimization restricts the processing speed
of the system. Cloud-based high-performance data analysis and high-performance computing in
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industrial real-time situations are two approaches that can be considered to meet the high-performance
computing requirements.

3.2.9 Other Technologies

The proliferation of artificial intelligence fuels the development of digital twin technology, while
the rapid evolution and maturation of digital twin technology is stimulated by the proliferation
of intelligent manufacturing and industrial intelligence. Current research in data generation, data
analysis, and modeling considers the essential differences between big commercial data and big
industrial data, such as abnormal or fault state simulation and injection, quantitative analysis of
industrial data availability, enhanced deep learning with small or no samples, etc. The research focuses
on data generation, data analysis, and modeling, as well as any associated difficulties. Methods and
systems for semi-physical simulation, validation, and evaluation are also required for the development
of digital twin platforms.

4 Digital Twin Applications
4.1 Aerospace

In 1970, NASA launched Apollo 13 and constructed an almost identical physical model of Apollo
13 on the ground [5], which replicated actual operating conditions to simulate behavior in real time.
Before the spacecraft executes its mission, its digital duplicate simulates the spacecraft’s mission
execution in a virtual simulation environment. In this manner, we are able to comprehend the state,
behavior, mission success probability, operation parameters, and some issues that were not considered
or estimated during the design phase of the aircraft in its actual use environment, thereby providing
a foundation for subsequent task formulation, task parameter determination, and decision-making
under abnormal conditions. By modifying the virtual environment’s parameter settings, the operation
of the aircraft in various service environments can be simulated; by modifying the mission parameters,
the impact of various mission parameters on the mission success rate, aircraft health and lifetime, etc.,
can be simulated. In addition, it can be used to simulate and validate the efficacy of various failure,
degradation, and damage mitigation strategies designed to increase product health and longevity.

The physical model was tasked with reflecting the Apollo 13 spacecraft’s flight conditions as
accurately as feasible during the mission. The siblings were then used to recreate various Earthly
events in order to assist astronauts in making decisions in life-or-death situations. During NASA’s
Apollo program, the twins were implemented in hardware rather than digital form [5]. This method
was successful and flourished during the Apollo 13 space mission despite the exceedingly high cost
of creating physical twins. After Apollo 13, numerous space programs utilized “physical twins” for
decades. Physical twins are of limited utility to the profit-driven manufacturing and civil aviation
industries due to the construction process and expense. However, early physical twins demonstrated
the significance of the twin concept in managing, diagnosing, and predicting health. Additionally, it
enabled the construction of digital twins in the future.

Emerging technology referred to as “digital twins” can provide high-fidelity, real-time virtual
copies of aircraft counterparts. Twins capable of gathering, combining, storing, analyzing, and feeding
data can be created, allowing for an ongoing evaluation of their corporeal entities. Due to the
explosive growth of digital duplicates, the aerospace industry has shifted from reactive maintenance to
proactive and predictive maintenance. This is done to improve the operational availability and efficacy
of platforms, extend their lifespan, and reduce their lifecycle costs. Using multiphysics modeling
and data-driven analytics, a new paradigm called the “digital twin” has been created. The DT is
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a dynamic representation of a physical system or asset that responds continuously to operational
changes based on online data and information and can predict the future of its physical counterpart.
The author examines the general framework for developing a digital twin in tandem with industrial
IoT technologies to advance the autonomy of aerospace platforms and organizes and summarizes
some of the DT’s detailed applications in aerospace.

Tuegel et al. [40–42] proposed a research framework for the use of digital twins as virtual sensors to
predict the longevity and structural integrity of an aircraft structure. The research cited above [41,42]
defined the airframe digital twin (ADT) as a computational model (specific model) of an individual
aircraft. Through the development of customized structural management plans, this methodology can
improve the way in which USAF aircraft are managed throughout their lifetimes. Using computational
modeling, ADT can provide supervisory makes for each aircraft in the inventory and function as a
virtual health sensor to predict future maintenance requirements for individual aircraft. Yang et al. [43]
describe an automated image tracking method for obtaining data on fracture tip deformation and
crack extension behavior of aluminum alloys and steel for digital twins of aircraft. The acquired
data enables the digital twin model to predict the subperiodic fatigue fracture growth mechanisms of
aviation materials throughout their lifecycle, thereby reducing production costs and implementation
time [44]. Majumdar et al. [11] developed a DT model to predict how multi-physical environments
(such as electric fields) cause changes in the microstructure of structural composites, which can affect
structural performance. Bielefeldt et al. [45] proposed a digital twin approach for identifying fatigue
fractures involving the use of an analytical model of an aircraft wing with embedded composite
material alloy particulates in vital sections of the aircraft. To detect changes in structural risk, the
authors simulate the stresses applied to the wing of an airplane during flight and then simulate the local
particle reactivity in the critical zones. The work presented in [46] used the finite element alternative
method (FEAM) to determine stress distribution [47] and a modified moving least squares (MLS)
method to determine exhaustion breakage expansion percentages [48] to provide descriptive and
predictive capabilities for the DT of an airplane. Thus, fatigue resistance mathematics can identify and
predict damaged aircraft structures. Li et al. [49] proposed employing an improved dynamic Bayesian
network model to govern the DT of aircraft wing state data. The research described in [50] combined
the development of residual stresses modeling, firing on all cylinders analysis of thin-shell frameworks
[51], and predictive maintenance [52] on the basis of related concepts to create a computational
guidance foundation for residual stresses prediction of full-size laminated composite structures, which
was successfully applied to wind turbine blades. Some of the most advanced aircraft DT analyze the
response of guided waves to predict damage in real time [53]. Tuegel et al. [40] proposed a model that
restructures the aircraft structural life prediction process and illustrates how to use digital twins to
predict the life of aircraft structures and ensure their structural integrity by combining the estimation
of structural deformation and temperature with the reaction to aircraft systems, the resulting local
destruction, and temporal state evolution. After more than a decade of development and with the
assistance of expert teams, the digital transformation of the aerospace industry has made remarkable
progress in numerous areas. Many designers are now familiar with and increasingly employ digital
simulation technology. The aerospace industry is progressively transitioning from traditional system
engineering to model-based aerospace system engineering (MBASE) [54], with digital twin as the next
frontier. The application of digital twin in the aerospace industry is depicted in Fig. 5.
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Based on multi-domain refinement modeling and simulation technology, construct a demand
model, functional model, 3D structure model, circuit simulation analysis model, strength simulation
analysis model, aerodynamic thermal simulation analysis model, flight performance simulation
model, etc., to exhaustively describe all the characteristics and related information that should be
considered during the product’s design phase. At the same time, combined with the same type of
historical product data, key index parameters, design constraints, and other references, it adopts
critical technologies such as multi-physics field coupled simulation, multi-disciplinary joint simulation,
and data mining to carry out model-based collaborative design and virtual closed-loop verification,
and the various types of refined digital simulation models resulting from this process are the foundation
for constructing the digital twin.

The manufacturing process employs a refined design model derived from the 3D structure model.
A production digital twin is created through the development of multiple process-oriented models,
such as a process model, production line model, assembly model, material model, and CNC model, in
conjunction with CPS data. For intelligent processing, detection, and modeling fusion, 3D scanning,
multi-network fusion, process simulation, machine learning, and other virtual reality technologies
are utilized. Building test part product models, test equipment models, test fixture models, test scene
models, test environment models, and other test process-oriented models, as well as environmental
monitoring data, test result data, work condition data, and test data collected based on CPS during
the test process, distributed control, process modeling simulation, and other data model fusion, are
the pillars of the testing process. During the flight test, digital twin technology is utilized to aid in the
verification of reasoning and prediction. In the ground test, process optimization, fault detection,
process monitoring, and intelligent evaluation are conducted. The training procedure is based on
a refined, experiment-tested design model. It entails constructing training scene models, task flow
models, product condition models, etc., adopting interaction and collaboration-key technologies such
as VR/AR, developing virtual training mechanisms, and enhancing training plan formulation, training
effect tracking, training reminder, and other functions. It also includes simulations of process planning.

The O&M process-oriented models, including product defect diagnosis and life prediction models,
are built and combined with product operation data, condition monitoring data, and product quality
data. In order to complete the work, machine learning and other data model fusion technologies,
VR/AR, and other interaction and collaboration technologies are utilized. Due to the exceptionally
long lifecycle of aircraft products, the aerospace industry has worked for decades to enhance product
lifecycle management (more than 40 years, including development, production, and use). Despite this,
the industry is still experiencing unprecedented stress due to production and service cycle costs, as well
as difficulties with profitability in innovation, global competitiveness, and risk management. Contrary
to other industries, new product development cycles for aerospace systems continue to expand as
product complexity rises. In contrast, aircraft manufacturers and commercial airlines are sensitive
to the uncertainties of the global economy and the multiple crises that effect them financially and
technically (such as New Crown Pneumonia). This involves employing a prudent management strategy
to ensure the overall efficacy of manufacturing processes and aircraft operations, such as optimizing
maintenance, repair, and overhaul and enhancing aircraft reliability to reduce unplanned maintenance
and increase the effectiveness and cost per flight of planned maintenance.

From product design to launch, including space science, security and defense, commercial aviation,
and aerospace manufacturing, the DT is frequently employed in the aerospace industry. In the
aerospace industry, research on digital twins encompasses all scales, from the individual component
to the fleet. Aerospace manufacturing, operations, and maintenance (O&M) have been substantially
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enhanced by DT and related technologies. Engineers can use digital twin technology to detect potential
problems with airframes, engines, and other components to ensure the safety of passengers.

4.2 Manufacturing
In 2015, Professor Rios and his team proposed constructing digital twins for the manufacturing

industry, overcoming the restriction that digital twins were only used in the aerospace industry [55].
According to Lee and his team, the use of digital twins in sophisticated manufacturing should not be
limited to individual products. Employ big data analytics and cloud platforms on digital siblings as the
foundation of “Industry 4.0” [56]. For instance, DT is the foundation of “Industry 4.0”, and extensive
data analysis and cloud platforms are applied to DT [56]. Since then, research on the application of
DT to manufacturing has persisted and attracted considerable domestic and international attention.
DT is a crucial technology for businesses pursuing the strategic objective of smart manufacturing. As
the manufacturing industry continues to move toward intelligence, this technology becomes a crucial
link between traditional and intelligent manufacturing [57].

4.2.1 Application of Digital Twin in Product Manufacturing

The production mode of modern businesses is progressively shifting from mass production to
small-batch, customized production. The comprehensive digitalization of manufactured products is a
prerequisite for personalized manufacturing, which has emerged as a significant symbol of intelligent
manufacturing. Establishing a digital twin model of a product can reduce the time required for design
and production, meet the requirements of customer customization, and manage the entire life cycle of
a product to increase the speed with which a business can respond to market demand. Designers who
design too many products find it difficult to consider all aspects of product concepts, aesthetics, and the
coordination of critical functions, as they must achieve outstanding and rapid client communication
[58]. Tao et al. [59] proposed a digital twin-based product design model that incorporates concept
design, detailed design, and virtual verification in order to make product design, manufacturing, and
service more efficient, intelligent, and sustainable. Soderberg et al. [60] utilized a digital twin model
of the product assembly process to rapidly transform products from mass production to individual
manufacture. Um et al. [61] studied a CPS-based generic digital twin model. This model permits the
transfer of product data through the product simulation, production, and manufacturing phases in
order to achieve scalability and high modularity in the product assembly and manufacturing process.
Schleich et al. [62] proposed an integrated digital twin reference model for physical products with
essential model properties including scalability, interoperability, extensibility, and high fidelity, as well
as the ability to combine, decompose, transform, and evaluate the model during the product design
and production process. The product digital twin concept provides a real-time mapping of physical
entities in virtual space. Through the Internet and the Internet of Things, it is possible to access real-
time data on physical objects and a variety of information generated throughout the product’s life
cycle [61]. This data and information can be utilized to enhance the design and functionality of the
product.

In contrast, the digital twin model of the product can simulate the assembly process of complex
products and optimize the design parameters of the product. Zhang et al. [63] proposed a five-
dimensional digital twin modeling technique for manufacturing systems that implements the mapping
between physical and virtual siblings. In addition, it proposes a framework based on an extensible
model and deduces some digital twin dependencies and responsibilities. Using DT, Soderberg et al. [64]
studied the geometric motion of product production. They created a DT system for guaranteeing
product dimensions by utilizing a digital twin body for product coordinates and the machining
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trajectory. By simulating the product coordinates and machining trajectory with the digital twin, error
analysis and trajectory optimization were performed, thereby improving the positioning and trajectory
of the product and ensuring its machining quality.

4.2.2 Digital Twins in Manufacturing Equipment

The fundamental element of the production and processing procedure is manufacturing equip-
ment. Intelligent, digital, and networked transformation of manufacturing equipment is required for
the development of intelligent manufacturing. The equipment that digital twins can transform consists
primarily of highly digitized equipment that can be wholly or partially automated. DebRoy et al. [65]
investigated an additive manufacturing technology based on digital twins in order to partially reduce
the number of defects and experiments. The digital twin model incorporates observable physical
parameters such as microstructural changes in materials, heating and cooling rates, solidification
parameters, residual stresses, and deformations into a numeric framework. Cai et al. [66] developed
a digital twin model of a CNC machine tool that incorporates manufacturing and sensor data to
enhance the physical machine tool’s reliability and machining capability. Scaglioni et al. [67] used the
digital twin model of the MandelliM5 machine tool as a research site to investigate the adaptability
of the machine tool’s structural components, cutting process model, drive chain model, and control
system model using finite element analysis. Grieves [1] designed a web-based platform for machine
tool condition monitoring. The mobile device is able to monitor the 3D model and real-time status of
the machine. Simultaneously, augmented reality technology provides users with a visualization of the
machine tool machining process in real time. Current research on digital twin-based manufacturing
equipment centers on modifying existing automated equipment with digital twins to make production
equipment more competitive than traditional automated equipment in terms of fault prediction and
maintenance [68]. The majority of what is known about conventional manufacturing machinery
comes from geometric and physical failure prediction models [69]. However, these methods rely too
heavily on empirical data and have a low response rate to uncertain and episodic events. Through
geometric, physical, behavioral, and rule-based modeling, digital twin-based equipment can evaluate
the current condition of the equipment. Consequently, the development of manufacturing devices with
digital twin capabilities is an excellent impetus for upgrading manufacturing industries to intelligent
manufacturing.

4.2.3 Digital Twin Atelier

The workshop is the basic unit of the manufacturing industry, and obtaining digitalization and
intelligence in the workshop is essential for achieving intelligent manufacturing. Rapid progress has
been made in real-time data collection, information system development, data integration, and virtual
modeling and simulation as a result of the extensive use of information technology in workshops [70].
Building on this foundation, the interconnection and further integration of workshop information
and physical space, as depicted in Fig. 6, will be the direction of workshop development and the only
way to accomplish intelligent workshop production and control [71]. As a cornerstone of human
functioning, physical workshops and their digital counterparts enable better resource management,
increased productivity, and enhanced decision-making based on real-time data [72].

Tao et al. [73,74] proposed the concept of Digital Twin Shop-Floor (DTS) for the interaction
and integration of physical and virtual spaces in manufacturing workshops. They separated the digital
twin shop into four parts: the physical shop, the virtual shop, the shop service system, and the shop
twin data. Zhang et al. [75] proposed for insulating glass manufacturing lines a rapid, individualized
design strategy based on digital twins. This method can distribute process data in real-time alongside
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the system model. Before production, the system can be designed digitally with authority. Small and
medium-sized manufacturing companies rarely adopt fully automated data collection methods or
systems due to the expense or system complexity. However, collecting data from the manufacturing
process is essential for manufacturing companies to effectively adopt digital twins. The dearth of
capability and development advantages of small and medium-sized enterprises (SMEs) in developing
digital twins has not yet become apparent, resulting in a lack of motivation for SMEs to transform and
upgrade the digital twin. Tuegel et al. [6] established a digital twin-based learning factory to meet the
learning requirements of SMEs for a user-friendly, scalable, service-oriented control system based on
the digital twin. Additionally, Graessler et al. [76] devised an employee-based digital twin production
system in order to consider production employees as part of an integrated control system. In addition
to including employee skills and experience, it also includes personalized attributes such as employee
mood and demeanor, thereby improving the system’s transparency and comfort.
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Figure 6: Digital twin in the smart workshop

With the intensification of basic technology research, DT technology has attained an increasing
number of research outcomes in intelligent manufacturing, demonstrating its significant technical
advantages. Nevertheless, DT technology in the field of intelligent manufacturing is still in the
experimental verification phase [77], primarily because the fundamental technologies have not yet been
fully broken through, data collection and processing are insufficient, multidisciplinary integration is
difficult, and DT technical standards are not yet mature. The discipline has not yet developed into
a system. Nonetheless, with additional research on digital twins by related businesses and research
institutions, a breakthrough in crucial DT technologies will be accomplished, and its application in
intelligent manufacturing will expand.

4.3 Smart Driving
Through research in the aircraft industry, the concept of digital twins was devised and found

numerous applications. In the automotive industry, digital twins are primarily used to create fully
or partially virtual vehicle models. To provide customer-specific support, the production process
must have access to information on vehicle functionality and behavior while evaluating real-world
performance. Before production begins, automobile manufacturers use technology to create the ideal
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automobile product [78]. They simulate and assess potential production and on-road issues. The digital
twin can be presented as a model replica or a collection of interwoven components, as shown in Fig. 7
of the simulation. Digital twin technology is not limited to conventional automobile manufacturing,
but can also benefit manufacturers of autonomous vehicles. Fig. 8 depicts the four levels where digital
twin can be applied in smart driving applications: physical driving layer, twin data layer, twin driving
layer, and twin application layer.

Figure 7: Digital twin vehicle simulation
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Figure 8: Digital twin in the application of intelligent driving
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The physical driving layer includes communication devices, sensing devices, data processing
devices, and data storage devices. This layer’s primary responsibilities are to accomplish accurate
data sensing and ensure data communication in real time. Digital marking technology is required
to accomplish global and standardized digital marking of cars and roads for data acquisition and
sensing. Edge computing at the end of the Internet of Things and the Internet of Things can be
used to intelligently perceive the operational state data of high-dimensional, multi-node, large-scale
complex systems. Data interaction and transmission require communication methods such as fiber
optic communication, satellite communication, wireless communication, and 5G, among others.

The twin data layer pools and processes data resources obtained from the physical driving layer to
establish a foundation for the twin driving layer. The data consists of vehicle data, environmental data
(weather data, geographical data, etc.), and personnel data (various driver behavior data). Because
driving data has characteristics such as dispersed sources, large data volumes, and varied structures,
data middleware technology can also be applied to digital twin driving. A combination of edge
computing and cloud computing can be utilized to avoid the superfluous data processing time caused
by cloud computing, thereby guaranteeing the real-time nature and precision of twin driving. The
twin driving layer precisely maps and intelligently supports the physical vehicle while simultaneously
updating the twin driving model in real-time. This layer is the foundation of digital twin driving. Digital
twin grid cannot rely on traditional experience-driven modeling approaches because it employs data-
driven technology based on deep learning and data extraction rather than experience-driven modeling.
Data model knowledge integration processing technology is required to create a generally intelligent
system that combines multiple mechanism models with human knowledge and experience [79]. The
twin application layer expands or improves the functional interfaces for physical car driving data
analysis and visual interaction on the basis of the digital twin driving model. Big data technology
and artificial intelligence technology are primarily responsible for data analysis in the twin application
layer, whereas 3D visualization simulation technology meets the real-time nature of twin driving by
simulating a driving scenario in multi-physical fields and full-scale, sacrificing partial accuracy for
faster simulation technologies such as model downscaling technology.

The Chinese Ministry of Industry and Information Technology’s Digital Twin Application White
Paper 2020 [80] identifies the establishment of digital mapping of entities as one of the pillars of
constructing a digital twin system of virtual simulation platform included in the automated driving
test system that combines virtual simulation with the natural environment. Wang et al. [81,82] utilized
Vehicle-to-Cloud (V2C) communication to transmit sensor data to the virtual space via a server,
calculate the corresponding model to obtain decision proposals, and provide the driver with real-time
feedback. Using feature matching, Pan et al. [83] created a more realistic digital twin in the virtual
scene by fusing images with texture features and continuous video segments obtained from the real
world. Wu et al. [84] created a mixed reality framework for multi-view real-time monitoring of large-
scale scenes by fusing 2D panoramas, satellite textures, and 3D models to produce 3D road scenes
with digital duplicates. Li et al. [85] proposed a three-dimensional scene reconstruction method based
on the binocular vision for research involving the construction of driving test scenarios for automated
vehicles. This method can be used to reconstruct large-scale intelligent driving scenes in real-time,
meeting the needs of intelligent driving systems. Tang et al. [86] investigated a method for integrating
a simulator into a scenario involving autonomous driving. Simultaneously, the driver controls the
background-driving vehicle via a driving simulator to simulate real-world driving behavior, thereby
facilitating the simulation testing of autonomous driving vehicles. Song et al. [80] proposed a virtual
joint simulation technology platform with a sensor module, a vehicle dynamics module, a scenario
module, and a control algorithm module to address complex problems such as all-weather roads,
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sensor selection design, automatic control algorithm, and driving performance evaluation. This
platform enhanced the system’s autonomous driving capability.

The advent of digital twin technology, the linchpin of Industry 4.0, has created unprecedented
opportunities for the design and testing of intelligent automobiles. Theoretically, the digital twin
provides unlimited reusability for testing under extreme conditions. It will result in safer and more
effective vehicles and reduce the cost of complex physical test configurations. In addition, quantitative
evaluation of vehicle performance parameters is a possibility for the future of continuous data
processing. As artificial intelligence is further incorporated into the framework, it will be possible
to evaluate the performance of current scenarios and accurately predict future electric vehicle perfor-
mance metrics. Overall, the digital twin, as a universal technology for the interactive integration of the
physical and informational worlds, is a crucial enabling technology for promoting the application of
emerging manufacturing models such as smart manufacturing, industrial Internet, and the integration
of two industries. Companies in the automotive industry and their suppliers should prioritize critical
challenges and make greater efforts to investigate the application of digital twin technology in other
fields. Digital twin technology can pave the way for resilient, cost-effective, safer, and adaptable smart
electric vehicles by eliminating potential defects during the design phase.

4.4 Smart Energy
The digital counterpart is also applicable to energy systems. In 2000, academician Lu Qiang

proposed the idea of a digital power system [87]: “The physical structure, physical characteristics,
technical performance, economic management, environmental indicators, personnel conditions, and
scientific and educational activities of the actual operating power system are described and reproduced
digitally, figuratively, and in real-time.” Digital power systems can be used “to improve the safety
and stability of the system, to develop and implement economic operation strategies, to implement
emergency control and anti-accident control of the power system, etc.”, according to the literature
[88]. The digital power system proposed in the literature [89] is the power system’s digital counterpart.
Recent studies have applied the digital twin’s technical framework to the online analysis of power
systems [90].

The digital twin grid is intended to reflect the entire process of real grid operation, including
equipment management, grid dispatching and operation, and electricity service applications in various
scenarios. It consists of multidimensional, heterogeneous data from global sensing, historical accumu-
lation, operation monitoring, and other sources. As depicted in Fig. 9, the digital duplicate grid is a
complex system that coexists with the real grid and reflects the entire operation of the real grid.

The formation of a region-wide digital identity within the physical entity grid is necessary for
accurate information matching, connection, and control between the digital twin grid and the physical
entity grid. Data sources for intelligent analysis and decision-making are derived from the physical
entity grid and transmission lines to the digital counterpart grid. Sensing and monitoring systems and
data collection devices are utilized to precisely sense and collect the state information of the physical
entity grid, such as equipment operation and personnel behavior, in real-time. The grid brain is a digital
space-based data resource system, digital twin model, and machine intelligence platform. The data
resource system provides the foundation for the digital twin grid. By constructing a data center, data
is collected, collated, managed, and utilized in a unified manner to provide data for the construction
of the digital twin model and the machine intelligence platform for intelligent operation and decision-
making.
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Figure 9: Digital twin grid operation mode

The basis of the digital twin power grid is the digital twin model with real-time mapping, which
creates a multidimensional data space for the power grid. In digital space simulation, it employs a
building information model (BIM) and engineering information modeling (EIM) to create a virtual-
real mapping of equipment, subsystems, and the power grid. Simulation in digital space forms the
apparatus, subsystem, and grid models of digital twins. Intelligent operation decisions are made by the
intelligent analysis platform for the digital twin grid. We use artificial intelligence algorithms to analyze
and simulate the digital twin model, provide real-time feedback to the digital twin model, optimize
the model, and develop a self-optimizing intelligent operation model. This model is realized by
constructing a platform for intelligent deep learning analysis that incorporates advanced technologies
such as “big cloud, things, mobile, and smart chain.”

The digital twin grid includes “self-learning and self-optimizing” functions in its administration
and operation. This function enables reverse control of physical grid equipment and associated
topics by providing autonomous diagnostic and early warning, intelligent identification, condition
assessment, planning, and decision-making of equipment and power grids (e.g., individuals). This
strategy enables prompt problem-solving and the deployment of grid resources in a timely manner,
resulting in an efficient grid operation. The essence of the optimal operation of the energy Internet,
according to the literature [91], is “the process of fully mobilizing controllable resources of the system
(source, network, and load) to achieve the goals of operating cost reduction and energy efficiency
improvement based on the system operation law (tidal equation) and considering the operational
constraints (adjustable and affordable range of components).” The digital twin of the energy Internet
can, among other things, fully utilize the physical model of the network, online measurement data
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from advanced metering infrastructure, historical operation data from the network, and integrate
multidisciplinary knowledge from electrical, fluid, thermal, computer, communication, climate, and
economy to simulate various physical quantities, time scales, and probabilities. Integrating energy and
digital technology will facilitate the development of a new intelligent energy system that is integrated
and intelligent [92]. Digital twin technology in the energy sector is in its infancy as an advanced digital
technology, but its application and development are accelerating. Numerous academics and specialists
are researching this topic and achieving remarkable results.

Xu et al.’s [93] demonstration of the construction of digital twin models for power plant units
illustrated how to accurately reproduce the thermal performance of power plant units operating under
different conditions. The study demonstrates that low load operation in coal-fired power plants can
reduce plant longevity and increase long-term operation and maintenance expenses. limited load
operation can also lead to losses in thermal efficiency and limited capacity elements, which have a
negative effect on the overall operating economy. Zhou et al. [94] proposed an online analytic digital
twin (OADT) strategy to facilitate the implementation of a novel grid-based online analytic solution
architecture. Hwang et al. [95] developed a micro-energy grid reference model by maximizing the use
of various energy sources, including electricity, heat, and natural gas, to generate, utilize, and distribute
energy efficiently. Yamazaki et al. [96] presented a strategy and data processing framework with
analytic infrastructure to provide advantageous and innovative applications and services for future
smart grids. Luo et al. [97] introduced a multi-intelligent body system (MAS) and blockchain-based
two-layer energy transaction framework. A multi-agent system is designed to enable the prosumer
network in the first layer. In the second stratum, a transaction settlement mechanism based on
blockchain technology is proposed. This would allow for the secure and trustworthy settlement of
electricity trading transactions. Using blockchain technology, numerous signatures, and anonymous
cryptographic message flows, Aitzhan et al. [98] were developing an energy trading system that allows
users to negotiate energy transactions securely and in secret. Customers could exchange energy-related
transactions over a highly secure and encrypted network within an intelligent grid. Yang et al. [99]
proposed an extreme learning machine (ELM)-based distributed virtual power plant (VPP) optimal
scheduling strategy to maximize the role of DERs (distributed energy resources) within the grid.

Similarly, Abdolrasol et al. [100] developed a VPP optimal dispatch control model that uses the
binary backtracking search algorithm (BBSA) to select the best unit to generate the optimal dispatch.
The creators of the method created by Camal et al. [101] provided (DER) optimal scheduling for VPP
and used a quantile regression forest model to predict the overall output. Dall’Anese et al. [102] utilized
a primal-parity type strategy for instantaneous optimization of real-time VPP control. VPP can adjust
DER output to preserve grid quality and meet customer and utility objectives. Pal et al. [103] also
proposed the precise form of a residential user capable of energy trading between consumers and load-
serving enterprises. Zhong et al. [104] proposed a DR model for a V2G mobile energy network in which
electric vehicles transmit and store energy between network nodes. The model takes into account the
stability of the DR algorithm for controlling the charging and discharging demand of electric vehicles.
The experimental results demonstrate that the algorithm is resistant to mobility-induced coupling.

The digital twin technology for intelligent energy systems is utilized throughout energy produc-
tion, transmission, storage, consumption, and trading, to summarize the preceding. It helps the energy
sector overcome its time and space constraints by fostering comprehensive integration and unified
dispatch management of multiple industries; It horizontally integrates the businesses of energy market
participants and improves energy efficiency. The digital twin technological ecosystem of the smart
energy sector (see Fig. 10) is segmented into six sections based on the entire lifetime of the energy
system: energy production, energy transmission, energy distribution, energy consumption, energy
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storage, and the energy market. As the interaction between the various components intensifies, the
sustainable growth of the smart energy sector facilitated by digital twin technology is progressively
realized.

Figure 10: Digital twin technology ecosystem of the smart energy industry

Rather than a detailed numerical simulation of physical systems, conventional state sensing,
straightforward AI, machine learning, or other data analysis, the digital twin is an organic combination
of all three technologies. The digital twin digitally imitates the energy system and establishes an
informational link between the digital and physical worlds; First, it uses complete information and
precise mechanisms to predict the future, then it evolves to speculate the future based on incomplete
information and uncertain mechanisms, and finally, it realizes the twin co-intelligent state of shared
intelligence and co-evolution among the digital twins of the energy system [105].

As a digitally sophisticated technology, the application of digital twin technology in the energy
sector is still in its infancy, but it is accelerating. Combining energy and digital technologies enables
the creation of a new intelligently integrated energy system. The development of such a system has
become a major trend in the energy sector. Digital twin technology can establish precise connections
between the physical and digital worlds, thereby aiding in the resolution of technical obstacles
impeding the development of smart energy and enabling accurate modeling and management of energy
interconnection networks from multiple perspectives.

4.5 Healthcare
The primary application of DT in healthcare is the creation of virtual versions of physical entities

or working processes based on real multidimensional and diverse data, such as digital representations
of patient states, anatomical structures, or virtual environments resembling actual institutions. In
layman’s terms, a precise model is constructed in the virtual world and then observed and analyzed
for changes in the stimulus in response to circumstances, such as the feedback generated by the
introduction of a new drug or a new treatment. In this procedure, data from electronic medical records,
historical disease registry databases, daily behavior databases, and medical wearable devices are used
to construct a model.
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In the healthcare industry, the DT is equivalent to using digital means to replicate corporeal
objects or services. It offers a safe environment for testing the efficacy of the involved systems. In
terms of practical applications, it can provide doctors with information on surgical success rates, assist
them in making judgments regarding treatment options, and manage chronic diseases in patients. The
WuXi AppTec team has effectively developed a DT model using the machine learning platform and
the Alzheimer’s disease model, paving the way for the application of DT technology in the healthcare
sector.

As illustrated in Fig. 11, the construction of human digital twins has generated excitement in the
medical and clinical fields, as it provides insight into what is occurring within the physical twin. The
digital twin can predict the onset of illness by analyzing the personal history and current circumstances
of the physical counterpart, such as location, time, and activity [106]. This will result in a shift from
“one-size-fits-all” medical treatment to individualized treatment based on the individual’s “material
assets,” which are determined by the individual’s structural, physical, biological, and historical
characteristics. The virtual physiological person (VPH) [107] was introduced as a precursor to the
human digital counterpart two decades ago. It is a comprehensive computer model designed to
“collaboratively study the human body as a single complex system.” In order to evaluate the efficacy
of treatment strategies, physicians and researchers can customize VPH for any patient. For example,
the VPH could be utilized as a “virtual human laboratory” to facilitate electronic clinical trials or
evaluations [108]. In 2015, French software developer Dassault Systèmes published The Living Heart
[101]. The initial DT of the organ considers all aspects of organ function, including blood flow,
mechanics, and electrical impulses. The software requires the entry of 2D images, which are then
converted into a reliable 3D organ model. Cardiologists at the Heidelberg University Hospital (HUH)
in Germany are actively testing and researching Siemens Healthineers’ [109] second cardiac DT.
Siemens Healthineers utilizes a vast database containing over 250 million annotated images, reports,
and operational data. The artificial intelligence-based DT model is trained to create 3D images from
data on the heart’s electrical properties, physical characteristics, and structure.

Biological human body       Medical data    Twin digital human
body

heart                 Airway system       Intracranial tumors

Figure 11: Digital twin in healthcare
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The Computational Biofluidics and Biomechanics Laboratory (CBBL) at Oklahoma State Uni-
versity created a digital duplicate of the human airway system [110–114]. The “Virtual Human V1”
prototype was the first of its kind and featured a high-resolution virtual model of a 47-year-old
male’s respiratory system, lung chambers, and body shell. By simulating this personalized digital
twin using ANSYS computational fluid dynamics, as depicted in Fig. 12, researchers were able to
conduct subject-specific health risk analyses for factors such as occupational silicon exposure. This
includes evaluating the risk of lung deposition, epidermis absorption, and ventilation models in
real time. The personalized treatment of intracranial aneurysms is a last example of digital organ
duplication. Siemens assists neurological healthcare professionals in selecting the optimal implant size
for aneurysms. It also allows physicians to create digital twins of aneurysms and arterial trees based on
rotational angiography scans of individual patients. An aneurysm is a blood vessel protrusion caused
by arterial wall weakness. A frighteningly small percentage of these aneurysms can cause blood clots,
strokes, or mortality. Siemens developed the DT, which received regulatory approval, to aid surgeons
in processing 3D rotational angiography images to construct a DT (representing a 3D model) of the
aneurysm and adjacent blood arteries in order to select the appropriate implant. The customized DT
enables simulations and provides the surgeon with insight into the interaction between the implant
and the aneurysm.

Figure 12: Digital twin human respiratory simulation

In addition to these studies on digital twins of organs, researchers are examining the application
of digital twins in healthcare. Using a UR5 robotic arm, Mathiassen et al. [115] created an ultrasound
imaging system. In their application, the robot was used to isolate the physician from the ultrasound
probe in order to prevent musculoskeletal disorders and discomfort. In [116], the system consists
of a robotic limb connected via a 4G mobile network to an HTC VR system. Due to the lack of
virtual reality system functionality and robotic input, the device cannot be used for remote surgery.
Nonetheless, it can be used to research and perform remote surgery. Liu and colleagues [117] proposed
a digital twin healthcare-based cloud-based healthcare system architecture. This is a novel, adaptable,
and scalable cloud-based framework for monitoring, diagnosing, and predicting the health condition
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of individuals using wearable medical devices, with the goal of achieving personal health management,
particularly for the elderly. Zhang et al. [118] presented MedMon, a medical safety monitor designed to
identify problems with implanted medical devices. Ren et al. [119] proposed a Markov-based dynamic
AD model that regulates the training data pattern using sliding windows. Home Automation Watcher
(HAWatcher), a semantically aware ad hoc system [120] is used to implement intelligent dwellings. In
[121], Smart Hospital recommends AD and intrusion detection systems to identify uncommon patient
health-related events. Medicine has recently begun to investigate digital siblings. Future medical
testing, scanning, and wearable technology may enable us to accurately recreate a digital body and trace
the movement changes of each digital body component in order to improve health monitoring and
management. Telemedicine will also become more prevalent as a result of transmission technologies
like 5G. The first 5G-based remote human surgery for the implantation of a “brain pacemaker” for
Parkinson’s disease has been completed. This has significant implications for the depletion of high-
quality medical resources and the realization of automated diagnosis and treatment.

4.6 Smart City
In a smart city, the DT functions as a bridge between the physical and virtual worlds. It transforms

static city data into dynamic city data and maps the original two-dimensional city information system
to three dimensions. Ideally, the DT of a smart city can simulate the system used to coordinate
and administer the city as a whole. It centralizes city data for integrated city management while
maintaining each municipal subsystem’s decentralized autonomy. Current urban subsystems employ
highly developed digital duplicates. Siemens has a DT for water filtration at the largest desalination
facility in the Middle East, for instance. BP has used digital twins to monitor and sustain its oil and gas
facilities [122], among others [123], and [122] introduced digital twins for urban roads and traffic. In
contrast, the entire city-level digital twin is still in the exploration phase; technical challenges include
accumulating and processing heterogeneous urban data and considering operational costs, govern-
ment support, transition plans, and other non-technical concerns. A few researchers have developed
comprehensive conceptual concepts for city-level digital twins, including [124], who proposed a digital
earth twin for Vienna [125] and [124], and [125], who created a digital twin for the West Cambridge
campus.

The concept of a “digital twin city” was introduced for the first time in the Xiongan [126], a new
area planning, digital map of the physical world. A visible, manageable, and controllable digital twin
city is created using urban data such as people, cars, things, and spaces that encompass the entire area.
Singapore introduced the “Singapore Smart” initiative in 2015. Singapore launched the “Singapore
Smart Nation” initiative in 2015 and began to perceive itself as a smart nation [127]. The following
year, Singapore collaborated with the Massachusetts Institute of Technology (MIT) in the United
States to develop City Scope, a customized urban operations simulation system for Singapore’s urban
planning. With an EUe8 million grant, Smart Santander in Spain has extensively deployed sensors in
cities to sense the operation of the urban environment, traffic, water, etc., and aggregate the data in a
smart city platform dashboard. The platform initially served as a prototype for a digital twin city and
eventually became one of Europe’s replicable models.

The digital twin smart city architecture is intended to create a virtual representation of the
physical city by integrating various urban physical entities and intelligent sensing devices in order to
achieve sensing, monitoring, and the accumulation of urban data and information. This architecture is
comprised of four layers: physical layer, interaction layer, middleware layer, and application layer [128],
as shown in Fig. 13.
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Figure 13: Digital twin smart city architecture

The physical layer is in charge of sensing, monitoring, and accumulating data from diverse physical
entities and sensors. This layer serves as the basis for the complete architecture of the digital twin
smart city. The interaction layer is responsible for transmitting collected data for further analysis and
processing in a secure and efficient manner. It functions as a “bridge” between the physical space of
the metropolis and the virtual space of the digital network.

Five sub-layers comprise the middleware layer: the resource layer, the virtualization layer, the
object layer, the data layer, and the simulation layer. The resource layer offers automated configuration
and deployment solutions for cloud resources, whereas the virtualization layer constructs the archi-
tecture design of distributed applications by decomposing them into independent, loosely coupled,
and independently deployable services. To digitize the processes, elements, and life cycles of the city’s
physical space, the object layer identifies objects, the classes into which they are categorized, and
the relationships between objects. The data layer extracts data from data repositories, evaluates the
condition of physical objects or systems to predict future failures and maintenance needs, and reports
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the results to smart city system administrators. The simulation layer enables the simulation of physical
objects and visualization of the digital twin through simulation tools and design tools, as shown in
Fig. 14.

Figure 14: Digital twin city simulation

The application layer provides a simulation environment that is identical to the physical space and
provides city-centric planning and management, operation and control, defect diagnosis, and service
operation capabilities. This stratum represents the experience and application phase of the digital twin
technology and concept. Future-focused digital twin cities involve more than a simple mapping and
replication of digital elements and the city’s physical area; they also involve the development and
creation of the city under digital management.

The data twin is indispensable for secure and efficient perception calculation, decision feedback,
and rapid and uniform data aggregation. Through the use of GIS and intelligent cloud computing
fusion of Spatio-temporal correlation of large databases and “city hub”, it is possible to achieve
comprehensive integration of physical and digital cities as well as collaborative field management.
It is simpler for city managers to conduct urban simulation, early warning intervention of events, etc.,
and then to optimize urban planning, administration, and citizen services. Data is the most important
strategic asset utilized by digital twin technology. As mobile data consumption increases, it becomes
more difficult to provide adaptable, scalable, and flexible platforms that can address new challenges for
little money and power. Ham et al. [129] proposed a novel architecture for integrating realistic infor-
mation based on crowdsourced visual data into three-dimensional (3D) virtual cities for the dynamic,
immersive presentation of model modifications. During Hurricane Harvey in 2017, Fan et al. [130]
integrated textual and visual geography framework for social sensing technologies proved effective.
Tianhu et al. [131] investigated the current state of digital twin technology and developed a digital
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twin model based on the development of smart cities. A platform for self-aware, self-determining, self-
organizing, self-executing, and self-adaptive urban management and maintenance is constructed using
mapping technology, IoT sensing, collaborative computing, simulation, and deep learning. The Digital
Buildings UK Centre at the University of Cambridge is developing a road map for the digital twin
initiative [132]. The road map outlines the necessary components and stakeholders for the successful
implementation of a digital counterpart in the built environment.

Due to the complexity of cities, urban intelligence is a difficult process. Instead of being an
automated system that is simple to comprehend and predict, the city is an evolving living system.
Physical structures, economic and political activities, social and cultural environments, and ecosystems
undergo daily changes and advancements. The concept of smart cities, which incorporates physical,
social, and intellectual infrastructure, has supplanted the control of a city’s physical expansion. The
coronavirus pandemic of 2019 has negatively impacted education, transportation, and amusement,
making the development of smart cities and the digitization of services even more important.
According to Kumar et al. [133], the four primary pillars of this revolutionary technology research
and application are planning, physical infrastructure, information and communication technology
(ICT) infrastructure, and smart solutions. The evolution of cities into smart cities hinges on these four
factors. Urban digital siblings can support urban planning decisions and improve city management.
Schrotter et al. [134] outlined how 3D spatial data and its models could enhance the current spatial data
infrastructure. The 3D models consist of terrain, block, and roof models. Austin et al. [135] presented
an intelligent architecture for urban digital twins that incorporates machine learning and semantic
modeling. This architecture is complementary and supportive with respect to data acquisition and
processing, event detection, and automated decision making. Dou et al. [136] developed a Spatio-
temporal big data visualization platform to process, analyze, integrate, and display data from multiple
sources in cities. The use of open-source software by Dembski et al. [137] enabled cities to make their
data and software accessible to the public and experts, allowing them to participate in the evaluation
and creation of the city’s digital counterpart. In addition, they created models of traffic and air
pollution to assess their impact on urban planning [138]. Nochta et al. [139] utilized the urban-scale
digital twin model, a recently developed urban study instrument, to demonstrate the evaluation of
various electric vehicle charging station scenarios and their cross-sectoral repercussions.

Digital twin cities are a new technology path for building new smart cities, given the shift
from quantitative to qualitative change of urban accumulation data and the significant advances in
information technology, such as perception modeling and artificial intelligence. It is a cutting-edge
advanced model of urban intelligence and sustainable operation; it is also a city-level innovation
platform that attracts high-end intellectual resources to collaborate, from local applications to global
optimization, and is continuously updated iteratively. Its fundamental value: Establish a new system
based on closed-loop data integration and generate a global digital virtual image space for the city.
Using a digital approach, virtualized interactions, modular assembly, and splicing to create a software-
defined city, Real and virtual data-driven decisions entirely integrate the digital twin city body, allowing
urban operation, management, and services to be modeled, simulated, evolved, and manipulated in
the virtual space. On this basis, it can transform and promote the optimal allocation of urban resource
elements in physical space from virtual to real, as well as introduce a new model for the construction
and administration of new smart cities.

The DT city is a complex and integrated technology system that supports the construction of a
new type of smart city, an advanced model for continuous innovation of intelligent urban operation,
and a future development form of the city in which the physical city in the physical dimension and
the virtual city in the information dimension coexist and blend with the real and the virtual. The
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development of DT began with perception and control technology and flourished with the innovation
of integrated comprehensive technology. On the one hand, the DT city faithfully reflects the physical
city’s condition. On the other hand, it precisely manipulates and intelligently optimizes the real city,
which will drastically alter the appearance of the city, reconfigure the urban infrastructure, and create
a new form of urban development through the interaction between the real and virtual worlds.

4.7 Other Application and Digital Twins Development Platforms
In addition to the applications mentioned previously, digital twins have the potential to be

applied in agriculture, construction, environment, and security, such as real-time tracking of farm
livestock and crop health diagnosis, quality assessment of housing construction, and optimal water
and forest management. Digital twin technology enables IT managers to improve the efficacy of asset
management and monitoring management, and to actualize new-generation data center operations
and management that are three-dimensional and visualized. Adopting digital twin technology could,
for instance, enable a virtual simulation of data centers and allow managers to intuitively comprehend
adequate IT operations data. Digital twin technology enables IT managers to improve the efficacy of
asset management and monitoring management, and to actualize new-generation data center opera-
tions and management that are three-dimensional and visualized. Adopting digital twin technology
could, for instance, facilitate a virtual simulation of data centers and allow managers to intuitively
comprehend effective information in IT operations.

Various applications of digital twins indicate extensive market potential. According to Grand
View Research, the global market for digital twins will reach $7.48 billion in 2021 and is projected
to expand at a CAGR of 39.1% between 2022 and 2030. OnePlan, a company founded in 2019, is a
leader in digital twin technology for venues. The organization will develop data-driven “digital twins”
for all main competition venues at the Paris Games. OnePlan’s digital counterpart and geoinformation
software mapping tools generate digital venues that reflect a given venue’s area space and capacity,
enabling staff to view venues from any angle, in any light or weather. The software allows personnel to
view the venue from any angle, regardless of lighting or weather conditions. The software enables
a variety of functions, including predicting how lighting and sound quality will affect the venue
and allowing staff to determine where to position barricades, barriers, transportation, teams, and
volunteers.

OnePlan is one of many companies to launch a digital twin for venues, as digital twin technology
has been introduced to stadiums on multiple occasions in the past. A good example is the partnership
between FC Barcelona and the Barcelona Supercomputing Center (BSC). In 2019, FC Barcelona
announced a partnership with the BSC, one of the most significant supercomputing centers in
Europe, to develop IoTwins. This novel system employs Internet of Things and artificial intelligence
technologies. This initiative is also supported by the “Horizon 2020” (EU research and innovation
funding) program. One objective of the IoTwins project is to create a digital twin that will initially
function as a decision-making tool for the new stadium project of Barca Espai Barca. This significant
stadium renewal initiative involves the expansion and renovation of Camp Nou as well as the
construction of numerous new venues. It also accumulates anonymous data and creates computer
simulations of the most common crowd movement patterns. The system can provide information to
aid staff in making real-time decisions, arranging for smooth pedestrian movement, predicting foot
traffic, organizing emergency equipment, and arranging venues spatially.

Obviously, the digital twin platform is applied to more than just the construction of venues; var-
ious platforms have varying application scenarios. Ansys Twin Builder’s three fundamental functions
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are model modeling, validation, and deployment. The fundamental research and application areas of
the platform can be categorized into five categories: digital twin production equipment, digital twin in
the design phase, digital twins in the operation and maintenance phase, digital twins based on empirical
formulas, and digital twins based on simulation. The most recent version of Ansys Twin Builder
facilitates inter- and multi-disciplinary system simulation and digital twin by integrating physical and
virtual sensors in depth. It expedites the export and deployment of digital twins in order to actualize
value-added services like predictive operation, maintenance, and performance optimization. AVEVA
Unified Engineering, AVEVA Unified Operations Center, AVEVA Asset Performance Management,
and AVEVA PI incorporate engineering, operations, and performance-related functions. AVEVA’s
digital twin solutions span the entire lifetime, from design and construction to operations and
maintenance. The digital twin solution from AVEVA can be utilized to create discrete digital twins,
composite digital twins, and organizational digital twins. Digital twins can be created for individual
assets, products, people, and process tasks, or they can be combined to form more complex collections
of processes, functions, and assets.

ESI Group proposes the Hybrid Twin digital twin concept, which is a combination of virtual and
digital, with the primary benefit being the creation of an additional, complementary virtual model that
must be physically based and describe cause-and-effect relationships. ESI Group now offers the Hybrid
Twin technology, which can combine physical models and real-time data to create digital duplicates.
ESI Group’s Hybrid Twin technology has increased the range of electric vehicles by 40 percent while
providing the highest level of passenger safety and comfort. Based on the Predix platform, GE Digital
offers services that integrate Proficy, APM, OPM, iFIX, Historian, and other software services, as well
as combine equipment mechanism models and data-driven analysis to create a digital counterpart.
Specifically, the GE Proficy digital factory software family considers the stability and security of
industrial applications while integrating the most advanced IT industry technologies, enabling users
to construct and implement digital twins more effectively. GE overlays numerous extant asset and
equipment data and models in order to provide a standard catalog of digital twin models via the
Predix platform, including multiple industrial data analysis models and over 300 asset and process
models. Using existing standard models for model construction, simulation, and training, users can
rapidly create digital twins that can be executed in the field or in the cloud at scale. Users are able
to submit models to the user side and then send the resulting data back to the cloud. GE Digital,
Siemens, PTC, Ansys, Dassault Systèmes, AVEVA, Rockwell Automation, SAP, Altair, ESI Group,
Microsoft, Maplesoft, Bentley, and Unity are among the major international providers of digital twin
solutions. Some international vendors, including GE’s Predix, Siemens’ COMOS Platform, PTC’s
ThingWorx, and Bentley’s iTwin Platform, have developed comprehensive platforms for developing
digital twin applications using their respective enabling technologies. Other international vendors,
including Dassault Systèmes with ABB, Ansys and Rockwell Automation, Altair and ACROME, and
Microsoft and Ansys, have partnered with multiple vendors to offer the complete solution required
for the digital counterpart.

In the age of 5G IoT, the digital companion is also a crucial scenario application. In 5G network
scenarios, eMBB, mMTC, and URLLC are supported. Based on these three, many application
scenarios and models are derived. eMBB can significantly increase network performance and improve
network experience. To actualize the interconnection of all things, mMTC links more intelligent
terminals. Due to its high reliability and low latency, URLLC is utilized in industries with stringent
precision requirements, such as autonomous driving and mobile healthcare. Digital siblings derive
from the aforementioned application scenarios. In digital twin production, industry, and cities, the
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combination of 5G and digital twin applications offers a vast array of integration points and devel-
opment opportunities [140]. Consider the “European 5G Industrial Park” in Aachen, Germany, as an
illustration of the consolidation and development trend in production and industry. Beginning in 2020,
the Fraunhofer Institute for Production Technology IPT and the Swedish mobile network provider
Ericsson developed the concept for the “European 5G Industrial Park”, the first comprehensive
research network for 5G industrial applications. The park inaugurated its 5G network on May 12,
2020, and operates Europe’s largest 5G research network with an area of nearly one square kilometer,
19 5G antennas, and 10G bits per second of bandwidth. With the concurrent introduction of future-
oriented digital technologies and manufacturing process equipment, such as digital twins and additive
manufacturing, the park is establishing a globally unique industrial ecosystem. The facilities are
outfitted with state-of-the-art IT and manufacturing systems, creating a one-of-a-kind infrastructure
for researching and developing the next iteration of Industry 4.0 technologies based on 5G and
incorporating digital twins and additive manufacturing.

Networked Adaptive Production is enabled by 5G networks, digital twins, and additive manufac-
turing, making the value chain for producing complex and mass-customized products more flexible
and efficient than ever before. 5G brings the digital counterpart to vibrant life. With 5G high speed,
augmented reality (AR) and virtual reality (VR), as well as other technologies, can be applied to
the digital counterpart, and data has a superior presentation form and state. Real-time transmission
of virtual and accurate data is enabled by 5G’s minimal latency, and the data is transmitted under
improved conditions. Massive IoT dynamic data can be coupled with static data on the basis of an
extensive connection, and the data has a richer heterogeneous variety as a result of better, quicker,
and more diverse data. Beyond traditional industries, the digital counterpart has expanded to include
construction, energy, healthcare, transportation, government management, parks, and cities.

5 Summary

The digital twin technology presents market opportunities for both the software and hardware
industries. As the implementation of digital twin technology requires the incorporation of numerous
new technologies and interdisciplinary knowledge, a complex and collaborative engineering system
is required. Digital twin modeling technology has progressed from simple “component assembly”
modeling of physical objects to multidimensional deep integration modeling of complex entities.
As digital twin technology generates vast amounts of data, it poses significant data storage and
computational challenges. To address this issue, advancements have been made in data storage and
management systems, such as cloud computing and big data analytics, which facilitate the efficient
administration and processing of vast quantities of data. The development of sensors and other
monitoring devices, as well as the extension of the hardware industry, have contributed to the expansion
of digital twin technology applications. In conclusion, the digital twin technology offers immense
potential for both the software and hardware industries, but its successful implementation will require
collaboration between diverse disciplines of expertise. Digital twin technology imposes substantial
requirements on processing processors, data platforms, and devices. The digital twin model and data
are extensive, comprising data and models of the fundamental elements, the entire business, and the
process, which must be continuously updated throughout the modeling object’s lifetime. For real-
time processing efficacy in model simulation and data analysis, this requires computer systems with
massive processing capacity. On the basis of real-time model guidelines and data analysis results,
feedback control methods to the physical space necessitate powerful computer equipment or hardware.
Digital siblings have more interactive, immersive, and explicit requirements for terminal devices,
necessitating devices with superior data transmission and display technology. Processing processors



CMES, 2024, vol.138, no.1 157

and data platforms become essential conditions for promoting the efficient, high-speed, and high-
quality operation of the digital twin.

Digital twin technology refers to the construction of a virtual model or replica of a physical entity
(such as a product, system, or environment) that is updated in real-time using data from sensors and
other sources. The real-time synchronization of the virtual model and physical entity enables a two-
way mapping between them, allowing for enhanced monitoring and control of the physical entity
based on the virtual model’s insights. Connecting and transferring data between the virtual model and
the corporeal entity is one of the fundamental components of digital twins. By obtaining complete
synchronization between the two digital twins, technology can be used for higher-level purposes such
as data analysis and product and device optimization. Advances in artificial intelligence, big data
processing techniques, cloud computing, high-dimensional data coding, sensor technologies, and the
Internet of Things have facilitated the development of digital twin technology. With the proliferation of
DT technology, several data transfer technologies have emerged and been implemented in a variety of
disciplines, including manufacturing, systems engineering, robotics, healthcare, and medicine. Overall,
digital twin technology has the potential to benefit businesses and contribute to society.

We respond to two primary research questions: What is the currently accepted definition of DT?
What are the application domains for DT systems? There is currently no universal definition of DT
due to the general imprecision of the theoretical foundations of DT and the fact that DT is applied
to a wide variety of disciplines and purposes. However, the paper identifies several applications of
DT, including aerospace, intelligent manufacturing, intelligent transportation, energy, healthcare, and
smart cities. We also observe that DT may be applicable in other areas, and future research will
investigate new application trends and technological advancements in DT. The paper concludes by
outlining a framework for investigating the various applications of DT and emphasizing the need for
continued research and exploration in this area.
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