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ABSTRACT

In the context of global mean square error concerning the number of random variables in the representation,
the Karhunen–Loève (KL) expansion is the optimal series expansion method for random field discretization. The
computational efficiency and accuracy of the KL expansion are contingent upon the accurate resolution of the
Fredholm integral eigenvalue problem (IEVP). The paper proposes an interpolation method based on different
interpolation basis functions such as moving least squares (MLS), least squares (LS), and finite element method
(FEM) to solve the IEVP. Compared with the Galerkin method based on finite element or Legendre polynomials,
the main advantage of the interpolation method is that, in the calculation of eigenvalues and eigenfunctions in
one-dimensional random fields, the integral matrix containing covariance function only requires a single integral,
which is less than a two-folded integral by the Galerkin method. The effectiveness and computational efficiency of
the proposed interpolation method are verified through various one-dimensional examples. Furthermore, based on
the KL expansion and polynomial chaos expansion, the stochastic analysis of two-dimensional regular and irregular
domains is conducted, and the basis function of the extended finite element method (XFEM) is introduced as the
interpolation basis function in two-dimensional irregular domains to solve the IEVP.
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1 Introduction

In civil engineering, it is commonplace for the material properties and geometric dimensions of
structures to exhibit inherent uncertainties. In the context of engineering systems, it is imperative to
consider the presence of uncertainties during the analysis and design phase. These uncertainties are
commonly attributed to the random spatial variation of certain properties. Traditional approaches that
rely on simulating the characteristics of random structures with single random variables are deemed
insufficient, as they fail to account for point-to-point variability [1]. An alternative mathematical
model that has gained significant traction in the field is the continuous random field model, which
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accurately captures the spatial variation of a structure’s properties. Specifically, a random field is
a stochastic process defined on a continuous region, where each point is associated with a random
variable. However, the computation of the entire random field is unfeasible due to the infinite number
of random variables involved. To facilitate the calculations, a limited number of random variables must
be applied to represent the random field, which is referred to as random field discretization [2].

The methods used for random field discretization can be broadly categorized into two types:
spatial discretization and series expansion. Spatial discretization methods comprise the central point
method [3], the local mean method [4], the shape function method [5], and the optimal linear estimation
method [6]. Among these, the local average method is commonly used due to its stable calculation
results and insensitivity to the structures associated with the random field. The efficiency and accuracy
of the spatial discretization methods are closely related to the random field mesh.

Series expansion methods used for random field discretization include Karhunen–Loève (KL)
expansion [7,8], orthogonal polynomial expansion [9], etc. The KL expansion, introduced by
Ghanem et al. [10], has emerged as the most extensively applied series expansion method for random
field discretization, particularly in the context of uncertainties related to input parameters [11].
Moreover, when considering the global mean square error with respect to the number of random
variables, the KL expansion is optimal compared to other series expansion methods [10]. KL
expansion uses a linear combination of orthogonal bases to represent random fields, and the selected
orthogonal functions are the eigenfunctions of the Fredholm integral equation of the second kind. The
integral kernel function in the Fredholm integral equation is the covariance function of the random
field. For simple geometries and special covariance functions, analytical solutions can be obtained.
However, for more general scenarios, numerical methods are required to solve a Fredholm integral
eigenvalue problem (IEVP), with the Galerkin method being the most commonly used [2].

In one-dimensional domains, the Galerkin method is frequently employed in a spectral sense
with basis functions spanning over the entire domain. The convergence behavior of this approach
is examined in [12] for both stationary and non-stationary problems using polynomials with order up
to ten as basis functions. Other polynomial bases, such as Legendre polynomials [9], Gegenbauer poly-
nomials [13], and Chebyshev polynomials [14], have also been proposed. However, these methods can
only improve the calculation accuracy by increasing the polynomial order, which requires significant
computational effort. The wavelet-Galerkin method [15] also represents a Galerkin-based technique
for solving Fredholm integral eigenvalue problems in one-dimensional domains. For two-dimensional
and three-dimensional domains with random fields, Ghanem et al. [10] advocated using the finite
element method (FEM) to obtain approximate solutions for the KL expansion, while Papaioannou
[13] examined the convergence of the FEM in two-dimensional domains. Based FEM-Galerkin
method for the discretization of the IEVP, Allaix et al. [1] proposed a genetic algorithm to achieve
an optimal discretization of 2D homogeneous random fields. To compute matrix eigenvalue problems
in the FEM, a generalized fast multi-pole Krylov eigen-solver is employed [16]. In two-dimensional
and particularly three-dimensional random fields, the computational cost of constructing the matrix
eigenvalue problem and computing its solution can be prohibitively expensive. Basmaji et al. [17]
proposed a Galerkin scheme based on discontinuous Legendre polynomials to solve IEVP, which
reduces the computational complexity by constructing the Legendre basis on each local element
domain and exploiting the orthogonality of Legendre polynomials. In addition, generating meshes
for complex geometries may also present difficulties and time constraints. To circumvent this issue,
Rahman et al. [18] employed meshless basis functions in the Galerkin method for complex domains.
Papaioannou [13] introduced a spectral Galerkin method that addresses the challenges posed by
geometrically complex domains by embedding the actual domain into a simple geometric shape.
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Rahman [19] proposed the Galerkin isogeometric method for KL approximation which can denote
computational domains by non-uniform rational B-splines(NURBS).

The development of a method that can efficiently solve the IEVP with reduced computational
requirements and without the need for a complex mesh is crucial for effectively addressing complex
domain problems. In this study, an interpolation approach for solving the IEVP in KL expansion
is proposed. And the impact of three different interpolation basis functions, namely moving least
squares [20–22] (MLS), least squares [23] (LS), and finite element method (FEM), on the accuracy
of computation is explored. MLS and LS are widely used in meshless methods [22,24–26]. The results
demonstrate that for one-dimensional domains, the proposed interpolation method, which requires
a single integral for the integral matrix containing the covariance function, is more computationally
efficient than the Galerkin method, which requires a two-folded integral.

In addition, we employ a combination of KL expansion and polynomial chaos expansion to
perform stochastic analysis in two-dimensional domains. To tackle the issue of grid division in
irregular domains, we introduce the extended finite element method (XFEM) as an alternative to the
traditional finite element method. The XFEM [27,28] is a well-known numerical method that addresses
discontinuity problems based on the partition of unity theory [29]. This approach adds enrichment
functions to the displacement mode of conventional finite element methods to accurately represent
discontinuities. The key advantage of the XFEM is that the computational mesh is independent of
the internal geometry or physical interface of the structure, making it an effective method for solving
problems that involve discontinuities, especially in the presence of holes [30].

The structure of this paper is as follows: Section 2 introduces the KL expansion and its funda-
mental properties. Additionally, the numerical methods used to solve IEVP, namely the Galerkin
method and the interpolation method, are discussed. Interpolation basis functions such as MLS,
LS, and FEM are provided. Section 3 briefly describes the spectral stochastic finite element method
and extended finite element method, which are then used for stochastic analysis of complex domains.
Section 4 is dedicated to numerical examples, wherein the computational efficiency of the numerical
methods is compared in one-dimensional domains, and the stochastic analysis is conducted in both 2D
regular and irregular domains. The benefits of the proposed method are highlighted. At last, Section 5
concludes the paper.

2 Karhunen–Loève Expansion

Defining (�,F , P) is a complete probability space, � is the sample space. A continuous random
field H(x, θ) is a measurable function H : � × � → R indexed by the space coordinates x ∈ � ∈ Rn,
where � is a continuously bounded domain. For a given x0 ∈ �, H (x0, θ) is a random variable.
For a given outcome θ0 ∈ �, H (x, θ0) is a realization of the field. In practice, it is difficult to
apply a continuous random field directly, so the random field needs to be treated with discretization.
Karhunen–Loève expansion is a series expansion method for representing the random field. which
is founded upon the spectral decomposition of the field’s covariance function. The Karhunen–Loève
expansion of a second-order random field can be expressed as [10]

H(x, θ) = μ(x) +
∑∞

i=1

√
λiφi(x)ξi(θ) (1)

where μ(x) is the mean function, ξi(θ) are standard uncorrelated random variables, i.e., E [ξi(θ)] =
0, E

[
ξi(θ)ξj(θ)

] = δij. λi and φi are the eigenvalues and eigenfunctions of the covariance function
respectively which can be obtained from solving the homogeneous Fredholm integral equation of the
second kind:



248 CMES, 2024, vol.138, no.1

∫
�

Cov (x, x′) φ (x′) d�x′ = λiφi(x) (2)

where Cov (x, x′) is the covariance function which can be represented as Cov (x, x′) = σ(x) · σ (x′) ·
ρ (x, x′), σ is the standard deviation function of the random field and ρ is the correlation function.
Cov (x, x′) is also called as kernel function, and it is bounded, symmetric and positive semi-definite
[4].

According to Mercer’s Theorem [31], the eigen-decomposition of the covariance function is as
follows:

Cov (x, x′) =
∑∞

i=1
λiφi(x)φi (x′) (3)

The eigenvalues λi are nonnegative, and the eigenfunctions φi(x) form a completely orthogonal
set satisfying the following equation:∫

�

φi(x)φj (x′) d� = δij (4)

where δij is the Kronecker-delta function.

Due to the orthogonality of eigenfunctions, it is easy to get a closed form of each random variable
as follows:

ξi (θ) = 1√
λi

∫
�

[H (x, θ) − μ (x)] φ (x) d� (5)

In the case where the random field H(x, θ) is Gaussian, the ξi are independent standard normal
random variables [10]. The joint distribution of ξi is almost impossible to acquire in other cases.
However, scholars have also studied the non-Gaussian random process simulation based on KL
expansion. Phoon et al. [32] developed an iterative framework to simulate non-stationary and non-
Gaussian processes. Sakamoto et al. [33] used the polynomial chaos expansion of a Gaussian stochastic
process to represent the non-Gaussian process, while the Gaussian stochastic process is modeled by the
KL expansion. Dai et al. [34] used the one-dimensional polynomial chaos expansion to decompose the
random coefficients in the KL expansion and obtained the explicit representation of non-Gaussian and
non-stationary random processes described by the covariance function and the marginal cumulative
distribution function which is suitable for random finite element analysis of structures. Tong et al. [35]
combined Karhunen–Loève expansion with the Linear-moments-based (L-moments-based) Hermite
polynomial model for simulating strongly non-Gaussian and non-stationary processes.

For practical implementation, the random field H(x, θ) can be acquired through sorting the
eigenvalues λi in a descending order and truncating the series expansion at the M-th term

H̃(x, θ) = μ(x) +
∑M

i=1

√
λiφi (x) ξi (θ) (6)

The second-order statistics of the truncated series Eq. (6) can be presented as

Cov
[
H̃(x, θ), H̃ (x′, θ)

]
= E

{
[H̃(x, θ) − μ(x)]

[
H̃ (x′, θ) − μ (x′)

]}
=
∑M

i=1

∑M

j=1

√
λiλjφi(x)φj(x)E

[
ξi(θ)ξj(θ)

]
=
∑M

i=1
λiφi(x)φj (x′) (7)
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As M → ∞, Eq. (7) converges to Eq. (3). The variance function of the approximated random
field is

Var[H̃(x, θ)] =
∑M

i=1
λiφ

2
i (x) (8)

The error εH̃ between the original random field H(x, θ) and its approximate random field H̃(x, θ) is

εH̃,M(x, θ) = H(x, θ) − H̃(x, θ) (9)

Integration of the expectation of the squared approximation error over the domain � yields the
global mean square error [10]

ε
2
H =

∫
�

E
[(

εH̃,M(x, θ)
)2
]

dx (10)

An alternative error estimation is the error variance [6] which is defined as follows:

εVar,M(x) = Var[H(x, θ) − H̃(x, θ)]
Var[H(x, θ)]

= σ 2(x) −∑M

i=1 λiφ
2
i (x)

σ 2(x)
(11)

The corresponding mean error variance is given as

εVar,M = 1
|�|

∫
�

εεVar,M
dx = 1 − 1

|�|
∑M

i=1
λi

∫
�

φ2
i (x)

σ 2(x)
dx (12)

where |�| = ∫
�

dx.

If the variance of the random field is constant, i.e., ∀x ∈ �, σ(x) = σ , the mean error variance
εVar,M can be reduced to

εVar,M = 1 − 1
|�|σ 2

∑M

i=1
λi (13)

The error variance in this section is based on the analytical solutions of eigenvalues and eigen-
functions. However, it is not always possible to obtain the analytical eigen-solutions in practical
engineering applications. Therefore, in the following sections, we will introduce other error measures
in the numerical examples to evaluate the accuracy of the proposed interpolation method.

2.1 Numerical Solution of the Fredholm Integral Equation
The key to KL expansion is to find the eigenvalues and eigenfunctions of the covariance function

by solving a Fredholm integral eigenvalue problem of Eq. (2). The analytic solution of Eq. (2) is
only applicable to a finite set of covariance functions and geometric domains. For general cases, the
numerical method is the only recourse. Therefore, the random field approximation of truncated KL
expansion in Eq. (6) can be approximated as

H̃(x, θ) = μ(x) +
∑M

i=1

√
λ̂iφ̂i(x)ξ̂i(θ) (14)

where λ̂i and φ̂i are the approximate values of the true eigenvalues λi and eigenfunctions φi, respectively.
And ξ̂i are standard uncorrelated random variables.

2.1.1 The Galerkin Method for Fredholm Integral Equation

Let {hk (x)} be a complete basis of the Hilbert space L2(�). In the Galerkin method, the
eigenfunction φ̂i(x) can be reprsented over the basis as
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φ̂i(x) =
∑N

k=1
di

khk(x) (15)

where di
k are the coefficients of the i-th eigenfunction.

Substituting Eq. (15) into Eq. (2) and adopting a Galerkin procedure for the corresponding
residual, the equation is obtained as follows:∑N

k=1
di

k

[∫
�

∫
�

Cov (x, x′) hk(x)hl (x′) dxdx′
]

− λi

∑N

k=1
di

k

[∫
�

hk(x)hl(x)dx
]

= 0 (16)

Eq. (16) could rewritten as

CD = �GD (17)

where

C lk =
∫

�

∫
�

Cov (x, x′) hk(x)hl (x′) dxdx′ (18)

Dki = di
k (19)

�il = δilλl (i, l = 1, . . . , N) (20)

G lk =
∫

�

hk(x)hl(x)d (21)

The eigenvalues λi exists in the diagonal of matrix �. By solving the generalized matrix eigenvalue
problem of Eq. (17), the approximate eigenvalue λ̂i and the coefficients of basis function di

k are
obtained. Substituting di

k to Eq. (15) can get approximate eigenfunctions φ̂i(x).

Various types of basis functions can be utilized with the Galerkin method, including orthogonal
polynomials such as Legendre polynomials, which yield a diagonal matrix G. However, increasing the
order of these polynomials is the only way to enhance the accuracy of the approximation, and this can
lead to numerical issues if the correlation length of the random field is too small. Another frequently
used basis function is the shape function of the finite element method, also known as the FEM-based
Galerkin method [2]. However, this method requires domain � meshing, which can be a challenging
task for complex geometries. Moreover, the computation of the matrix C can be time-consuming,
particularly in two and three dimensions.

2.1.2 The Interpolation Method for Fredholm Integral Equation

In the random field discretization based on KL expansion, it is necessary to integrate all the
elements in matrix C by using the Galerkin method to solve IEVP. In the case of a one-dimensional
domain, the elements in C involve a double integral, whereas for a two-dimensional domain, a four-
folded integral is required. As the dimensionality of the problem increases, the computational cost
escalates significantly. To address this issue, we propose an interpolation method for solving the IEVP
of Eq. (2) which is a homogeneous Fredholm integral equation of the second kind. To better illustrate
the computing process of the proposed interpolation method, we start with the general form of the
Fredholm integral equation of the second kind,

P(x)m(x) = Q(x)

∫ b

a

L (x, x′) m (x′) dx′ + f (x) (22)

where P(x), Q(x), f (x) are continuous functions on the interval [a, b], and P(x) �= 0. The integral
kernel function L (x, x′) is a continuous function of two variables on the interval [a, b] × [a, b].
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The key problem of the Fredholm integral equation is the discretization of unknown functions.
Firstly, the integral interval [a, b] is discretized as a = x1 < x2 < · · · < xn = b, n is the number of nodes.
m1, m2, . . . , mn are the corresponding function values of nodes. Then the approximating function m(x)

can be expressed as

m(x) =
∑n

I=1
NI(x)mI (23)

where NI(x) is the basis function of interpolation, and I is the node of interpolation.

Substituting Eq. (23) into Eq. (22), and let the equation be true at the nodes xJ(J = 1, 2, . . . , n),
one can obtain

P (xJ)
∑n

I=1
NI (xJ) mI = Q (xJ)

∫ b

a

L (xJ , x′)
∑n

I=1
NI (x′) mIdx′ + f (xJ) J = 1, 2, . . . , n (24)

Switching the order of integration and summating the integral term of right-hand side of Eq. (24)
yield

Q (xJ)

∫ b

a

L (xJ , x′)
∑n

I=1
NI (x′) mIdx′ = Q (xJ)

∫ b

a

(∑n

I=1
L (xJ , x′) NI (x′) mI

)
dx′

= Q (xJ)
∑n

I=1

(∫ b

a

L (xJ , x′) NI (x′) dx′
)

mI

= Q (xJ)
∑n

I=1
LI (xJ) mI (25)

where

LI (xJ) =
∫ b

a

L (xJ , x′) NI (x′) dx′ I , J = 1, 2, . . . , n (26)

Eq. (24) is rewritten as

P (xJ)
∑n

I=1
NI (xJ) mI = Q (xJ)

∑n

I=1
LI (xJ) mI + f (xJ) (27)

If I = J, NI (xJ) = 1, I �= J, NI (xJ) = 0, Eq. (27) can be presented in a matrix form as

(P − QL)m = f (28)

where

P = diag (P (xJ)) =
⎡
⎢⎣

P (x1)
. . .

P (xn)

⎤
⎥⎦ (29)

Q = diag (Q (xJ)) =
⎡
⎢⎣

Q (x1)
. . .

Q (xn)

⎤
⎥⎦ (30)

L = [LI (xJ)]n×n (31)

m = {m1, m2, . . . , mn}T (32)
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Comparing Eqs. (2) and (22), we can see that f (x) = 0, Q is a identity matrix and P = λI .
Therefore, Eq. (28) can be converted into the following form:

(λI − QL)m = 0 (33)

By solving the eigenvalue problem of Eq. (33), the approximate eigenvalues λ̂ and the correspond-
ing node values m can be calculated. The eigenfunctions can be obtained by substituting m into
Eq. (23).

Compared with the Galerkin method, which requires a two-folded integral to calculate the
elements of matrix C in one dimension, the interpolation method only requires a single integral to
calculate the elements of matrix L. Obviously, interpolation method needs less computation.

The selection of the basis function is a crucial step in interpolation methods. This paper discusses
three choices of basis functions, namely moving least squares [20–22] (MLS), least squares [23] (LS),
and finite element method (FEM). The MLS is primarily introduced, and the LS can be derived from
it. Although the finite element method is not discussed in detail in this paper, it is another viable option
for basis functions.

If the domain Ω discretes into n nodes and the values of eigenfunction at the nodes xI are
known. The approximate eigenfunction φ̂(x) using moving least squares interpolation can be written
as follows:

φ̂(x) = mh(x) =
∑t

i=1
pi(x)ai(x) = pT(x)a(x) (34)

where t is the number of terms in the basis, p(x) is a polynomial basis, a(x) is the vector of coefficients,
which are functions of the spatial coordinates x. For 1D problems, commonly used bases are p = [1, x]T

for t = 2 and p = [1, x, x2]T for t = 3, etc. In the same way, for 2D problems, generally used bases are
p = [1, x, y]T for t = 3 and p = [1, x, y, x2, xy, y2]T for t = 6, etc.

The weighted square sum of error of function m(x) at nodes is

J(x) =
∑n

I=1
wI(x)

[∑t

i=1
pi (xI) ai(x) − mI

]2

(35)

where mI = m (xI) are the values of function at node xI , wI(x) is a weight function that is greater than
zero only in a finite domiam ΩI around node x, and it is zero outside of ΩI , as shown in Fig. 1. wI(x)

is compactly supported and ΩI is the support domain. A typical choice for wI(x) is the normalized
Gaussian function, namely

wI(r) =

⎧⎪⎨
⎪⎩

e−r2β2 − e−β2

1 − e−β2 r ≤ 1

0 r > 1
(36)

where β is a constant, r = ‖x − xI‖/dmI , and dmI = ds × cI is the radius of the support domain of point
xI , ds is the multiplier greater than 1 , and cI is the distance between the node xI and its nearest node.

Minimizing the weighted square sum of error J, namely

∂J
∂aj(x)

= 2
∑n

I=1
wI(x)

[∑t

i=1
pi (xI) ai(x) − mI

]
pj (xI)

= 0 j = 1, 2, . . . , m (37)
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Figure 1: The support domains of nodes

Then it leads to

A(x)a(x) = B(x)m (38)

where

A(x) =
∑n

I=1
wI(x)p (xI) pT (xI) (39)

B(x) = [w1(x)p (x1) , w2(x)p (x2) , . . . , wn(x)p (xn)] (40)

m = [m1, m2, . . . , mn]
T (41)

The vector a(x) can be obtained from Eq. (38), and substituting it into Eq. (34). Then the shape
function of moving least squares can be obtained as

N(x) = pT(x)A−1
(x)B(x) (42)

In the process, if the weight function ωI(x) is equal to

ωI(x) =
{

1 ∀x ∈ ΩI

0 ∀x /∈ ΩI

(43)

The moving least squares is reduced to least squares (LS), and matrix A of Eq. (39) and matrix B
of Eq. (40) become

A(x) =
∑n

I=1
p (xI) pT (xI) (44)

B(x) = [p (x1) , p (x2) , . . . , p (xn)] (45)

3 The Stochastic Analysis

In this section, we first describe the theoretical formulation of the spectral stochastic finite element
method which is a numerical approach to model the random parameter system in terms of finite
element framework. While, for the irregular domains, we applied the extended finite element method
instead of the finite element method for calculation. It is well-known that the extended finite element
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method (XFEM) is an effective numerical method for solving discontinuity problems [27,28]. Based
on the partition of unity method [29], XFEM adds some enrichment functions into the displacement
mode of the finite element method to reflect discontinuity, and it has the advantage that the mesh is
independent of the geometry or physical interface inside the structure. Therefore, for random analysis
of irregular domains, XFEM has more advantages. Moreover, the basis function of XFEM can also be
used as the basis function of the interpolation method to solve a Fredholm integral eigenvalue problem
in KL expansion.

The spectral stochastic finite element method introduced by Ghanem et al. [10] is an extension of
the deterministic finite element method for solving boundary value problems of stochastic material
properties. It supposes that the material Young’s modulus is a Gaussian random field. The elasticity
matrix in point x is written as

D = H(x, θ)D0 (46)

where D0 represents a constant matrix.

Applying the KL expansion in Eq. (1), the stochastic matrix of a finite element has the following
form:

ke
(θ) = ke

0 +
∑∞

i=1
ke

i ξi(θ) (47)

where ke
0 is the mean element stiffness matrix, ke

i are deterministic matrices given by

ke
i (θ) = √

λi

∫
Ωe

φi(x)BTD0BdΩe (48)

where B is the strain-displacement matrix.

Assuming that the loading is determined and denoting ξ0(θ) = 1, the finite element equilibrium
equation is(∑∞

i=0
K iξi(θ)

)
u(θ) = F (49)

where thee nodal displacement vector u is presented by polynomial chaos expansion (PCE) as follows:

u(θ) =
∑∞

j=0
uj�j(θ) (50)

where
{
Ψj(ξ)

}∞
j

are Hermite polynomial chaos.

Substituting the expansion Eq. (50) into Eq. (49) yields:(∑∞

i=0
K iξ(θ)

) (∑∞

j=0
uj�(θ)

)
= F (51)

For calculating purposes, truncating the KL expansion after M terms and polynomial chaos
expansion after P terms results in

εM,P =
(∑M

i=0
K iξ(θ)

) (∑P−1

j=0
uj�(θ)

)
− F (52)

where P = (p + M)! /(p! M! ), p is the order of polynomial chaos.

By making the residual orthogonal to the approximate space spanned by PCE, one can get∑M

i=0

∑P−1

j=0
cijkK iuj = Fkk = 0, . . . , P − 1 (53)

where cijk = E
(
ξi�j�k

)
, and Fk = E (�kF). E (·) denotes the mathematical expectation.
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Eq. (53) can be rewritten as⎡
⎢⎢⎢⎣

K 0,0 K 0,1 · · · K 0,P−1

K 1,0
. . . K 1,P−1

...
. . .

...
KP−1,0 KP−1,1 · · · KP−1,P−1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

u0

u1

...
uP−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F0

F1

...
FP−1

⎤
⎥⎥⎦ (54)

where

K jk =
∑M

i=0
cijkK i (55)

Eq. (54) is a system of equations of size NP×NP, N is the number of physical degrees of freedom.
Each K jk is a matrix of size N × N. Each uj is a N-dimensional vector. As the coefficient vectors uj is
obtained, the mean and covariance matrix of u(θ) can be obtained as

E[u] = u0 (56)

Cov[u, u] =
∑P−1

i=1
E
[
�2

i

]
uiuT

i (57)

Substituting the displacement form of the finite element with that of the XFEM can solve the elas-
tic modulus stochastic problem in the irregular domain. In XFEM, the displacement approximation
is expressed as [27,36]

ua(x) =
∑

i∈Is
Ni(x)ui +

∑
j∈IE

Nj(x)�(x)aj (58)

where N i is the shape function as used in the formulation of conventional FEM; ui, aj are the nodal
displacements and nodal enrichment variables, respectively; �(x) is the enrichment function associated
with the discontinuity; IS is the set of all nodes in the discrete mesh; IE is the set of nodes of the elements
which contain the interface.

For models with holes, the XFEM displacement approximation has a simple form as below [30]:

ua(x) =
∑

i∈Is
Ni(x)H(ψ(x))ui (59)

where H is the Heaviside function and the value is as follows:

H(ψ(x)) =
{

1 ψ(x) ≥ 0
0 ψ(x) < 0

(60)

where ψ(x) is the level set. In general, the signed distance function is adopted to represent the level set
function, and is defined as

ψ (x) = ± min ‖ (xi − x�) ‖ (61)

where xi is the i-th node coordinates, and ‖ · ‖ is the L2 norm, xΓ is the interface of the hole. If the
hole is circular, the level set can be represented as ψ(x) = ‖x − c‖ − R, x is the coordinate of the node
in the extended finite element mesh, c = (xc, yc) is the center of the hole, ‖ · ‖ represents the distance
between the node and the center of the hole, and R is the radius of the hole.
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4 Numerical Studies
4.1 Error Measures

In the case of random fields without analytical eigen-solutions, the error estimation methods
outlined in Section 2 cannot produce computable expressions. As a result, two error measures are
introduced [14] to enable numerical evaluation of the interpolation method and Galerkin method.

εVar = 1
|�|

∫
�

|Var[H(x, θ)] − Var[Ĥ(x, θ)]|
Var[H(x, θ)]

dx

= 1
|�|

∫
�

∣∣∣Var[H(x, θ)] −∑M

i=1 λ̂iφ̂
2
i (x)

∣∣∣
Var[H(x, θ)]

dx

(62)

εCov = 1
|�|2

∫
�

∫
�

∣∣∣Cov [H(x, θ), H (x′, θ)] − Cov
[
Ĥ(x, θ), Ĥ (x′, θ)

]∣∣∣
|Cov [H(x, θ), H (x′, θ)]| dx′dx

= 1
|�|2

∫
�

∫
�

∣∣∣Cov [H(x, θ), H (x′, θ)] −∑M

i=1 λ̂iφ̂i(x)φ̂i (x′)
∣∣∣

|Cov [H(x, θ), H (x′, θ)]| dx′dx (63)

If the Fredholm integral eigenvalue problem of KL expansion has analytical solutions, Ĥ(x, θ) in
Eqs. (62) and (63) can be replaced by H̃(x, θ).

4.2 Discretization of One-Dimensional Random Fields
To demonstrate the validity and advantages of the interpolation approach for solving Fredholm

integral eigenvalue problems in KL expansion, the method is applied to a variety of covariance
functions and compared against the conventional Galerkin method.

Example 1 is a homogeneous random field, with the exponential kernel function defined as

Cov (x, x′) = σ 2e− |x−x′|
b (64)

where x ∈ [−a, a] , x′ ∈ [−a, a], b is the correlation length, σ is the standard deviation of the random
field, and σ = 1, a = 1, b = 1.

Example 2 is a non-homogeneous random field, with the Wiener-Lévy kernel function defined as

Cov (x, x′) = min (x, x′) (65)

where x ∈ [0, a], x′ ∈ [0, a], a = 1 and σ = 1.

Example 3 is a random field with squared exponential covariance function defined as

Cov (x, x′) = e
−
( |x−x′|

b

)2

(66)

where the correlation length b = 1, x ∈ [−a, a], a = 1 and the standard deviation of the random field
is σ = 1.

The eigenvalues and eigenfunctions corresponding to the kernel functions in examples 1 and 2 have
analytical solutions [37]. The accuracy of different numerical methods for solving Fredholm integral
eigenvalue problems in KL expansion was compared with that of the analytical solutions. The error
of eigenfunctions is defined as follows:

εφ̂i(x) = 1
|Ω|

∫
Ω

||φ̂i(x)| − |φi(x)||dx (67)
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In solving Fredholm integral eigenvalue problems using the interpolation method, we select
interpolation basis functions including moving least squares (MLS), least squares (LS), and finite
element method (FEM). In Fig. 2 displaying computed results, these functions are denoted as MLS,
LS, and FEM-interpolation, respectively. For comparison purposes, the finite element basis function
and the Legendre polynomial are applied as the basis functions of the Galerkin method and denoted as
FEM-Galerkin and Legendre, respectively, in the figures. The number of nodes in the computation of
examples 1 and 2 is set to Nn = 100. In KL expansion, the number of truncations is M = 20. In MLS,
the scale parameter is set to ds = 1.5, and the basis function is t = 2. In LS, the scale parameter is set
to ds = 0.9. The order of the basis function in FEM is 1, and the order of the Legendre polynomial is
p = 21.

Figure 2: The eigenvalues (a) and the errors of eigenfunctions (b) of the exponential kernel function

Figs. 2a and 3a display the eigenvalues of examples 1 and 2, respectively, while Figs. 2b and 3b
show the errors of eigenfunctions of examples 1 and 2, respectively. The computational formula is
presented in Eq. (67). Fig. 3 indicates that the eigenvalues calculated using the interpolation method
based on MLS, LS, and FEM are consistent with the analytical solutions. Additionally, the accuracy is
close to that of the Galerkin method based on FEM, while the accuracy of the Galerkin method based
on Legendre polynomials is slightly poor. Concerning the eigenfunctions, the accuracy of the FEM-
based interpolation method is superior to or close to other methods, and it hardly fluctuates with an
increase in the eigenfunction index. The accuracy of eigenfunctions calculated by the interpolation
method based on MLS and LS is similar. In example 1, the error of eigenfunctions calculated using
the Galerkin method based on the Legendre polynomial decreases rapidly as the eigenfunction index
increases.

To investigate the impact of various correlation lengths on eigenvalues, different correlation
lengths (b = 0.4, 1, 1.6, etc.) were selected for examples 1 and 3, and the results are presented in Fig. 4.
The comparison of results presents that the correlation length has a more significant influence on the
first few eigenvalues, and the longer the correlation length, the steeper the slope of the first few terms
of the eigenvalue curve. The computed results of the MLS, LS, and FEM-interpolation are similar,
indicating that the correlation length does not influence the accuracy of eigenvalues calculated using
the interpolation method.
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Figure 3: The eigenvalues (a) and the errors of eigenfunctions (b) of the Winer-Levy kernel function

Figure 4: The eigenvalues of the exponential kernel function (a) and squared exponential kernel
function (b) under different correlation lengths b

The preceding discussion confirms the accuracy of the methods. The subsequent discussion
focuses on examining the impact of various parameters in the interpolation method on the computed
results. For the FEM-based interpolation method, the relationship between the computed results
and the number of nodes is investigated. Fig. 5 illustrates the mean of relative variance error εVar (a)
calculated from Eq. (62) and the mean of relative covariance error εCov (b) calculated from Eq. (63) for
examples 1 and 2, respectively. The computed errors are compared with εVar and εCov calculated from the
analytical eigenvalues and eigenfunctions. The results demonstrate that εVar and εCov calculated using
the FEM-based interpolation method gradually converge as the number of nodes increases, when the
number of nodes Nn is close to 120, the errors tend to converge, and εCov is less than εVar .

In the case of MLS- and LS-based interpolation methods, this study mainly discusses the influence
of the number of nodes Nn and the multiplier ds in the node support domain on the computed results.
Figs. 6 and 7 show the mean of relative variance error εVar (a) and the mean of relative covariance error
εCov (b) calculated using the MLS-based interpolation method in examples 1 and 2, respectively. The
results indicate that as the number of nodes Nn increases, both εVar and εCov gradually converge, and
εCov is less than εVar . When the number of nodes is small, the multiplier ds has a significant influence
on the error. However, as the number of nodes increases, the influence of the multiplier ds decreases
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rapidly, when the number of nodes Nn is close to 120, the influence of the multiplier ds tends to be
small.

Figure 5: The mean of relative variance error εVar (a) and the mean of relative covariance error εCov

(b) of examples 1 and 2 using the interpolation method based on FEM

Figure 6: The convergence curves of the MLS-based interpolation method with respect to the number
of nodes Nn in example 1, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)

Fig. 8 displays the mean of the relative variance error εVar (a) and the mean of the relative
covariance error εCov (b) calculated using the MLS-based interpolation method in example 3. In this
example, the influence of the multiplier ds of the node support domain on the errors significantly
increases. The smaller the multiplier ds, the lower the mean of relative variance error εVar (a) and the
mean of relative covariance error εCov (b), when the multiplier ds of the node support domain is closer
to 1, the computational accuracy is higher. Under different ds, along with the increase of the number
of nodes, εVar and εCov gradually decrease, the values of εVar and εCov in this example are two orders of
magnitude smaller than those in examples 1 and 2, when Nn = 120, ds = 1.01, the values of εVar and
εCov can reach 10−4.
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Figure 7: The convergence curves of the MLS-based interpolation method with respect to the number
of nodes Nn in example 2, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)

Figure 8: The convergence curves of the MLS-based interpolation method with respect to the number
of nodes Nn in example 3, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)

Figs. 9–11 display the mean of relative variance error εVar (a) and the mean of relative covariance
error εCov (b) calculated using the LS-based interpolation method in examples 1, 2 and 3, respectively.
It is evident that when the multiplier ds of the node support domain is small, increasing the number of
nodes does not enable the error to gradually converge. However, when the multiplier ds approaches 1,
εVar and εCov gradually converge with the increase of the number of nodes Nn except for the individual
points of example 3. When Nn = 120, ds = 0.96, εVar and εCov tend to converge or obtained relatively
good accuracy. Based on the comparison of the MLS- and LS-based interpolation methods, it is known
that, in some examples, the MLS-based interpolation method is less sensitive to the multiplier ds of the
node support domain, while the LS-based interpolation method is relatively sensitive and the multiplier
ds should as close to 1 as possible. The reason is that, in the LS-based interpolation method, the more
ds approaches 1, the more NI (xJ) approaches 1 when I = J. It is consistent with the requirement in
the interpolation theory that NI (xJ) is equal to 1 when I = J and is equal to 0 when I �= J.
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Figure 9: The convergence curves of the LS-based interpolation method with respect to the number
of nodes Nn in example 1, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)

Figure 10: The convergence curves of the LS-based interpolation method with respect to the number
of nodes Nn in example 2, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)

Figure 11: The convergence curves of the LS-based interpolation method with respect to the number
of nodes Nn in example 3, the mean of relative variance error εVar (a), the mean of relative covariance
error εCov (b)
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Table 1 displays other types of covariance functions with their corresponding parameters and
domains. Meanwhile, the changes in the mean of the relative covariance error εCov concerning the
number of truncating terms M are illustrated in Fig. 12. The results indicate that the MLS-, FEM-
based interpolation method and the FEM-based Galerkin method yield similar outcomes regarding
εCov, with the error decreasing as M increases. Conversely, the LS-based interpolation method produces
comparable results to the previous three methods for covariance functions (b) and (d), but larger values
for functions (a) and (c). Notably, the Legendre-based Galerkin method yields a higher value of εCov,
which implies lower accuracy when compared to the other methods.

Table 1: The covariance functions, σ = 1

Name Covariance functions [a1, a2] Parameters

Triangular σ 2 (1 − b |x − x′|) [0,2] b = 0.5

Brownian-bridge σ 2

(
min (x, x′) − xx′

b

)
[0,1] b = 1

Uniformly modulated σ 2e−(x+x′)e
|x−x′|

b [0,2] b = 1

Modified exponential σ 2e−2.276|x−x′| (1 + 2.276 |x − x′|) [−1,1] –

Figure 12: Variation of the mean of relative covariance error εCov with the number M of truncation. (a)
Triangular, (b) brownian-bridge, (c) uniformly modulated, (d) modified exponential
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Table 2 presents a comparison of the computation times for solving Fredholm integral eigenvalue
problems using various covariance functions. The methods employ the same number of nodes, while
the number of truncating terms is fixed at M = 20. The computations were performed on a computer
equipped with an i7-4790 CPU @3.60 GHz. The findings demonstrate that the LS-based interpolation
method is the most efficient, followed by the MLS- and FEM-based interpolation methods, with the
FEM- and Legendre-based Galerkin method ranking last in terms of computational time. Notably,
the Galerkin method utilizing Legendre polynomials requires an order of magnitude more time than
the other methods. Hence, the interpolation method offers better computational efficiency than the
Galerkin method. The reason for this is that in the process of solving eigenvalues and eigenfunctions,
element Clk of matrix C in the Galerkin method as shown in Eq. (18) is a double integral, while element
LI (xJ) of matrix L in the interpolation method as shown in Eq. (26) is a single integral.

Table 2: The time costs (s) for solving Fredholm integral eigenvalue problems

Method Exponential Squared
exponential

Triangular Uniformly
modulated

Brownian-bridge

MLS 0.2569 0.2918 0.2860 0.2747 0.3375
LS 0.1173 0.1344 0.1146 0.1188 0.1213
FEM-interpolation 0.8547 0.8193 0.8006 0.8353 0.7963
FEM-Galerkin 0.9500 0.9774 0.9078 0.8964 0.9162
Legendre 6.1120 5.9400 6.5606 6.6202 6.8107

4.3 Discretization of Two-Dimensional Random Fields and Stochastic Analysis
The following example is used to analyze the discretization of random fields in two-dimensional

regular and irregular domains and is applied to stochastic analysis [37]. According to the one-
dimensional analysis, we find that the interpolation method based on MLS and FEM can ensure both
accuracy and relative stability. Therefore, in the following examples, we utilize MLS- and FEM-based
interpolation methods for the discretization of random fields.

The provided Fig. 13 depicts a rectangular plate with a height of H = 1.5 m and a width of = 1 m.
The plate is fixed at the bottom and subjected to a uniform tensile stress of σ = 1 Pa along its upper
edge. This is a plane stress problem, and Poisson’s ratio is ν = 0.3. The modulus of elasticity E is
supposed to be a random field with a mean value of μE = 10 Pa and a standard deviation of σE = 2 Pa.
The covariance function is presented as follows:

Cov(x, y) = σ 2
Ee− |x−x′|

bx e
− |y−y′|

by (68)

The correlation length along the x direction is bx = 0.5 m, while along the y direction, it is
by = 0.75 m. The covariance function takes on a two-dimensional form of the exponential kernel
function, which exhibits analytical eigenvalues and eigenfunctions [37]. In KL expansion, the number
of truncating terms is M = 3. The Hermite polynomials are selected for the polynomial chaos
expansion, and the order p = 3. Fig. 14 displays the mesh used in the stochastic finite element method.
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Figure 13: A rectangular plate Figure 14: The mesh of the rectangular plate

Fig. 15 illustrates the probability density function of the vertical displacement UyA at point A
on the plate. As seen that the probability density function calculated by the stochastic finite element
method agrees well with the result by Monte Carlo (MC). Furthermore, the computed results based on
the MLS and FEM techniques are found to closely match the analytical eigen-solutions, thus providing
evidence for the validity of the MLS- and FEM-based interpolation methods for the KL expansion in
two-dimensional domains.

Figure 15: The probability density function fUyA
(ξ) of the vertical displacement at point A

Fig. 16 presents the standard deviation σUy of the vertical displacement of the plate obtained using
various methods. It is evident from (a), (b), and (c) that the variation trend of σUy derived through
the MLS- and FEM-based interpolation techniques closely matches that of the analytical solution.
Figs. 16d and 16e illustrate the absolute errors in displacement standard deviations for the MLS-
and FEM-based interpolation methods relative to the analytical solution. The numerical outcomes



CMES, 2024, vol.138, no.1 265

reveal that both methods exhibit small absolute errors. However, the error associated with the MLS-
based interpolation method is one order of magnitude lower than that of the FEM-interpolation
method, indicating that the MLS-based interpolation approach is more accurate than the FEM-based
interpolation method in this example.

Figure 16: The standard deviation σUy of vertical displacement of the plate: (a) MLS, (b) FEM-
interpolation, (c) analytical, (d) absolute error of MLS and analytical, (e) absolute error of FEM-
interpolation and analytical

To investigate the effect of the standard deviation of elastic modulus and polynomial chaos order
on the standard deviation of the vertical displacement of a plate, observation point A was selected.
Fig. 17 depicts the standard deviation σUyA

of the vertical displacement of point A for polynomial chaos
order p = 1, 2, and 3 as (a), (b), and (c), respectively. The results demonstrate that as the standard
deviation σE of elastic modulus E increases, σUyA

gradually increases, with negligible differences
among the results obtained using MLS-, FEM-based interpolation, and analytical eigen-solutions.
Furthermore, as the standard deviation of the input random parameters increases, higher polynomial
orders are required to achieve better accuracy.
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Figure 17: The standard deviation σUyA
of vertical displacement of point A varies with the standard

deviation σE of the elastic modulus E, (a) the order of polynomial chaos p = 1, (b) the order of
polynomial chaos p = 2 (c) the order of polynomial chaos p = 3

To compare the applicability of different methods for the discretization of random fields in two-
dimensional irregular domains, a square plate with a pentagonal hole, as shown in Fig. 18, was
calculated and subjected to random analysis. The length of the plate is L = 2 m, the left edge of
the plate is fixed, while a uniformly distributed load σ = 1 Pa is applied to the other edge. The
central coordinate of the hole is equal to xc = 1, yc = 1, the radius is R = 0.3 + 0.08 × sin(5α),
where α ∈ [0, 2π ] rotates counterclockwise from the horizontal direction. The model is a plane stress
problem, with Poisson’s ratio ν = 0.3. It is assumed that the elastic modulus E is a Gaussian random
field, with a mean μE = 20 Pa, and a standard deviation σE = 5 Pa. The covariance function of the
random field is the same as that of the previous example, and the correlation lengths are bx = 1 m and
by = 1 m.

As the plate with a hole has an irregular domain, the basis function in the extended finite
element method can be used to replace the finite element basis function when IEVP is solved in the
discretization of random fields. The level set function is used to determine whether the node is in the
plate. If the elements are cut by hole edge, only the part of the elements in the plate is integrated. The
method is expressed as XFEM-interpolation. Meanwhile, in the subsequent stochastic analysis, the
extended finite element method is combined with PCE, and the number of truncating terms is M = 3,
the order of polynomial chaos is p = 3.
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Figure 18: A square plate and the XFEM mesh

An illustration of the different distribution modes of the MLS-based interpolation method used
to solve the IEVP is presented in Fig. 19. Specifically, Fig. 19a shows a uniform distribution without
considering the internal hole boundary, while Fig. 19b shows a scattering distribution that takes into
account the internal hole boundary. A comparison between the uniform and scattering distributions
are conducted by the eigenvalues which are presented in Table 3. the results show that the errors of
the two distribution mode are approximately 10−4. These findings suggest that different distribution
modes have little impact on the accuracy of the discretization of random fields, and for convenience,
the distribution mode shown in Fig. 19a is selected for subsequent computations.

Figure 19: The distributions of points of MLS-based interpolation method, (a) uniform distribution,
(b) scattering distribution
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Table 3: The eigenvalues under different point distributions

Eigen values Uniform distribution Scattering distribution

100 256 128 224 288

λ1 1.1052 1.1052 1.1056 1.1051 1.1056
λ2 0.4349 0.4350 0.4347 0.4349 0.4347
λ3 0.4347 0.4349 0.4347 0.4348 0.4347

Table 4 displays the standard deviations σUxA
and σUxB

of the horizontal displacement at point
A and point B, respectively, which were obtained by the MLS-based interpolation method under
various correlation lengths. The table demonstrates that both σUxA

and σUxB
gradually increase with

increasing correlation lengths in both the x and y directions. Moreover, if one correlation length is
fixed and the other increases, both σUxA

and σUxB
also gradually increase. Additionally, the impact of

the correlation length in the x direction on the standard deviation of the horizontal displacement is
significantly greater than that of the y direction.

Table 4: The standard deviation of horizontal displacement at points A and B with different correlation
lengths

Point bx = 0.5 bx = 0.5 bx = 0.5
by = 0.5 by = 0.5 by = 0.5

A 0.0190 0.0268 0.0330
B 0.0188 0.0265 0.0327

bx = 0.5 bx = 0.5 bx = 0.5
by = 0.5 by = 0.5 by = 0.5

A 0.0239 0.0268 0.0279
B 0.0237 0.0265 0.0276

bx = 0.5 bx = 0.5 bx = 0.5
by = 0.5 by = 0.5 by = 0.5

A 0.0210 0.0268 0.0315
B 0.0207 0.0265 0.0312

Fig. 20 illustrates the distribution of the standard deviation of horizontal displacement σUx of the
plate obtained using MLS-based interpolation method (a) and XFEM-based interpolation method
(b). The discretization of random fields used 10 × 10 nodes based on MLS and 21 × 21 mesh nodes
based on XFEM basis functions, while the stochastic analysis employed a mesh node of 21 × 21 for
XFEM. The figure shows that the two methods produced similar trends in the distribution of σUx ,
with the maximum value located at the middle of the right end of the plate. This suggests that the basis
functions of XFEM can serve as interpolation basis functions for computing in complex domains.
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Figure 20: The standard deviation of horizontal displacement σUx : (a) MLS, (b) XFEM-interpolation

The XFEM calculations presented in the previous discussion employed the same mesh for
both the discretization of the random field and stochastic analysis. However, the XFEM permits
different meshes for the two processes. Nevertheless, applying eigenfunctions during stochastic analysis
involves multiple transformations between global and local coordinates. In contrast, the MLS-based
interpolation method enables the separation of distribution points and meshes in random field
discretization and stochastic analysis without requiring any coordinate transformation. Hence, when
a large number of meshes are used for stochastic analysis, the MLS-based interpolation method by
point interpolation without meshing confers more advantages.

5 Conclusions

This study proposes an interpolation method for solving Fredholm integral eigenvalue problems in
KL expansion for random field discretization. The performance of three interpolation basis functions,
namely MLS, LS, and FEM, is evaluated. Compared to the Galerkin method, which uses finite element
or Legendre polynomials as basis functions and involves a two-folded integral to calculate the integral
matrix containing the covariance function, the proposed interpolation method only requires a single
integral, resulting in reduced computational time. Numerical examples in one-dimensional domains
reveal the validity and computational efficiency of the proposed method. The LS-based interpolation
method is the most efficient, and the closer the multiplier of the node support domain is to 1, the
higher the accuracy is. While the MLS-based interpolation method produces more stable results than
LS, and the influence of the multiplier decreases with a large number of nodes. The FEM-based
interpolation method has high accuracy, and the accuracy of the eigenfunction is almost independent
of the eigenfunction index.

Additionally, this study combines KL expansion and PCE to perform random analysis in two-
dimensional regular and irregular domains. The results show that MLS-based interpolation provides
higher computational accuracy than FEM-based interpolation in two-dimensional regular domains.
As the standard deviations of the input random parameters increase, higher orders of polynomials are
needed to achieve better results. In two-dimensional irregular domains, XFEM is used for stochastic
analysis. The XFEM basis function can serve as the interpolation basis function, and MLS-based
interpolation can be performed using uniformly distributed points for random field discretization.
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29. Melenk, J. M., Babuška, I. (1996). The partition of unity finite element method: Basic the-
ory and applications. Computer Methods in Applied Mechanics and Engineering, 139(14), 289–314.
https://doi.org/10.1016/S0045-7825(96)01087-0

https://doi.org/10.1002/nme.255
https://doi.org/10.1007/s00707-017-1819-2
https://doi.org/10.1016/j.cma.2007.01.009
https://doi.org/10.1016/j.jcp.2006.01.048
https://doi.org/10.1016/j.probengmech.2021.103176
https://doi.org/10.1080/15502280590888649
https://doi.org/10.1016/j.cma.2018.04.026
https://doi.org/10.1002/(ISSN)1097-0207
https://doi.org/10.1016/j.enganabound.2019.08.002
https://doi.org/10.1016/S0045-7825(96)01132-2
https://doi.org/10.1007/BF00364252
https://doi.org/10.1016/S0045-7825(96)01087-0


272 CMES, 2024, vol.138, no.1

30. Sukumar, N., Chopp, D. L., Moës, N., Belytschko, T. (2001). Modeling holes and inclusions by level sets in
the extended finite-element method. Computer Methods in Applied Mechanics and Engineering, 190(46–47),
6183–6200. https://doi.org/10.1016/S0045-7825(01)00215-8

31. Trees, H. L. V. (1968). Detection, estimation and modulation theory. New York: Wiley.
32. Phoon, K. K., Huang, S. P., Quek, S. T. (2002). Simulation of second-order processes using Karhunen–Loeve

expansion. Computers and Structures, 80(12), 1049–1060. https://doi.org/10.1016/S0045-7949(02)00064-0
33. Sakamoto, S., Ghanem, R. (2002). Polynomial chaos decomposition for the simulation of non-

Gaussian nonstationary stochastic processes. Journal of Engineering Mechanics, 128(2), 190–201.
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)

34. Dai, H. Z., Zheng, Z. B., Ma, H. H. (2019). An explicit method for simulating non-Gaussian and non-
stationary stochastic processes by Karhunen–Loève and polynomial chaos expansion. Mechanical Systems
and Signal Processing, 115(4), 1–13. https://doi.org/10.1016/j.ymssp.2018.05.026

35. Tong, M. N., Zhao, Y. G., Zhao, Z. (2021). Simulating strongly non-Gaussian and non-stationary processes
using Karhunen–Loève expansion and L-moments-based Hermite polynomial model. Mechanical Systems
and Signal Processing, 160(2), 107953. https://doi.org/10.1016/j.ymssp.2021.107953

36. Zhang, X. D., Bui, T. Q. (2015). A fictitious crack XFEM with two new solution algorithms for
cohesive crack growth modeling in concrete structures. Engineering Computations, 32(2), 473–497.
https://doi.org/10.1108/EC-08-2013-0203

37. Ghanem, R. G., Spanos, P. D. (2003). Stochastic finite elements: A spectral approach. New York: Springer.

https://doi.org/10.1016/S0045-7825(01)00215-8
https://doi.org/10.1016/S0045-7949(02)00064-0
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(190)
https://doi.org/10.1016/j.ymssp.2018.05.026
https://doi.org/10.1016/j.ymssp.2021.107953
https://doi.org/10.1108/EC-08-2013-0203

	An Interpolation Method for Karhunen--Loeve Expansion of Random Field Discretization
	1 Introduction
	2 Karhunen--Loeve Expansion
	3 The Stochastic Analysis
	4 Numerical Studies
	5 Conclusions
	References


