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ABSTRACT

This paper aims to propose a topology optimization method on generating porous structures comprising multiple
materials. The mathematical optimization formulation is established under the constraints of individual volume
fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original
optimization problem with numerous constraints is converted into a box-constrained optimization problem by
incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the
conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects
including the global mass bound, the influence radius and local volume percentage on final designs are exploited
through numerical examples. The numerical results also reveal that porous structures keep a balance between the
bulk design and periodic design in terms of the resulting compliance. All results, including those for irregular
structures and multiple volume fraction constraints, demonstrate that the proposed method can provide an efficient
solution for multiple material infill structures.
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1 Introduction

Porous structures outperform traditional bulk designs or single-scale structure design in terms
of resistance to localized material damage or manufacturing defects, force fluctuation and buckling.
On the other hand, structural topology optimization (TO) and additive manufacturing both provide
robust design and fabrication tools that significantly boost the likelihood of using porous structures
in the engineering applications. Recent years has witnessed the vigorous advancements in the field of
spongy structures as a result of AM-based TO technique [1–3].

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.029876
https://www.techscience.com/doi/10.32604/cmes.2023.029876
mailto:longkai1978@163.com


370 CMES, 2024, vol.138, no.1

Recently, it was reported that a breakthrough in the design and manufacture of voxelated soft
matter has been accomplished through the use of a multi-material multi-nozzle printing technique
[4]. Additionally, the majority of previous study has concentrated on the pattern of single material
porous structure. Motivated by these realistic possibilities and demands, this work aims to establish
a density-based method, specifically the Solid Isotropic Material with Penalty (SIMP) scheme, for
topological design of porous structures via optimal proper material selection. The suggested algorithm
for multi-material optimization can be implemented to solve the compliance minimization problem
subject to a single mass or several individual volumes constraints on each phase. To manage the
porosity on the constituent materials, massive local percentage constraints are imposed on each voxel.
The main contribution of the present work is focus on an alternative approach for generating porous
structure, by constructing a sequence of box-constrained optimization problems in the form of an
Augmented Lagrangian function. The suggested AL-based formulation is capable of handling the
global and extensive local constraints, resulting in designs that do not exceed the upper limits anywhere
in structural design domain.

The present article proceeds as follows. After reviewing existing literature in Section 2, this paper
formulates the TO problems for multi-material porous structure in Section 3. Section 4 presents several
numerical examples and discussions. The concluding remarks are drawn in Section 5.

2 Related Research Work

This section summarizes prior research that is relevant to this topic, including TO approaches
for porous and multi-material structures design. On the basis of these publications, the subsequent
section will introduce the proposed formulation for multi-phase porous structures and the augmented
Lagrangian function.

2.1 Topology Optimization on Porous Structures
In the existing studies, spongy structures have been extensively investigated by utilizing the

concept of multi-scale design via numerical homogenization or substructure approach [5], in which
both macrostructure and microstructure evolve concurrently to achieve the excellent system per-
formance. This two-scale method considerably expands the design space, theoretically increasing
the probability of a superior solution. Rodrigues et al. [6] initially presented a hierarchical model
for macrostructure consisting element-wise cellular materials while Zhang et al. [7] suggested the
layer-wise porous media at macro scale. This topic sparked widespread attention in part originated
from the advancements in both computing power and additive manufacturing [8–10]. One popular
tactic is to establish a certain periodic or a range of representative porous or composite units at
microscopic scale for the fixed or synchronously varying macrostructure. Considering the convenience
of manufacturing, the connectivity issue must be addressed efficiently. Radman et al. [11] presented
a way to guarantee the connectivity of the adjacent cellular microstructures by global filtering.
Yang et al. [12] developed a shape metamorphosis technology to impose the connectivity conditions on
graded microstructures. Wu et al. [13] synthesized substructure and surrogate model to approximate
the reduced substructure with penalization (ARSP) formulation. The ARSP model directly addresses
the connectivity issues and ignorance of the size effects inherent in traditional homogenization.
Luo et al. [14] suggested a self-connected material interpolation for structures containing various
lattice structures. Li et al. [15] proposed an erode-dilate approach for generating a succession of quasi-
periodic microstructures, with the goal of avoiding the disconnection in a natural way.
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The de-homogenization approach is alternative approach for producing the well-connected
microstructures in a spatial-varying structure [16]. In recent years, much attention has been devoted
in this research field for its conceptual simplicity and computational efficiency [17–19]. Nowadays
the de-homogenization method has been successfully expanded to 2D and 3D structures. We direct
interested readers to the comprehensive reviews for details on various multi-scale approaches [1–4].

In contrast to the multi-scale optimization, the full-scale technique disregards the separation
between macro- and micro-structures and imposes periodic repetitions or local porosity control on
the mono-scale structure. Owe to the lack of awareness of the separation between micro and macro
scales, the connectivity troubles can be straightforwardly avoided in such a mono-scale strategy, albeit
at the cost of massive computational consumptions. The bone-like structure is obtained automatically
by the maximum length restriction, which can be traced back to Guest [20] and others [21–25].
Experiments have confirmed the infill structure’s superior resistance to buckling [26]. Wu et al. [27] put
an upper limit on the localized volume around each voxel in the given region. The p-norm function
aggregates numerous local constraints, allowing for efficient solutions. An amount of studies following
the local volume constraints have been furthered including the shell-infill structures, multi-phase infill
structures, functionally graded porous structures and self-supporting infill structures [28–32]. Dou [33]
imposed implicit control over local volume proportion via morphology transformation mode, which
was extended to the thermo-mechanical buckling problem [34]. Long et al. [35,36] recently suggested
a cluster-free formulation for the local volume constraints to verify that the upper bounds can be
satisfied precisely. Hu et al. [37] introduced the block-wise similarity constraints into the generative
design by mimicking textures. Similar to the work by Schmidt et al. [38], Zhao et al. [39] proposed two
local constraints for achieving multiple levels of porosity. The studies on the topological design on the
cellular structures are also extended to level set [40–42] and explicit boundary representation method
[43–46], respectively. More recently, Wang et al. [47] suggested an automatic initialization scheme
that specifies the topological skeleton of the stress field into the density field, aiming at obtaining
a distinct binary design. Park et al. [48] restored the complex internal structure of bone using a TO
technique using perimeter control. To achieve connected architect materials, Du et al. [49] included
the connectivity index as a constraint in multiscale TO.

2.2 Topology Optimization on Multi-Phase Structures
Thomsen made the earliest attempt on TO of multi-material structures [50]. Sanders et al. [51]

proposed a multi-material compliance minimization TO formulation. The optimal designs of uncon-
ventional thermal expansion, piezoelectricity and extreme bulk modulus were casted as the three-
phase TO problems [52–54]. To reduce the number of design variables, a peak function was chosen
as the substitute of the multi-material SIMP [55]. Stegmann et al. [56] formulated the discrete
material optimization (DMO) problem for composite laminate shell structure based on numerical
gradient. Gao et al. [57] extended DMO method by incorporating a total mass usage, in which the
constituent materials are automatically allocated according to the stiffness and stiffness-to-mass ratio.
Tavakoli et al. [58] presented a multi-phase TO method based on optimal criteria by establishing a chain
of binary phase sub-problems. This novel idea was then furthered into the load variation problem and
structure obtained from additive manufacturing, cracked structure and functionally graded structures
[59–62]. Bohrer et al. [63] suggested a mixture of isotropic and anisotropic materials to improve the
numerical efficiency of the element duplication method. Park et al. [64] presented a three-dimensional
multi-resolution implementation of the multi-material TO problem. Bruyneel [65] introduced shape
function parameterization (SFP) interpolation into the TO of composite structures with four different
fibers types. Gao et al. [66] defined the bi-value coding parameterization scheme as the general form of
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the SFP method to manage materials with an arbitrary number of constituents. Zuo et al. [67] proposed
an ordered multi-material SIMP approach without the use of additional variables, using a segmenting
curve to represent each material available within a certain scope. Nowadays, the ordered SIMP
approach has also been furthered into the stress-constrained problem [68]. Long and his coworkers
[69] presented an alternative choice for handling multi-phase TO problems using exact Hessian
information. Liao [70] proposed the NURBS method to represent the density field with the reduced
design variables through discrete cosine transform. As a growing focus in the TO community, the
other multi-material TO solutions were also given in the phase method [71], bi-direction evolutionary
structural method [72], level set method [73,74], moving morphable components method [75,76] and
floating projection method [77].

3 Topology Optimization Problem
3.1 Problem Formulation for Multi-Material Porous Structure

The design domain in this paper is composed of biphasic or multi-material infill structures, as
indicated in Fig. 1. Two distinct materials coexist in the design domain, cooperatively forming the
porous structure. Each phase aims to maximum the system performance by occupying the effective
zone. The mechanical properties of the candidate materials are listed in the descending order as Young’s
modulus Ej and mass density ρ j. For two solid and one void material, the eth elemental Young’s
modulus and physical density can be formulated as follows:

Ee = xp
e1

(
xp

e2E1 + (
1 − xp

e2

)
E2

)
(1)

ρe = xe1 (xe2ρ1 + (1 − xe2) ρ2) (2)

where p is the penalization power with typical value 3 for superior convergence in density-based TO.

Figure 1: Graphical representation of design problem: Multi-material infill composite structure

Similarly, the Eqs. (1) and (2) can be extended into j-phase materials in the recursive scheme [57].
Generally, the j-phase materials require (j-1) design variables for each element, i.e.,⎧⎪⎨⎪⎩

ξJ−1 = xp
eJE1 + (

1 − xp
eJ

)
E2

ξb−1 = xp
ebξb + (

1 − xp
eb

)
EJ+2−b, b = 2, 3, · · · , J − 1

Ee = xp
e1ξ1

(3)

⎧⎪⎨⎪⎩
ξJ−1 = xeJρ1 + (1 − xeJ) ρ2

ξb−1 = xebξb + (1 − xeb) ρJ+2−b, b = 2, 3, · · · , J − 1
ρe = xe1ξ1

(4)

where J represents the total number of the available material phases.
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As can be seen from Eqs. (2) and (3), the design variable xe1 does control the existence or null
condition of each element. Hence, the local proportion of a structure composed of multiple materials
can be measured by

ρ̂e =
∑
i∈Se

xe1∑
i∈Se

1
(5)

where Se is the set of surrounding elements in a circular region with its influence radius R.

The TO problem with a sole mass constraint can be mathematically stated as follows:

Find : X = {
xej

}
, ∀e, j = 1, 2, · · · , J

Minimize : c (x1, x2, · · · )
Subject to : mf /mf − 1 ≤ 0

ρ̂e/α − 1 ≤ 0, ∀e

K (x1, x2, · · · ) U (x1, x2, · · · ) = F

0 ≤ xej ≤ 1∀e, j = 1, 2, · · · , J

(6)

where c is the static compliance; mf and mf are the mass fraction and its upper bound; α is the
maximum of local volume fraction while the corresponding inequality precludes the accumulation of
solid material. K is the global stiffness matrix while U and F denote displacement vector and external
force vector, respectively.

Similarly, the multi-material TO problem subject to multiple volume fractions imposed on
individual phase can thus be formulated as

Find : X = {
xej

}
, ∀e, j = 1, 2, · · · , J

Minimize : c (x1, x2, · · · )
Subject to : Vj/V j − 1 ≤ 0, j = 1, 2, · · · , J

ρ̂e/α − 1 ≤ 0, ∀e

K (x1, x2, · · · ) U (x1, x2, · · · ) = F

0 ≤ xej ≤ 1, ∀e, j = 1, 2, · · · , J

(7)

The only variations between the Eqs. (5) and (6) are constrains on volume fractions of the
constituent phases. Here Vj and V j represent the volume fraction of the jth constituent material
respectively, as well as its upper bound.

3.2 Threshold Projection
By applying the filter to the design variable field, the checkerboard patterns prevalent in the TO

community can be effectively suppressed. The solution of the partial differential equation can provide
the filtered density field as follows [78]:

−
(

r

2
√

3

)2

∇2x̃j + x̃j = xj,
∂x̃j

∂n
= 0 (8)

where r is the filter radius whose value is usually less than R.
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When the filtering techniques are employed, the resulting layouts inevitably contain intermediate
densities, most notably on structural boundary. To cope with these unappealing phenomena, the
projection maps the filter densities are mapped in such a way [78]:

xej = tan (0.5β) + tan
(
β

(̃
xej − 0.5

))
2 tan (0.5β)

(9)

where β controls the steepness of the projection and a continuation strategy is employed in this study.
The optimization procedure starts with a value of 1 and doubles its value per one hundred iterations,
until it approaches the maximum of 32.

3.3 The Sensitivity Analysis
According to the chain, the sensitivity of the function with respect to xej can be written as

∂c
∂xej

= −uT
e

∂ke

∂xej

ue (10)

where ue is the eth elemental displacement vector. ke represents the elemental stiffness matrix that is

proportional to the Young’s modulus Ee. The formula
∂ke

∂xej

can be expressed as below:

∂ke

∂xej

=
{

pxp−1
ej ξ1k0 , j = 1

xp
e1ζ1k0 , j �= 1

(11)

where k0 is the elemental stiffness matrix corresponding to Young’s modulus of 1.

The symbol ζ1 in Eq. (11) can be denoted as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζj−1 = pxp−1
ej

(
ξj − EJ+2−j

)
ζj−2 = xp

ej−1ζj−1 + (
1 − xp

ej−1

)
EJ+3−j

ζi−1 = xp
eiζi +

(
1 − xp

ei

)
EJ+2−i

, i = 2, · · · , j − 2; j = 2, 3, · · · , J − 1

ζj−1 = pxp−1
ej (E1 − E2)

ζi−1 = xp
eiζi +

(
1 − xp

ei

)
EJ+2−i

, i = 2, · · · , J − 1; j = J

(12)

Take the two-phase material case as example, we can obtain the following the expression:

∂ke

∂xej

=
{

pxp−1
e1 ξ1k0 , j = 1

xp
e1ζ1k0 , j �= 1

(13)

Here ξ1 and ζ1 have the following expression, respectively:

ζ1 = pxp−1
e2 (E1 − E2) (14)

ξ1 = xp
e2E1 + (

1 − xp
e2

)
E2 (15)

3.4 The AL Formulation
In the existing study, numerous local volume fraction constraints are generally addressed by the

aggregated or clustering techniques. However, the final designs strongly depend on the number of
constraint functions and the way defined by the aggregated function. An alternative and attractive
approach to efficiently deal with vast local constrains is the AL method [79–82]. This approach is
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capable of converting a common optimization issue into a box-constrained optimization problem.
For instance, the Eq. (6) is converted into a series of sub-problems, by minimizing the defined AL
function:

min
xej∈[0,1]

: �(k) = c(k) + 1
Nmass

(
λ0

(k)h0 + κ(k)

2
h0

2

)
+ 1

Nvol

∑J

j=1

{∑
e

[
λ(k)

ej hej

(
xej

) + κj
(k)

2
h2

ej

(
xej

)]}
, ∀e (16)

where the superscript k represents the kth optimization loop. The second term and third term are the
penalty term according to the global mass constraint and to the local volume constraint in Eq. (6).
We normalize the penalty term using the number Nmass and Nvol. Here Nmass is a constant and Nvol

is directly proportional to the total number of the element. And Nmass and Nvol are determined by
numerical experience. For two parameters, the larger value can relax the constraint function and make
the topology configuration clear quickly, while the smaller value will lead to a stricter constraint effect.

The vector h(k) = [
h0

(k), h1
(k), h2

(k), · · · ]T
can be rewritten as

h(k) = max
(

g(k), −λ(k)

κ(k)

)
(17)

where the symbol λ(k) = [
λ

(k)

0 , λ(k)

1 , λ(k)

2 , . . .
]T

and κ(k) are the Lagrangian multipliers associated with
the inequality and penalty factors, respectively. We define g = [g0, g1, g2, · · · ]T as the constraint vector
containing both global mass constraint and local volume constraint as below:{

g0 = mf

mf
− 1

ge = ρ̂e
α

− 1 , ∀e
(18)

In Eq. (20), both the renewal of the Lagrangian multiplier estimators and the penalty factor at
each AL step are as follows:

λ(k+1) = λ(k) + κ(k)h
(
xe

(k)
)

(19)

κ(k+1) = min
(
1.1κ(k), 10000

)
(20)

The box-constrained optimization problem (16) can be solved by a number of efficient algorithms
including the method of moving asymptotes (MMA) and steepest descent method with move limits
(SDM). In this work, the MMA algorithm is employed to solve the Eq. (16) for its popularity in
the topology optimization community. We typically use five MMA iterations per AL iteration in the
implementation. The reader can be referred to the literature [81–83] for details.

4 Numerical Examples

This section will examine the practicality of the proposed multi-material TO method for porous
structures through several 2D numerical tests. Without jeopardizing generality, the geometric size of
the design domain, the material prosperities, the external force and resultant compliance are all non-
dimensional. The design domain is discretized into bilinear elements with four nodes in plane stress
state. The first four examples impose a single mass constraint, whereas the final example specifies
multiple volume fractions. The constituent phases share the identical Poisson’s ratio 0.3 but remarkably
different Young’s modulus, E1 = 1.2, E2 = 0.8 and E3 = 0.4. All mass densities are normalized as
ρ1 = 1.0, ρ2 = 0.6 and ρ3 = 0.2 to facilitate the discussion. The material phases 1, 2 and 3 are displayed
in red, blue and green respectively for clarity. The move limit m is set conservatively as 0.01 for the AL
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function to stabilize the optimization loop. All numerical examples are run on the platform Matlab TM

and a PC with an Intel i7 4.20 GHz and 32.0 GB RAM.

4.1 Example 1
The first example demonstrates the disparities between the proposed method and existing method

presented by Wu et al. [27] in terms of optimized results. All parameters are the same except the
optimization solver. In this case, material phases 1 and 2 are optional. Fig. 2 depicts the design domain,
boundary and loading conditions. The planar structure is divided into 640 × 160 uniform mesh with
the elemental length 0.5. Both left and right edges are fully fixed while a concentrate load F = −2 is
vertically applied at the midpoint on top edge. The global mass percentage and local volume fraction
are set as mf = 0.3 and α = 0.6, respectively. The filtering radius of r = 2 and the influence radius of
R = 4 are prescribed. Fig. 3 presents the optimized topologies procured from two different approaches.
To facilitate understanding, Fig. 4 illustrates the statistical histogram of the local proportion field ρ̂e.

Figure 2: The design domain, boundary and loading conditions

Figure 3: The final layouts from (a) the proposed method: c = 92.118; (b) the existing method:
c = 94.568

As revealed in Fig. 3, visual discrepancies exist between the optimized topologies for the same
specified conditions. The optimized structure from the proposed method is dominated by the spongy
substructure. The dissimilarities can primarily attribute to the treatment of the local volume con-
straints. In Fig. 4a, the maximum value of the local volume percentage is restricted in a narrow range,
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whereas data of the statistical histogram generated by the existing method scatter around the maximum
limit value 0.6 as a sharp contrast shown in Fig. 4b. In literature [80], the optimizer for minimum AL
function is expressed explicitly without inner loops. The proposed method requires 608 s, which is
significantly less time than 2891 s consumed in the existing method.

Figure 4: The statistical histogram of local volume fraction ρ̂e from (a) the proposed method and (b)
the existing method

When the proposed method is applied, the iterative histories of the resultant compliance c and
parameter β are exhibited in Fig. 5, together with structural topologies at the 150th, 250th, 350th,
450th and 550th iteration inserted. The preliminary analysis of the data in Fig. 5 yielded the following
findings. The curve representing the objective function steepens dramatically in the early stages,
indicating a rise in structural stiffness. As the optimization iterates, the static compliance cure appears
to undergo a slight abrupt change when β is doubled. At the 250th iteration step (β = 4), a distinct
topological configuration with few blur boundaries emerges. As β increases, the design variables are
pushed towards 0 and 1, while compliance converges to an almost constant. Compared with the
literature [47], the final design with distinct boundaries is possible in the absence of prior knowledge
on the stress distribution.

Figure 5: Iterative histories of compliance and the corresponding optimized topologies
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To investigate the effect of the elastic modulus on the final designs, the values of E1 is assumed to
ranges from 1.4 to 2.0 while the optimized topologies are plotted in Fig. 6.

Figure 6: Optimized topologies by varying the Young’s modulus: (a) E1 = 1.4, c = 84.091; (b) E1 = 1.6,
c = 81.134; (c) E1 = 1.8, c = 78.647; (d) E1 = 2.0, c = 75.514

As expected, the proportion of the phase 1 increases as the Young’s modulus E1 increases, which
the reduction in corresponding compliance. In reality, the multi-material TO selects the stiff material
and stiffness-to-density material. The layout of the constituent material differs from the traditional
TO due to the local volume fraction.

4.2 Example 1
This example considers the design of the Messerschmitt-Bolkow-Blohm (MBB) structure, utilizing

the proposed multi-material TO approach to build an infill structure with a single mass constraint, i.e.,
mf = 0.3. As sketched in Fig. 7, the two-side supported structure is loaded at its top center by F = −3.
The right half is symmetric and discretized by 600 × 200 square elements with elemental length 1. Here
a local volume limit of α = 0.6 is employed. The filter radius r and influence radius R are set as 8 and
16, respectively. The design domain is composed of the material phase 1 and 2. Fig. 8 illustrates the
final layouts generated by the proposed method employing multiple materials and single phase.
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Figure 7: MBB structure design domain

Figure 8: The final layouts obtained from the proposed method using (a) multi-material: c = 615.429;
(b) phase 1: c = 649.319; (c) phase 2: c = 744.716

As sketched in Fig. 8, two available materials coexist within the porous structure, each occupying
a favorable region. As a result, the compliance 615.429 is slightly below to its counterparts, which
have the structure consisting of entirely material 1 or 2. What stands out is that, given the same
mass constraint, the system performance can be significantly improved by expanding the material
selection. Meanwhile, the optimization algorithm can automatically assign the unique usage of each
phase, resulting in a more legitimate and effective material distribution.

Pattern repetition is another frequently used restriction to mimic the porous structure. The MBB
design domain is assumed to be divided into 6 × 2 repetitive cells. For comparison, the final layouts
constrained by pattern repetition and bulk design are displayed in Figs. 9 and 10.

As a result of the porous structure analysis, a porous structure containing multiple materials out-
performs a porous structure containing sole material in the final designs of the optimized topologies
in the periodic design and bulk design. This consequence can be the unswerving auxiliary evidence
to manifest the superiority of the composite structure. Additionally, by examining the resulting
compliance shown in Figs. 7–9, the periodic design and bulk design exhibits the highest and lowest
stiffness respectively. It can be deduced that the repetitive patterns impose a fairly strong constraint
on design domain.
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Figure 9: The final layouts restricted by pattern repetition using (a) multi-material: c = 892.74; (b)
phase 1: c = 1255.777; (c) phase 2: c = 915.940

Figure 10: The final layouts obtained from bulk design using (a) multi-material: c = 518.910; (b) phase
1: c = 550.225; (c) phase 2: c = 544.074

Additionally, it is a popularly held opinion that porous structures are more resilient to material
deficiency [27]. For a more thorough comparison, we compare structural integrity to the locally
regional failure. Eight possible failure zones with a square dimension of 100 × 100 are spread
seamlessly over the domain, as shown in Fig. 7. Fig. 11 depicts the total damaged models from
the present multi-material TO method to generate bone-like structure. Fig. 10 illustrates the fail-
safe region and the resulting variations for the porous structure. The eight regions were respectively
arranged by diverse methods according to the numerical value which augment according to the color
of the color bar from bottom to the top.
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(a)  c=30174                                                                         (b) c=36419  

(c) c=36318                                                                         (d) c=27902  

(e) c=64687                                                                         (f) c=35627  

(g) c=43848                                            (h) c=11514 

Figure 11: Eight total damaged models with the resultant compliance

In Fig. 11, the void region represents the region which is assumed to be collapse. From an
obviously visual standpoint, various damage locations on the structure do not produce a significant
impact change. This example demonstrates the benefit of the porous structure when a specific region
is destructed. Simultaneously, we performed fail-safe region research on periodic and bulk materials,
resulting in three compliance trend curves excavated in different regions as illustrated in Fig. 12.

Figure 12: The variations with respect to damage region for three kinds of designs
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As illustrated in Fig. 12, the curve of periodic design is reversely gentle. This means that the
periodic designs possess the least stable fluctuations as measured by compliance, making them the
most conservative designs among all solutions. For bulk designs, several resultant compliance exceed
the normal range. It implies that the structure will collapse as a result of such a failure, which cannot
be acceptable from the engineering point of view. In general, by accounting for normal conditions and
possible material deficiency, the porous structures can maintain a balance between the bulk design and
pattern repetitions.

4.3 Example 3
The global mass bound, the influence radius and local volume percentage contributes to determine

the porosity. The effects of these criteria on final designs will be discussed as a continuation of the
preceding example. To begin, the filter radius r is set to 6 and influence radius R is set to 12. The
mass fraction varies between 0.15 and 0.35. The remainders of the parameters are identical to those
in examples 2. Fig. 13 illustrates the final designs obtained by altering the mass fraction parameters.

Figure 13: The final designs by varying the mass fraction: (a) mf = 0.15, c = 1071; (b) mf = 0.25, c = 714;
(c) mf = 0.35, c = 594

As can be seen, the mass fraction controls both the porosity and space between the base phases.
The system stiffness will be efficiently raised as more materials become available, which matches the
engineering intuition.

Secondly, the mass fraction mf = 0.35 are specified for two radii of r = 5 and R = 12. The local
volume fraction is in the range of 0.6 and 0.8. The final designs by changing the local volume fraction
are plotted in Fig. 14. Thirdly, the mass fraction and local volume fraction are given as mf = 0.30
and α = 0.65, respectively. The filter radius and influence radius are divided into four groups: (a)
r = 5, R = 10; (b) r = 5, R = 20; (c) r = 10, R = 20; (d) r = 15, R = 20. The final designs for various
combinations of two radiuses are depicted in Fig. 15.

Observed from Figs. 14 and 15, the form of the porous structures is influenced by the parameters
α, r and R. Clearly, constituent materials will accumulate in confined spaces, as the local volume
fraction increases, reducing system compliance. The bone-like structure in the limit state degrades
similarly to conventional bulk designs. The minimum scale size of the structure can be inferred from



CMES, 2024, vol.138, no.1 383

the filter radius r. The parameter R exerts a prominent impact on the size of the hole from a visual
perspective. As the scope of influence is enlarged, the constraint on local volume fraction tends to
loosen, evolving towards the conventional TO. Validity is confirmed by the observed occurrences,
which are similar to those described in the published literature [27].

Figure 14: The final designs by varying the local volume fraction: (a) α = 0.60, c = 586.986; (b) α =
0.65, c = 543.282; (c) α = 0.70, c = 521.484; (d) α = 0.75, c = 499.114; (e) α = 0.80, c = 480.439

Figure 15: The final designs for various combinations of two radiuses: (a) r = 5, R = 10, c = 627.904;
(b) r = 5, R = 20, c = 563.754; (c) r = 10, R = 20, c = 580.656; (d) r = 15, R = 20, c = 611.699
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4.4 Example 4
To test the feasibility of the current approach in coping with irregular shape and mesh, a 2D bone-

like structure is selected for optimization. The finite element model contains 35516 four-node elements
and 35913 nodes. The passive region consists of four layers of elements. The bottom edge is completely
constrained, whereas left corner on the top side are exerted uniformly distributed load F = 100 and the
right with F = 100

√
2 at θ = 45° as demonstrated in Fig. 16. The filter radius r and influence radius

R are set as 8 and 16. The local volume fraction and mass fraction are prescribed as 0.65 and 0.45,
respectively. For comparison, the traditional topology optimization subject to the identical material
usage is performed. Two distinct final designs are drawn in Fig. 17.

Figure 16: The design domain, boundary and loading condition of a bone-like structure

Two optimized topologies, as illustrated in Fig. 17, have notable visual distinctions. The strong
material occupies a higher proportion in the porous design, whereas the weak phase material fills
the central area in the traditional design. To further elaborate the advantage of the porous structure,
Fig. 18 depicts compliance variation from two unique topologies at various angles θ . Clearly, the bone-
like structure is insensitive to changes in load direction.

4.5 Example 5
This example can be viewed as a natural extension of Example 2, in which three materials are

available by imposing individual volume fractions. The filter radius r and influence radius R are set as
6 and 12. The local volume fraction for various phases is set as 0.65. The volume fraction for phases 1,
2 and 3 is 0.5, 0.3 and 0.1, respectively. Fig. 19 depicts the optimized topology based on three optional
materials.
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Figure 17: The final designs obtained through (a) porosity control, c = 22610.371; (b) traditional
topology optimization, c = 15252.931

Figure 18: Compliance curves with respect to load direction angle θ of two resulting topologies

It can be noticed that each phase material forms the force transmission path separately and
collaborates to form the porous structure that fits the prescribed design criteria. Four sets of
Lagrangian multiplies are dynamically updated in this example, i.e., three of which correspond to
the volume fraction constraints and one of which correspond to the local volume percentage. All
constraints are nearly rigorously satisfied, demonstrating the proposed method’s practicality in the
presence multiple volume constrains.
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Figure 19: The optimized topology by selecting three candidate material: c = 710.353, α = 0.65,
V 1 = 0.501, V 2 = 0.299 and V 3 = 0.100

5 Conclusion

This study presents an alternative method for optimizing porous structure containing multiple
materials, by constructing a sequence of box-constrained optimization problems in the form of an
Augmented Lagrangian function. During optimization iteration, the sub-problem is solved using the
MMA approximation and algorithm. In contrast to the existing method, the proposed approach has
the advantage of precisely satisfying the local volume percentage constraint. In comparison to the
results of bulk design and periodic design, porous structures can achieve a balance between material
savings and mechanical qualities, as well as the fail-safe requirement with the identical mass utilization.
The effects including the global mass bound, the influence radius and local volume percentage on final
designs are investigated. Additionally, the proposed method is validated for irregular structures and
issues involving multiple volume fraction constraints.

It is worth mentioning that the current method can be supplemented with other approaches that
address with the multiple materials. Moreover, it will be quite interesting to extend the suggested
method into the multi-physics problem and 3D structures.
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