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ABSTRACT

New fractional operators, the COVID-19 model has been studied in this paper. By using different numerical
techniques and the time fractional parameters, the mechanical characteristics of the fractional order model are
identified. The uniqueness and existence have been established. The model’s Ulam-Hyers stability analysis has been
found. In order to justify the theoretical results, numerical simulations are carried out for the presented method
in the range of fractional order to show the implications of fractional and fractal orders. We applied very effective
numerical techniques to obtain the solutions of the model and simulations. Also, we present conditions of existence
for a solution to the proposed epidemic model and to calculate the reproduction number in certain state conditions
of the analyzed dynamic system. COVID-19 fractional order model for the case of Wuhan, China, is offered for
analysis with simulations in order to determine the possible efficacy of Coronavirus disease transmission in the
Community. For this reason, we employed the COVID-19 fractal fractional derivative model in the example of
Wuhan, China, with the given beginning conditions. In conclusion, again the mathematical models with fractional
operators can facilitate the improvement of decision-making for measures to be taken in the management of an
epidemic situation.
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1 Introduction

Coronavirus (COVID-19) is a new phenomenon in recent days, which affected the entire world
while it was emerging. According to reference [1], it is reported that a mysterious outbreak of atypical
pneumonia was traced to a seafood market in Wuhan, China. In December 2019 the first case of novel
coronavirus was reported. The symptoms of coronavirus are dry cough, fever, fatigue and in severe
cases, acute respiratory syndrome that appears in 2–10 days which further causes pneumonia, kidney
failure and even death [2]. In between March and April, coronavirus became a global phenomenon
with the whole world facing an emergency situation. Initial cases were reported in the wet seafood
market of Wuhan, China [3]. That is why some researchers thought that it is transmitted by animals
to humans. This virus is transmitted from one person to another through physical contact, droplets
during sneezing and coughing [4]. Researchers in the field of epidemiology and other fields of biology
are trying hard to develop the cure based on ongoing clinical trials, but different researching companies
from different countries have developed the vaccine for COVID-19 in [5]. Developed countries like
the USA, UK, Italy, Spain and many others are affected very badly, most of the global deaths are
being reported from these countries [6]. Mathematical modeling is used to understand the dynamics
and behavior of disease and then develop the procedures for the treatment of disease. For this
purpose, many researchers developed the COVID-19 models (see [7–12]). Reproductive number has a
notable role in the analysis of mathematical models. Reproductive number explains the behavior of the
simulation of COVID-19. The fractional order mathematical models of a few more infectious diseases
have recently been studied in [13].

In order to address problems in the real world, fractional calculus (FC) is essential. It is widely
utilized in a variety of scientific, engineering, and financial sectors. The key characteristics of FC are
fractional integrals and derivatives of fractional order. Researchers’ interest in fractional calculus and
the numerous aspects of that study under inquiry has grown in recent years. This is due to the fact
that genetic mutations are a crucial tool for characterizing the dynamic operation of diverse biological
systems. These component operators’ non-local properties, which are absent from the integer separator
operator, give them their power [14–16]. For the development of an artificial pancreas, Farman
et al. [17] employed an Atangana Baleanu derivative to manage glucose levels in insulin treatments.
Differential equations with various generalized fractional derivatives have been solved using a variety
of numerical techniques [18–20]. In [21], a generalization of the squared remainder minimization
method for resolving multi-term fractional differential equations was developed. The Caputo time-
fractional derivative and redefined extended B-spline functions have been used for the time and
spatial discretization, respectively in [22–25] and some details are also given in [26–28]. COVID-19
outbreaks have been well modeled in [29–31] for a variety of geographic locations. Additionally, some
publications [32–34] explored the impact of quarantine and social isolation on the viral load in the
environment. For the COVID-19 epidemic, some researchers suggested the best control approaches
including cost-effectiveness assessments [35,36].

2 Basic Concepts of Fractional Operators

In this section, we consider some definition related to fractal fractional operator given in
[31,34,37,38].

Definition 2.1: Let 0 ≤ σ , σ1 ≤ 1, then with power law type kernel the fractal-fractional derivative
is described by:

FFPJσ ,σ1
0,t (g (t)) = 1

� (m − σ)

d
dtσ1

∫ t

0

(t − s)m−σ−1 g (s) ds, (1)
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d
dsσ1

g (s) = limt→s

g (t) − g (s)
tσ1 − sσ1

.

Definition 2.2: Let 0 ≤ σ , σ1 ≤ 1, then with the exponential-decay type kernel the fractal fractional
derivative is described by:

FFPJσ ,σ1
0,t (g (t)) = M (σ )

� (m − σ)

d
dtσ1

∫ t

0

exp
[
− σ

1 − σ
(t − s)ν−σ−1

]
g (s) ds, (2)

where σ > 0, σ1 ≤ ν ∈ N, and M (0) = M (1) = 1.

Definition 2.3: Let 0 ≤ σ , σ1 ≤ 1, then with the generalized Mittag-Leffler type kernel the fractal
fractional derivative is described by:

FFMJσ ,σ1
0,t (g (t)) = AB (σ )

1 − σ

d
dtσ1

∫ t

0

Eσ

[
− σ

1 − σ
(t − s)σ

]
g (s) ds, (3)

where σ > 0, σ1 ≤ 1, and AB (σ ) = 1 − σ + σ

� (σ)
.

Definition 2.4: The function g (t) of order (σ , σ1), for fractal-fractional integral with power law
type kernel is described by:

FFPIσ ,σ1
0,t (g (t)) = 1

� (σ1)

∫ t

0

s1−σ1 (t − s)σ−1 g (s) ds. (4)

Definition 2.5: The function g (t) of order (σ , σ1), for fractal-fractional integral with exponential-
decay type kernel is described by:

FFPIσ ,σ1
0,t (g (t)) = σ1 (1 − σ) tσ1−1g (t)

M (σ )
+ σσ1

M (σ )

∫ t

0

sσ−1g (s) ds. (5)

Definition 2.6: The function g (t) of order (σ , σ1), for fractal-fractional integral with Mittag-Leffler
type kernel is described by:

FFMJσ ,σ1
0,t (g (t)) = σ1 (1 − σ) tσ1−1g (t)

AB (σ )
+ σσ1

AB (σ )

∫ t

0

sσ−1 (t − s) g (s) ds. (6)

3 Fractal Fractional Order Model

We suppose the COVID-19 model formulated by Ahmad et al. [39]. In this model, S (t) represents
susceptible individuals, H (t) represents resistant or healthy individuals, infected individuals are
represented by I (t) and Q (t) represents quarantined individuals. We suppose that the used parameters
in the model are non-negative. Hence, N (t) = S (t) + H (t) + I (t) + Q (t) . In this model, recruitment
rate of susceptible individuals is represented by λ, γ denotes disease transmission rate, Recruitment
rate of healthy people is α, Healthy people transmission rate is denoted by β, Cure rate of the infected
individuals in the quarantined compartment is θ , δ which represent the rate at which quarantined
people get infections, μ represents death rate of suspected or infected individuals due to disease and
d denotes natural death rate. We present the COVID-19 classical model [39] using fractal-fractional
Atangana–Baleanu derivative. We have the following model:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

FFDσ ,σ1
0,t S (t) = λ − γ S (t) I (t) − (d + μ) S (t)

FFDσ ,σ1
0,t H (t) = α − βH (t) I (t) + θI (t) − (d + μ) H (t)

FFDσ ,σ1
0,t I (t) = γ S (t) I (t) + βH (t) I (t) + δQ (t) − (d + μ + η + θ) I (t)

FFDσ ,σ1
0,t Q (t) = ηI (t) − (d + μ + δ) Q (t)

, (7)
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with initial conditions are

S (0) ≥ 0, H (0) ≥ 0, I (0) ≥ 0 and Q (0) ≥ 0. (8)

3.1 Equilibrium Points
In this section, we will discuss the equilibrium points of the given COVID-19 model (7).

Equilibrium points have two types namely as disease free equilibrium and endemic equilibrium. We
obtained these points by putting the number zero on the right side of the system (7). We suppose that
E’ represents disease free equilibrium and endemic equilibrium is represented by E∗. If we take both of
our equilibriums, we have

E ′ = (S′, H ′, I ′, Q′) =
(

λ

d + μ
,

α

d + μ
, 0, 0

)

S∗ = λ

γ I ∗ + d + μ
, H∗ = λ + θI ∗

βI ∗ + d + μ
, I ∗ = δQ∗

(d + μ + η + θ) − γ S∗ − βH∗ , Q∗ = ηI ∗

(d + μ + δ)
.

We obtain the basic reproductive number R0 by [37], we have

R0 = (γλ + βα) (d + μ + δ)

(d + μ) [(d + μ + η + θ) (d + μ + δ) − δη]
.

4 Existence and Stability Theory
4.1 Existence

We consider [40]⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ABR
0 Dσ

0 S (t) = σ1tσ1−1C (t, S, H, I , Q)
ABR
0 Dσ

0 H (t) = σ1tσ1−1D (t, S, H, I , Q)
ABR
0 Dσ

0 I (t) = σ1tσ1−1E (t, S, H, I , Q)
ABR
0 Dσ

0 Q (t) = σ1tσ1−1F (t, S, H, I , Q)

, (9)

where

C (t, S, H, I , Q) = λ − γ S (t) I (t) − (d + μ) S (t) ,

D (t, S, H, I , Q) = α − βH (t) I (t) + θI (t) − (d + μ) H (t) ,

E (t, S, H, I , Q) = γ S (t) I (t) + βH (t) I (t) + δQ (t) − (d + μ + η + θ) I (t) ,

F (t, S, H, I , Q) = ηI (t) − (d + μ + δ) Q (t) .

We can write system (9) as:{
ABR
0 Dσ

t � (t) = σ1tσ1−1 (t, � (t))
� (0) = �0

, (9’)

By replacing ABR
0 Dσ ,σ1

0 by ABC
0 Dσ ,σ1

0 and applying fractional integral, we get

� (t) = � (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ ,
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where

� (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S (t)
H (t)
I (t)
Q (t)

, � (0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S (0)

H (0)

I (0)

Q (0)

,  (t, � (t)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C (t, S, H, I , Q)

D (t, S, H, I , Q)

E (t, S, H, I , Q)

F (t, S, H, I , Q)

We describe a Banach space B = C × C × C × C, where C = [0, T ] under the norm

‖�‖ = max
t∈[0,T ]

|S (t) + H (t) + I (t) + Q (t)|
Define as operator ℵ : B → B as:

ℵ (�) (t) = � (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ . (10)

We suppose that

• For each � ∈ B, ∃ constants C > 0 and M such that

| (t, � (t))| ≤ C |� (t)| + M. (11)

• Considering �, � ∈ B, ∃ a constant L > 0 such that∣∣ (t, � (t)) − 
(
t, �(t)

)∣∣ ≤ L

∣∣� (t) − � (t)
∣∣ . (12)

Theorem 4.1: Suppose that the state (11) exists. Let  : [0, T ] × B → R be a continuous function.
The system having at least one solution, the condition given in [41,42].

Proof: First of all, considering the Eq. (10) is completely continuous which is described by operator
ℵ. Since  and ℵ are continuous operators,

Suppose that H = \ {� ∈ B : ‖�‖ ≤ R, R > 0\}. For some � ∈ B, we have

|ℵ (�)| = max
t∈[0,T ]

∣∣∣∣� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

∣∣∣∣
≤ � (0) + σ1Tσ1−1 (1 − σ)

AB (σ )
(C‖�‖ + M) + max

t∈[0,T ]

σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

≤ � (0) + σ1Tσ1−1 (1 − σ)

AB (σ )
(C‖�‖ + M) + σσ1

AB (σ ) � (σ )
(C‖�‖ + M) Tσ+σ1−1H (σ , σ1)

≤ R.

Therefore, we get

|ℵ (�) (t2) − ℵ (�) (t1)|

=
∣∣∣∣∣σ1t

σ1−1
2 (1 − σ)

AB (σ )
 (t2, � (t2)) + σσ1

AB (σ ) � (σ )

∫ t2

0

τ σ1−1 (t2 − τ)
σ1−1

 (τ , � (τ)) dτ

− σ1t
σ1−1
1 (1 − σ)

AB (σ )
 (t1, � (t1)) + σσ1

AB (σ ) � (σ )

∫ t1

0

τ σ1−1 (t1 − τ)
σ1−1

 (τ , � (τ)) dτ

∣∣∣∣∣
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≤
∣∣∣∣∣σ1t

σ1−1
2 (1 − σ)

AB (σ )
(C |� (t)| + M) + σσ1

AB (σ ) � (σ )
(C |� (t)| + M) tσ+σ1−1

2 H (σ , σ1)

− σ1t
σ1−1
1 (1 − σ)

AB (σ )
(C |� (t)| + M) + σσ1

AB (σ ) � (σ )
(C |� (t)| + M) tσ+σ1−1

1 H (σ , σ1)

∣∣∣∣∣
When t1 → t2 then |ℵ (�) (t2) − ℵ (�) (t1)| → 0|.

‖ℵ (�) (t2) − ℵ (�) (t1) ‖ → 0, as t1 → t2.

Thus, ℵ is equicontinuous. Then, by Schauder’s fixed point result, the condition is held.

Theorem 4.2: [38] Suppose that the condition (12) holds. If ρ < 1, where

ρ =
(

σ1Tσ1−1 (1 − σ)

AB (σ )
+ σσ1

AB (σ ) � (σ )
(C‖�‖ + M) Tσ+σ1−1H (σ , σ1)

)
L.

Then the solution of the system is unique.

Proof: For all �, � ∈ B, acquire the following:∣∣ℵ (�) − ℵ (
�

)∣∣ = max
t∈[0,T ]

∣∣∣∣σ1tσ1−1 (1 − σ)

AB (σ )

(
 (t, � (t)) − 

(
t, � (t)

))

+ σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1 dτ

(
 (τ , � (τ)) − 

(
τ , � (τ)

))

≤
[
σ1Tσ1−1 (1 − σ)

AB (σ )
+ σσ1

AB (σ ) � (σ )
(C‖�‖ + M) Tσ+σ1−1H (σ , σ1)

]
‖� − �‖

≤ ρ‖� − �‖
Therefore, ℵ is a contraction. Thus, the solution of the system is unique according to Banach

contraction principle [43].

We denote by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T1 (S (t) , H (t) , I (t) , Q (t)) = S (t) − ABR
0 Dσ

0 S (t) + σ1tσ1−1C (t, S, H, I , Q)

T2 (S (t) , H (t) , I (t) , Q (t)) = H (t) − ABR
0 Dσ

0 H (t) + σ1tσ1−1D (t, S, H, I , Q)

T3 (S (t) , H (t) , I (t) , Q (t)) = I (t) − ABR
0 Dσ

0 I (t) + σ1tσ1−1E (t, S, H, I , Q)

T4 (S (t) , H (t) , I (t) , Q (t)) = Q (t) − ABR
0 Dσ

0 Q (t) + σ1tσ1−1F (t, S, H, I , Q)

. (13)

Let Pcl (R) be the set of all nonempty closed subsets of R.

Theorem 4.3: [44] Let A ∈ Mm,m (R+). The following are equivalents:

(i) A is a matrix which converges to zero;

(ii) An → 0 as n → ∞;

(iii) The modulus for every eigen-values of A is lower than 1;

(iv) The matrix I—A is non-singular, with (I − A)
−1 = I + A + · · · + An + · · · .

We give the following theorem, for the hypothesis that Ti : R → Pcl (R) for i ∈ {1, . . . , 4} are
contractions. Pcl (R) is the set of all nonempty closed subsets of R, where R represents the set of real
numbers. Examples of conditions for them to be contractions are, for instance, the cases in which the
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absolute values of the derivatives are lower than 1. This situation is possible when the variations of
functions S (t) , H (t) , I (t) , Q (t) are low.

Theorem 4.4: Let Ti : R → Pcl (R) for i ∈ {1, . . . , 4} be contractions and 0 ≤ akk ≤ 1, k ∈
{1, . . . , 4}. Let (S (t1) , H (t1) , I (t1) , Q (t1)) , (S (t2) , H (t2) , I (t2) , Q (t2)) ∈ R4 where t1 and t2 are
moments from a time interval J. If for each yk = Tk (S (t1) , H (t1) , I (t1) , Q (t1)) , k ∈ {1, . . . , 4}
there exists zk = Tk (S (t1) , H (t1) , I (t1) , Q (t1)) such that for all k ∈ {1, . . . , 4} in [44]:

|yk − zk| ≤ a11 |S (t2) − S (t1)| ,

|yk − zk| ≤ a22 |H (t2) − H (t1)| ,

|yk − zk| ≤ a33 |I (t2) − I (t1)| ,

|yk − zk| ≤ a44 |Q (t2) − Q (t1)| ,

then, the semi linear inclusion system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S (t) ∈ T1 (S (t) , H (t) , I (t) , Q (t))
H (t) ∈ T2 (S (t) , H (t) , I (t) , Q (t))
I (t) ∈ T3 (S (t) , H (t) , I (t) , Q (t))
Q (t) ∈ T4 (S (t) , H (t) , I (t) , Q (t))

(14)

has at least one solution in R4.

Proof: The theorem is a particular case of Theorem 3.11 from [44]. It is demonstrated the same
as Theorem 3.11 from [44], with (u1, u2, u3, u4) = (S (t1) , H (t1) , I (t1) , Q (t1)) and (v1, v2, v3, v4)

= (S (t2) , H (t2) , I (t2) , Q (t2)) and working with ‖u − v‖ =

⎛
⎜⎜⎝

|u1 − v1|
|u2 − v2|
|u3 − v3|
|u4 − v4|

⎞
⎟⎟⎠. In this case, the diagonal

matrix A = (
aij

)
converges to 0.

The demonstration of the theorem uses elements from the fixed-point theory and results from the
fact that T = (T1, . . . , T4) : R4 → Pcl

(
R4

)
is a multivalued operator A-contraction to the left, thus

T is an MWP operator. The concept of multivalued weakly Picard operator (briefly MWP operator)
was introduced by Rus et al. in [45]. The authors created this concept in connection to the successive
approximation technique for the fixed-point set of multivalued operators defined on a complete metric
space. As R4 is a Banach space, T has at least one fixed point [44], therefore, the conclusion to this
theorem is verified.

4.2 Ulam-Hyers Stability
Definition 4.1: The system is Ulam-Hyers stable if ∃ ℵσ ,σ1

≥ 0 such that for any ε > 0 and for
every � ∈ (C [0, T ] , R) is satisfied the following:∣∣FFM

0 Dσ ,σ1
t � (t) −  (t, � (t))

∣∣ ≤ ε, t ∈ [0, T ] ,

And there exists unique solution � ∈ (C [0, T ] , R) such that

|� (t) − � (t)| ≤ ℵσ ,σ1
ε, t ∈ [0, T ] ,
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• �(t) ≤ ε for ε > 0.

• FFM
0 Dσ ,σ1

t � (t) =  (t, � (t)) + � (t).

Lemma 4.1: Perturbed solution for the system according the given result in [37].
FFM
0 Dσ ,σ1

t � (t) =  (t, � (t)) + φ (t)

� (0) = �0

satisfies the following relation:∣∣∣∣ℵ (t) −
(

� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

)∣∣∣∣
≤

(
σ1Tσ1−1 (1 − σ)

AB (σ )
+ σσ1

AB (σ ) � (σ )
Tσ+σ1−1H (σ , σ1)

)
ε, (15)

We note:

σ ∗
σ ,σ1

= σ1Tσ1−1 (1 − σ)

AB (σ )
+ σσ1

AB (σ ) � (σ )
Tσ+σ1−1H (σ , σ1) . (16)

Lemma 4.2: The solution of the system is Ulam-Hyers stable if ρ < 1, in condition (12) along with
Lemma (4.1).

Proof: Suppose that � ∈ B and � ∈ B is unique and any solution, respectively, we have

|� (t) − � (t)| =∣∣∣∣� (t) −
(

� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

)∣∣∣∣
≤

∣∣∣∣� (t) −
(

� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

)∣∣∣∣
+

∣∣∣∣� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

∣∣∣∣
−

∣∣∣∣� (0) + σ1tσ1−1 (1 − σ)

AB (σ )
 (t, � (t)) + σσ1

AB (σ ) � (σ )

∫ t

0

τ σ1−1 (t − τ)
σ1−1

 (τ , � (τ)) dτ

∣∣∣∣
≤ σ ∗

σ ,σ1
ε +

(
σ1Tσ1−1 (1 − σ)

AB (σ )
+ σσ1

AB (σ ) � (σ )
Tσ+σ1−1H (σ , σ1)

)
L |� (t) − � (t)|

≤ σ ∗
σ ,σ1

ε + ρ |� (t) − � (t)| .

Consequently, one can write

||� (t) − � (t)|| ≤ σ ∗
σ ,σ1

ε + ρ ||� (t) − � (t)|| .

We can write the above relation is

||� (t) − � (t)|| ≤ ℵσ ,σ1
ε,

where ℵσ ,σ1
= σ ∗

σ ,σ1

1 − ρ
. Therefore, system is stable.
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4.3 Fractal-Fractional Integral with Mittag-Leffler Kernel
Consider:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S (t) = S (0) + σ1tσ1−1 (1 − σ)

AB (σ )
P1 (t, S, H, I , Q) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (t − τ)σ−1 P1 (τ , S, H, I , Q) dτ

H (t) = H (0) + σ1tσ1−1 (1 − σ)

AB (σ )
P2 (t, S, H, I , Q) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (t − τ)σ−1 P2 (τ , S, H, I , Q) dτ

I (t) = I (0) + σ1tσ1−1 (1 − σ)

AB (σ )
P3 (t, S, H, I , Q) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (t − τ)σ−1 P3 (τ , S, H, I , Q) dτ

Q (t) = Q (0) + σ1tσ1−1 (1 − σ)

AB (σ )
P4 (t, S, H, I , Q) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (t − τ)σ−1 P4 (τ , S, H, I , Q) dτ

.

(17)

We construct the numerical scheme at t = tn+1 :
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = S0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P1 (tn, Sn, Hn, In, Qn) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (tn+1 − τ)σ−1 P1 (τ , S, H, I , Q) dτ

Hn+1 = H0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P2 (tn, Sn, Hn, In, Qn) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (tn+1 − τ)σ−1 P2 (τ , S, H, I , Q) dτ

In+1 = I0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P3 (tn, Sn, Hn, In, Qn) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (tn+1 − τ)σ−1 P3 (τ , S, H, I , Q) dτ

Qn+1 = Q0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P4 (tn, Sn, Hn, In, Qn) + σσ1

AB (σ ) � (σ )

∫ t
0 τσ1−1 (tn+1 − τ)σ−1 P4 (τ , S, H, I , Q) dτ

(18)

Applying the approximation of the integrals on the right hand side of system (18) yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = S0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P1 (tn, Sn, Hn, In, Qn)+

σσ1

AB (σ ) � (σ )

∑n

j=0

∫ tj+1
tj

τ σ1−1 (tn+1 − τ)
σ−1 P1 (τ , S, H, I , Q) dτ

Hn+1 = H0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P2 (tn, Sn, Hn, In, Qn)

+ σσ1

AB (σ ) � (σ )

∑n

j=0

∫ tj+1
tj

τ σ1−1 (tn+1 − τ)
σ−1 P2 (τ , S, H, I , Q) dτ

In+1 = I 0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P3 (tn, Sn, Hn, In, Qn)

+ σσ1

AB (σ ) � (σ )

∑n

j=0

∫ tj+1
tj

τ σ1−1 (tn+1 − τ)
σ−1 P3 (τ , S, H, I , Q) dτ

Qn+1 = Q0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P4 (tn, Sn, Hn, In, Qn)

+ σσ1

AB (σ ) � (σ )

∑n

j=0

∫ tj+1
tj

τ σ1−1 (tn+1 − τ)
σ−1 P4 (τ , S, H, I , Q) dτ

. (19)
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We consider

Lj (τ ) = τ − tj−1

tj − tj−1

tσ1−1
j P1

(
tj, Sj, Hj, I j, Qj

) − τ − tj

tj − tj−1

tσ1−1
j−1 P1

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

)
,

Mj (τ ) = τ − tj−1

tj − tj−1

tσ1−1
j P2

(
tj, Sj, Hj, I j, Qj

) − τ − tj

tj − tj−1

tσ1−1
j−1 P2

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

)
,

Nj (τ ) = τ − tj−1

tj − tj−1

tσ1−1
j P3

(
tj, Sj, Hj, I j, Qj

) − τ − tj

tj − tj−1

tσ1−1
j−1 P3

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

)
,

Oj (τ ) = τ − tj−1

tj − tj−1

tσ1−1
j P4

(
tj, Sj, Hj, I j, Qj

) − τ − tj

tj − tj−1

tσ1−1
j−1 P4

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

)
.

Then, we have

Sn+1 = S0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P1 (tn, Sn, Hn, In, Qn) + σ1 (�t)σ

AB (σ ) � (σ + 2)

∑n

j=0

[
tσ1−1

j P1

(
tj, Sj, Hj, I j, Qj

)
× ((n + 1 − j)σ

(n − j + 2 + σ) − (n − j)σ
(2 + 2σ + n − j))

−tσ1−1
j−1 P1

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

) × (
(1 + n − j)σ+1 − (n − j)σ

(1 + σ + n − j)
)]

, (20)

Hn+1 = H0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P2 (tn, Sn, Hn, In, Qn) + σ1 (�t)σ

AB (σ ) � (σ + 2)

∑n

j=0

[
tσ1−1

j P2

(
tj, Sj, Hj, I j, Qj

)
× ((n + 1 − j)σ

(n − j + 2 + σ) − (n − j)σ
(2 + 2σ + n − j))

− tσ1−1
j−1 P2

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

) × (
(1 + n − j)σ+1 − (n − j)σ

(1 + σ + n − j)
)]

, (20’)

In+1 = I 0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P3 (tn, Sn, Hn, In, Qn) + σ1 (�t)σ

AB (σ ) � (σ + 2)

∑n

j=0

[
tσ1−1

j P3

(
tj, Sj, Hj, I j, Qj

)
× ((n + 1 − j)σ

(n − j + 2 + σ) − (n − j)σ
(2 + 2σ + n − j))

−tσ1−1
j−1 P3

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

) × (
(1 + n − j)σ+1 − (n − j)σ

(1 + σ + n − j)
)]

, (20’’)

Qn+1 = Q0 + σ1tσ1−1
n (1 − σ)

AB (σ )
P4 (tn, Sn, Hn, In, Qn) + σ1 (�t)σ

AB (σ ) � (σ + 2)

∑n

j=0

[
tσ1−1

j P4

(
tj, Sj, Hj, I j, Qj

)
× ((n + 1 − j)σ

(n − j + 2 + σ) − (n − j)σ
(2 + 2σ + n − j))

−tσ1−1
j−1 P4

(
tj−1, Sj−1, Hj−1, I j−1, Qj−1

) × (
(1 + n − j)σ+1 − (n − j)σ

(1 + σ + n − j)
)]

. (20’’’)

5 Computational Result and Discussion

COVID-19 fractional order model for the case of Wuhan, China, is offered for analysis with
simulations in order to determine the possible efficacy of Coronavirus disease transmission in the
Community. For this reason, we employed the COVID-19 fractal fractional derivative model in the
example of Wuhan, China, with the given beginning conditions. The parameters of actual data are
described in detail in [46]. By using different numerical techniques and the time fractional parameters,
the mechanical characteristics of the fractional order model are identified. The findings of fractional
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value calculations were used to detect the outcomes of the nonlinear system memory. It provides a
better way than wanting to control the disease without defining other parameters.

In Figs. 1–4, simulations were obtained by fractal fractional method. It is noted that physical
procedures are far better explained using the fractional order derivatives which are the most notable
and sustainable component compared to the classical-order case with order at 1. The behaviors of the
dynamics found in the various fractional orders are shown in the form of numerical results that have
been reported.

Figure 1: Simulation of S (t) at different fractal orders and fractional order is 1.0

Figure 2: Simulation of H (t) at different fractal orders and fractional order is 1.0
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Figure 3: Results of I (t) for different fractal orders and fractional order is 1.0

Figure 4: Results of Q (t) at different fractal orders and fractional order is 1.0
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In Figs. 5–8, simulations were obtained by fractal fractional method. It is noted that physical
procedures are far better explained using the fractional order derivatives which are the most notable
and sustainable component compared to the classical-order case with order at 0.9. The behaviors of
the dynamics found in the various fractional orders are shown in the form of numerical results that
have been reported.

Figure 5: Results of S (t) at different fractional value with dimension 0.9

Figure 6: Results of H (t) at different fractional value with dimension 0.9
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Figure 7: Results of I (t) at different fractional value with dimension 0.9

Figure 8: Simulation of Q (t) at different fractional value with dimension 0.9

In Figs. 9–12, simulations were obtained by fractal fractional method. It is noted that physical
procedures are far better explained using the fractional order derivatives which are the most notable
and sustainable component compared to the classical-order case with order at 0.8. The behaviors of
the dynamics found in the various fractional orders are shown in the form of numerical results that
have been reported.
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Figure 9: Results of S (t) at different fractional value with dimension 0.8

Figure 10: Results of H (t) at different fractional value with dimension 0.8
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Figure 11: Results of I (t) at different fractional value with dimension 0.8

Figure 12: Results of Q (t) at different fractional value with dimension 0.8

6 Conclusion

In this paper, the fractal-fractional differential equation model for COVID-19 disease has been
investigated with fractal fractional operator. The steady state and fundamental characteristics of the
model equilibria are investigated. Fixed point theory is used to demonstrate in detail the existence
and uniqueness of solutions for the model with FFM derivative. The Ulam-Hyers technique is used
to conduct the stability analysis of the system which fulfills all properties. The two-step fractional
Lagrange polynomial approach with FFM derivative is used to generate the model’s numerical
solution. The numerical simulations are obtained and briefly described by choosing various values
of the fractional order and dimension. We applied very effective numerical techniques to obtain the
solutions of the model. We analyzed our obtained results and concluded that they are effective for
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the proposed model. Some theoretical results were also discussed for the model. This model turns out
to be quite trustworthy when precise estimations of transmission structures are provided in real-time.
The new suggested improvement will shed some modeling-related light on problems with and without
singularity at the origin.

The analysis of the following problems forms further directions of research and developments:
creating and exploring families of other epidemiological models based on fractal-fractional differential
equations for diseases; the exploration of distinctions, taking into account the types of distinctions
between fractional models; creating the output information for subsequent methodological recom-
mendations, for diseases expansions analysis and for anti-diseases interventions plans.
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