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ABSTRACT

Recently, nano-systems based on molecular communications via diffusion (MCvD) have been implemented in a
variety of nanomedical applications, most notably in targeted drug delivery system (TDDS) scenarios. Furthermore,
because the MCvD is unreliable and there exists molecular noise and inter symbol interference (ISI), cooperative
nano-relays can acquire the reliability for drug delivery to targeted diseased cells, especially if the separation
distance between the nano transmitter and nano receiver is increased. In this work, we propose an approach for
optimizing the performance of the nano system using cooperative molecular communications with a nano relay
scheme, while accounting for blood flow effects in terms of drift velocity. The fractions of the molecular drug
that should be allocated to the nano transmitter and nano relay positioning are computed using a collaborative
optimization problem solved by the Modified Central Force Optimization (MCFO) algorithm. Unlike the previous
work, the probability of bit error is expressed in a closed-form expression. It is used as an objective function
to determine the optimal velocity of the drug molecules and the detection threshold at the nano receiver. The
simulation results show that the probability of bit error can be dramatically reduced by optimizing the drift velocity,
detection threshold, location of the nano-relay in the proposed nano system, and molecular drug budget.
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1 Introduction

Following the COVID-19 crisis with the increase of severe diseases, and the shortage of medical
specialists, new healthcare monitoring technologies are required. One of these technologies is the
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nano-system (NS) for infectious disease diagnosis [1–3]. It can also be used to deliver therapeutic
drugs to the targeted tissue. Furthermore, such nano-system networks can be remotely controlled
and monitored using the Internet of Bio-Nano Things (IoBNT) technology [4,5]. The IoBNT is a
broad paradigm for remotely managing a biological network of nanosystems, and thus interfacing the
biological network with external networks such as the Internet [6,7]. The NS is made up of a collection
of nanomachines such as nano-transmitter, nano-relay and nano-receiver that artificially mimic
the biological cell [8]. Communication between nanomachines is accomplished through molecular
communication via diffusion (MCvD). The MCvD has captured a particular interest due to its energy
effectiveness and bio-compatibility. The molecular information in MCvD is encoded using a variety of
methods, including molecular concentration, time, and molecular type [9]. In this study, we consider
a hybrid encoding of molecular information by the emitted concentration and the molecular type.
Additionally, in MCvD, the nano-transmitter releases drug molecules in an aqueous medium. They
randomly walk in all available directions according to Brownian motion [10]. Subsequently, due to
the randomness of the movement of molecules, a lot of therapeutic molecules cannot reach the nano-
receiver, especially if the separation distance between the nano-transmitter and the nano-receiver is
large. In flow-based diffusion, the drug molecules are restricted in the micro-fluid channels as blood
vessels [11]. Therefore, molecular communication suffers from high propagation delay in proportion
to the square of the distance between the nano-transmitter and the nano-receiver. Moreover, the
concentration of molecules is inversely proportional to the cubic power of the separation between the
nano-transmitter and the nano-receiver. These characteristics result in communication unreliability
and deterioration between the nano-transmitter and the nano-receiver [12,13]. These problems can be
solved using relay capabilities. Relay strategies can be found in biological systems, such as the nervous
system and quorum sensing in bacteria [14].

As nano-relaying plays an essential role in nano-networks based on diffusive molecular commu-
nication, various research efforts have been presented on flow-based diffusive molecular communi-
cation, relay molecular communication and optimization criteria. In [15], a mobile multiple-input
multiple-output system for MCvD was introduced by combining decode-and-forward and network
coding at relay nano-machines. The authors defined the thresholds at the relay and destination
nanomachines by the maximum a posteriori (MAP) probability detection algorithm. A new network
coding algorithm was introduced in [16] for mitigating ISI and enabling a larger-range communication.
The half-duplex network coding is used for sending the nanomachine symbols to the nano-relay. A
flow-induced diffusive channel model was investigated in [17] to study the effect of velocity with
different mobility conditions. The performance of the molecular communication system with on-
off keying (OOK) modulation was evaluated in terms of bit error rate (BER). A decision rule and
an adaptive decision threshold have been derived using the likelihood ratio. A two-hop molecular
communication system was introduced in [18]. The authors considered molecular degradation and
noise effect over channel. They used a joint optimization method for resource allocation and position
determination of relays with given detection thresholds to reduce BER. In [19], a nano-relay has been
presented between the sender and destination nodes. It combines the collected portion of molecules
released from the sender and stores them for a fraction of time, and then they are released to the
receiver. Thereby, the delayed and non-delayed received molecules arrive at the same time, and thus
the signal strength is improved. The most accurate vitro biological barrier models created to study
the dynamic interaction of nanoconstructs for diagnostic or therapeutic purposes in this constantly
changing environment are summarized by the authors of [20]. They assisted nanotechnologists in
selecting the best vitro models for their specific experimental needs. The advantages of the most
popular drug-carrier system liposomes were discussed by the authors of [21]. They investigated the
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effects of size, surface charge, and lipid structure on the efficiency of liposomes as well as their
composition. The impact of liposome physicochemical characteristics on in vivo cell contact, half-
life, tissue infiltration, and final state was also examined. Along with liposome-based drugs that
are currently available in clinical trials, the authors also considered a number of strategies that have
been created to get around the drawbacks of liposomes’ first generation. On the other hand, partial
differential equations were used in [22] to model the fluids’ flow and temperature behavior. In order
to study natural heat convection inside square and equilateral triangular cavities, a meshless approach
based on a collocation of local radial basis functions was used. To assess the system precision, a number
of natural convection test cases in square and triangular cavities were selected. Numerous academic
papers examined the chemical and physical characteristics of natural molecular aspects as in [23].

As illustrated by the aforementioned literature, these systems may result in solutions to the
problems in MCvD. However, optimization has not been considered widely in engineering aspects
of cooperative molecular communication systems. Effective and robust computational algorithms
are required to solve optimization problems that arise in such systems. Several global optimization
algorithms have recently been presented such as particle swarm optimization (PSO) which is based on
swarm movement, and MCFO which is subject to the law of gravity [24,25]. The PSO is simple and
effective, with few parameters. The MCFO, on the other hand, is relatively complex, but it is capable
of optimizing multiple parameters with high performance [26,27].

Unlike previous literature [15], [18], [28] and [29], this paper presents a new optimization technique
that can work on multiple parameters. In the related literature, the drift velocity is the most important
parameter. In this work, we investigate the cooperative nano-relay problem in MCvD with drift
flow velocity. To improve the reliability of delivering drug molecules from the nano-source to the
nano-receiver, a decoding nano-relaying scheme is used. We developed a cooperative decoding nano-
relay based on flow velocity to deliver predetermined therapeutic drug molecules with a carefully
determined drift velocity (optimized drift velocity) to the targeted cell. Furthermore, we adopt the
energy detection method as the diversity combining technique to solve the detection problem at the
cooperative nano-relay. The MCFO optimization technique is used to optimize the nano-network
parameters for minimizing the probability of error. We believe that the proposed nanonetwork should
be implanted in the human body as a form of therapy to effectively deliver therapeutic drug molecules
to diseased cells with a carefully-chosen effective velocity. The basic contributions of this work are as
follows:

• Analyzing a nano-system based on a cooperative nano-relaying scheme that depends on drift
velocity in molecular communication.

• Deriving the bit error probability of the proposed detection method, in which the received
signals from the cooperative paths are merged linearly at the nano-receiver.

• Developing an optimization technique, namely MCFO, which is based on the block coordinate
descent algorithm (BCDA) in order to obtain the optimal parameters (drift velocity for injection
of drug molecules, detection threshold, optimal position of nano-relay and resources allocated
for the emitting nano-source) to minimize the bit error probability.

The rest of this work is organized as follows. Section 2 describes the proposed nano-system based
on drift velocity in molecular communication, including an analysis of the cooperative nano-relay
scheme. It also presents a performance analysis of the detection method. The MCFO optimization
technique is also introduced in Section 2. The numerical and simulation results are presented in
Section 3. Finally, Section 4 gives the concluding remarks.
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2 Proposed Nano-System Model

We consider a scenario of implanting a cooperative nano-system in the intra-body area network
(IBAN) based on the advanced achievements of nanotechnology in nanomedical applications. Fur-
thermore, we believe that the nanonetwork should be planted close to the diseased cell to prevent drug
molecules from spreading throughout the body, and thus reducing side effects in healthy cells. The aim
of the proposed model is to deliver therapeutic drug molecules to the targeted cell. Fig. 1 indicates that
the proposed nano-system model consists of a nano-source (S), a nano-receiver (D), and a decoding
nano-relay (R). For the sake of simplicity, we assume that R and D are sphere-shaped with radii rr

and rd, respectively, and that S is a point source. Furthermore, R is considered as a nano-transceiver
that either releases molecules or serves as a destination when it receives molecules. The lengths of S−R,
S−D, and R−D are denoted as dsr, dsd, and drd, respectively. R is assumed to release a type of molecules
(type B) then S (type A) in order to avoid self-interference, which limits the performance of the nano
receiver. The molecular transmission works on a slot-by-slot basis, similar to a conventional wireless
system. Ts specifies the length of the time slots. The employed modulation scheme is OOK, which is
used by S and R, i.e., a fixed number of drug molecules (doses of drug molecules) is released to transmit
the information bit “1” at the beginning of each Ts and nothing is released for information bit “0”.
The operation of delivering therapeutic drug molecules at the NS can be summarized as follows:

• At the beginning of the nth time slot, the nano-source S releases the information bit as molecules
of type A to both R and D nano-machines via the diffusive drift channel.

• The diffusion channel is prone to errors due to noise and ISI at each nano-machine.

• Nano-relay R receives the information molecules and decodes them. The decoded information
bits are then forwarded by R to the nano-receiver D, at the (n + 1)th time slot via molecules of
type B.

• The diversity technique is used to improve the performance of the proposed nano-system on the
two different combined signals at the nano-receiverD. The two signals come from the S−R−D
and the S−D paths.

Figure 1: Cooperative molecular communication relaying scheme model based on drift velocity

As previously stated, the proposed nano-system is implanted in the human body, and thus the
diffusion of therapeutic drug molecules in blood flow is based on positive drift velocity. According to
Fick’s second law, the time it takes for any therapeutic drug molecule of type A released by the S to
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reach the R or D after the drifting distance, d, follows the probability density function f (t) given as
[27]:

f (t) = d√
(4πDAt3)

exp
(

−(vt − d)2

4DAt

)
(1)

where d is the distance between any two nano-machines depending on the analysis of the path, DA is
the diffusion coefficient of type A molecules and v is the drift velocity. The probability of a type A
molecule striking the receiver within time t can be calculated as [27]:
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2
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The cumulative distribution function in Eq. (2) depends on drift velocity, diffusion coefficient,
time and distance.

A cooperative molecular communication is presented as a relaying scheme based on drift velocity
analysis and its BER analytical expression in the following subsections.

2.1 A Cooperative Molecular Communication Relaying Scheme Based on Drift Velocity Analysis
Model

We consider a linear combination of the two received signals from the two paths, namely the first
path (S − R − D) which is defined as the path between nano-source (S), nano-relay (R) and nano
receiver (D) nano-machines and the (S −D) path between S and D nano-machines, to detect the main
signal at the nano-receiver D as represented in Fig. 2. This cooperative manner is implemented similar
to diversity combining techniques in which the received signals from previous paths are combined
linearly at D. These two signals are detected in different time slots k and k + 1 under the effect of
positive drift velocity. The nano-receiver D can distinguish between them due to the different types of
molecules for each signal.

Figure 2: Schematic diagram of the proposed scheme

In the S− R−D path, let yA
sr(k) be the total number of A molecules absorbed at nano-relay R,

and NA
Csr(k) be the number of molecules conveyed and received at the current time slot Ts. The ISI

term is represented by NA
Psr(k). NA

No,sr(k) is the number of molecules acting as noise from other sources
and NA

Nc,sr(k) is the counting noise defined as the number of absorbed molecules by the nano relay R.
Thereby, yA

sr(k) can be represented by the following equation:

yA
sr(k) = NA

Csr(k) + NA
Psr(k) + NA

No,sr(k) + NA
Nc,sr(k) (3)
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NA
Csr(k) obeys binomial distribution and also NA

Psr(k).

NA
Csr(k) ∼ B

(
QAxs(k), PA

1sr

)
(4)

NA
Psr(k) ∼ B

I∑
i=1

(QAxs(k − i), PA
(i+1)sr − PA

(i)sr) (5)

where I is the length of ISI, xs(k − i) denotes the transmitted bit by nano-source S at the (k − i)th

time slot and PA
(i)sr = F(v, DA, dsr, its). We assume that NA

No,sr(k) obeys a normal distribution as
follows [30]:

NA
No,sr(k) ∼ N

(
μno,sr, σ 2

no,sr

)
(6)

The counting noise NA
Nc,sr(k) is considered as [30]:

NA
Nc,sr(k) ∼ N(0, σ 2

nc,sr) (7)

where σ 2
nc,sr depends on the number of molecules collected by the nano relay R. If QA is very large, and

QAF(v, DA, d, t) is not equal to zero, the binomial distribution in Eqs. (6) and (7) can be approximated
as a Gaussian distribution as follows:

yA
sr(k) ∼ N

(
QAxs(k)PA

1,sr, QAxs(k)PA
1,sr(1 − PA

1,sr)
)

+
I∑

i=1

N
(
QAxs(k − i)qA

i,sr, QAxs(k − i)qA
i,sr(1 − qA

i,sr)
)

+ N(μno,sr, σ 2
no,sr) + N(0, σ 2

nc,sr) (8)

where qi,sr = (Pi+1,sr − Pi,sr). Thereby, yA
sr(k) also obeys the Gaussian distribution as [28]:

Pr(yA
sr[k] | xs[k] = 0) ∼ N(μ0,sr, σ 2

0,sr) (9)

Pr(yA
sr[k] | xs[k] = 1) ∼ N(μ1,sr, σ 2

1,sr) (10)

where the mean and variance are calculated from Eq. (8) as follows [28]:

μ0,sr = π1QA

I∑
i=1

qA
i,sr + μno,sr (11)

μ1,sr = μ0,sr + QAP1,sr (12)

σ 2
0,sr = π1QA

I∑
i=1

qA
i,sr(1 − qA

i,sr) + π1π0Q2
A

I∑
i=1

(qA
i,sr)

2 + σ 2
no,sr + μ0,sr (13)

σ 2
1,sr = QAPA

1,sr(1 − PA
1,sr) + σ 2

0,sr + σ 2
no,sr + μ1,sr (14)

where Pr(xs[k] = 1) = π1 and Pr(xs[k] = 0) = π0. The received molecules can be detected by the
nano-machine R using the likelihood detection method as shown in Fig. 2, and in the equation below
[31]:

x̂r(k) =
{

1 if yA
sr[k] ≥ τR

0 if yA
sr[k] < τR

(15)

The detection threshold at the nano-machine R is denoted by τR, and x̂r(k) is the bit information
detected by the nano-machine R in the kth time slot. τR can be obtained via the likelihood-ratio test
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Pr(yA
sr[k] | xs(k) = 0)

Pr(yA
sr[k] | xs(k) = 1)

as
π1

π0

as derived in [28]. The steps for computing the detection threshold at node

R is provided in the Appendix.

As equations for the absorbed molecules for type A by the nano-machine R are given in Eqs. (3)–
(8), we can derive equations for type B molecules absorbed by the nano-receiver D at the (k +1)th time
slot, which is represented by yB

rd(k + 1). In consequence, the distribution of yB
rd(k + 1) is obtained as

follows:

Pr

(
yB

rd[k + 1] | xr[k + 1] = 0
) ∼ N

(
μ0,rd, σ 2

0,rd

)
(16)

Pr

(
yB

rd[k + 1] | xr[k + 1] = 1
) ∼ N

(
μ1,rd, σ 2

1,rd

)
(17)

where the mean and variance values are given by Eqs. (11)–(14) with QA, π1, PA
i,sr, PA

i+1,sr, qA
i,sr, μnc,sr, σ 2

nc,sr

μno,sr, σ 2
no,sr replaced by QB, Pr(xr[k + 1] = 1), PB

i,rd, PB
i+1,rd, qB

i,rd, μnc,rd, σ 2
nc,rd μno,rd, σ 2

no,rd, respectively.

where Pr(xr[k + 1] = 1) can be represented as [28,29]:

Pr (xr[k + 1] = 1) = π1Pr

(
x̂r[k + 1] = 1 | xs[k] = 1

) + π0Pr

(
x̂r[k + 1] = 1 | xs[k] = 0

)
= 1

4

[(
1 − erf

(
τR − μ1,sr√

2σ 2
1,sr

))
+

(
1 − erf

(
τR − μ0,sr√

2σ 2
0,sr

))]
(18)

where erf(.) is the error function.

In the S−D path, the transmission of drug molecules is similar to the transmission of drug
molecules in the S−R path, but with different parameters. Thereafter, the number of type A molecules
collected by the nano receiver D along the S−D path in the kth time slot is defined by yA

sd[k] similar to
that of the S − R path. The yA

sd[k] also obeys the Gaussian distribution as follows:

Pr

(
yA

sd[k] | xs[k] = 0
) ∼ N

(
μ0,sd, σ 2

0,sd

)
(19)

Pr

(
yA

sd[k] | xs[k] = 1
) ∼ N

(
μ1,sd, σ 2

1,sd

)
(20)

where the mean and variance values given by (11)–(14) can be calculated with the parameters: QA,
Pr(xs[k] = 1), PA

i,sd, PA
i+1,sd, qA

i,sd, μnc,sd, σ 2
nc,sd, μno,sd and σ 2

no,sd.

2.2 Performance Analysis of the Detection Method
Energy detection is used as a diversity combining technique in the detection process. The diversity

combining techniques in molecular communication cooperative networks based on drift velocity can
be applied to enhance the performance of detection at the nano-receiver D. The linear combination
technique gathers the received energy signals that come from the S−D and R−D paths with different
types of molecules A and B in different time slots. Therefore, we can detect the signal with the next
decision rule:

x̂d(k + 1) =
{

1 if qDyA
sd[k] + qRyB

rd[k + 1] ≥ τD

0 if qDyA
sd[k] + qRyB

rd[k + 1] < τD

(21)

where x̂d(k+1) is the bit detected at the nano-receiver D in the (k+1)th time slot, and qD and qR are the
weights of the S−D and R−D paths, respectively. In this paper, the equal gain combining technique
is applied at the nano-receiver D, which means that equal weights are considered for the two paths.
This technique is preferred because the attenuators and adaptive controller amplifiers are not needed,
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and also no channel amplitude estimation is needed. So, equal gain combining is simpler to implement
than maximum ratio combining (MRC).

The received signals from the two paths are merged as cooperative values with equal gain
combining in different time slots as shown in Fig. 2. yB

rd[k+1], and yA
sd[k] are Gaussian random variables

given by Eqs. (16), (17), (19) and (20), respectively. Therefore, the cooperative sum, yAB
CO[k + 1] =

yA
sd[k] + yB

rd[k + 1], is also a Gaussian random variable as follows [28]:

Pr

(
yAB

CO(k + 1) | xs(k) = 0, xr(k + 1) = 0
) ∼ N

(
μ00,CO, σ 2

00,CO

)
(22)

Pr

(
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CO(k + 1) | xs(k) = 0, xr(k + 1) = 1
) ∼ N

(
μ01,CO, σ 2

01,CO

)
(23)

Pr

(
yAB

CO(k + 1) | xs(k) = 1, xr(k + 1) = 0
) ∼ N

(
μ10,CO, σ 2

10,CO

)
(24)

Pr

(
yAB

CO(k + 1) | xs(k) = 1, xr(k + 1) = 1
) ∼ N

(
μ11,CO, σ 2

11,CO

)
(25)

where the mean values can be obtained as:

μlj,CO = μl,sd + μj,rd, ∀l, j ∈ {0, 1} (26)

σ 2
lj,CO = σ 2

l,sd + σ 2
j,rd, ∀l, j ∈ {0, 1} (27)

where μlj,CO and σ 2
lj,CO can be calculated from Eqs. (11) to (14).

Finally, the total probability of error for the overall system can be defined as follows [28]:

Pe(k) = π1Pr(x̂d(k + 1) = 0 | xs(k) = 1) + π0Pr(x̂d(k + 1) = 1 | xs(k) = 0)

= 1
2

+ 1
8

[(
erf

(
τD − μ10,CO√

2σ 2
10,CO

)) (
1 + erf

(
τR − μ1,sr√

2σ 2
1,sr

))

+
(

erf

(
τD − μ11,CO√

2σ 2
11,CO

))(
1 − erf

(
τR − μ1,sr√

2σ 2
1,sr

))]

− 1
8

[(
erf

(
τD − μ00,CO√

2σ 2
00,CO

)) (
1 + erf

(
τR − μ0,sr√

2σ 2
0,sr

))

−
(

erf

(
τD − μ01,CO√

2σ 2
01,CO

))(
1 − erf

(
τR − μ0,sr√

2σ 2
0,sr

))]
(28)

2.3 Optimization Problem
The preceding section obtained a closed-form expression of the error probability of the proposed

cooperative relaying nano-network with drift velocity. To achieve the best system performance, we
must first obtain the optimal solution for the most critical parameters such as drift velocity v and
detection threshold (τD) at the destination node by achieving:

min
v,τD

Pe (29)

Then, we optimize the relay position and resources allocated to S and R nodes with fixed optimal
v and τD by:

min
m,n

Pe (30)
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where m = dsr/dsd and n = QA/(QA + QB).

This study aims to find the optimum drift velocity v and τD required to minimize the system Pe.
The MCFO is used as an efficient optimization technique to minimize the objective function Pe. For
multi-optimal parameters based on BCDA, the MCFO is superior. The BCDA works by fixing all
variables except one in order to minimize the objective function. The operation is then repeated until
all parameters get to convergence.

2.4 Original Central Force Optimization (CFO) Algorithm
The CFO algorithm is a particle optimization algorithm that follows the gravity law. Each particle

attracts every other particle with the virtual gravity force. The CFO is initialized by user-specified probe
positions and acceleration distributions as follows:

AP
j−1 = G0

NP∑
k=1
k �=P

U
(
Fk

j−1 − FP
j−1

) (
Fk

j−1 − FP
j−1

)α Rk
j−1 − RP

j−1∥∥Rk
j−1 − RP

j−1

∥∥β
(31)

The position vector of each probe is updated using the equation below:

RP
j = RP

j−1 + 1
2

AP
j−1�t2 (32)

where j � 1. After updating the position of the probe, the probe may fly outside the DS and the
CFO may look in areas other than the DS. A useful one is the reposition factor Frep, which plays an
important role in avoiding local trapping which will be explained later.

2.4.1 Modified Central Force Optimization (MCFO)

The MCFO technique is a new smart optimization tool, which fixes the drawbacks of the CFO.
That is, CFO occasionally halts progress towards the global optima, even when the population does
not converge at the local optima or any other point. In other words, the objective of this development
or modification was to enhance the global search during the early parts of the optimization and to
lead the probes to converge towards the global optimum at the end of the search.

The pseudo-code of MCFO is given below. It depicts the primary steps of the MCFO algorithm,
which are initialized with probe places and acceleration distributions chosen by the user on the points,
which represent the Pe solutions on the decision space (DS). It is assumed that the first set of probes
is randomly scattered throughout each point. The maxima of an objective function Pe are found using
the MCFO optimization, where the objective function Fk

j−1 = f (xk
1,j−1, ..., xk

Nd,j−1) by flying a series of
probes through the three dimensions space, where xNd is the decision variables as v, τD, m and n. Each
probe P with position vector RP

j−1 updates its acceleration AP
j−1:

AP
j−1 = Gj

NP∑
k=1
k �=P

U
(
Fk

j−1 − FP
j−1

) (
Fk

j−1 − FP
j−1

)α Rk
j−1 − RP

j−1∥∥Rk
j−1 − RP

j−1

∥∥β
(33)

where Np is the number of probes, the time step j = 0, 1, . . . , Nt and Nt is the maximum number of
iterations.

RP
j−1 is the position vectors, which represent a solution for the optimization problem that deter-

mines the optimal values for decision variables (v, τD, m and n) and FP
j−1 represents the fitness values

(or mass) corresponding to the values of the objective function of the probe p with the (j − 1)th step.
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U(.) is the unit step function to avoid the probability of negative mass results. If negative masses
were permitted, the resulting accelerations would be repulsive rather than attractive. The MCFO
exponents are represented by α and β.

where Gj is the computed value of the present gravitational constant represented by:

Gj = G0 exp
(−jγ

Nt

)
(34)

where G0 is the gravitational constant and γ represents the descending coefficient factor. The original
CFO has no memory, but the MCFO algorithm has a memory that is able to update the probe position.
As a result, the probes are attracted towards the best previous positions Rbest. The best position vector
discovered by the whole population is introduced as Rbest = (Rbest1, Rbest2, RbestD). As a result, probes near
good solutions attempt to attract other probes that investigate the search space. When all probes are
close to a satisfactory solution, they move relatively slowly. At this instance, Rbest helps them to exploit
the global finest solution. Also, time varying acceleration coefficients C1 and C2 are configured to
effectively regulate the global search and convergence toward the optimal global solution. According
to these changes, at step j, the position vector of each probe is updated using the equation below:

RP
j = RP

j−1 + C1jrand1AP
j−1�t2 + C2jrand2

(
Rbest − RP

j−1

)
�t (35)

As mentioned before, some roles may fall outside the DS, and the MCFO may look in areas
other than the DS. Hence, we introduce a simple deterministic repositioning strategy for avoiding an
unallowable search space and correcting infeasible solutions. If the probe RP

j (i) is less than Rmin
i , it is

updated to be

RP
j (i) = Rmin

i + Frep

(
RP

j−1(i) − Rmin
i

)
. (36)

However, if the probe RP
j (i) is greater than Rmax

i , therefore:

RP
j (i) = Rmax

i + Frep

(
Rmax

i − RP
j−1(i)

)
(37)

where Rmin
i and Rmax

i are the minimum and maximum values of the ith spatial dimension of decision
variables. The repositioning factor Frep has a significant impact on the algorithm convergence.

C1j = Cmax
1 −

(
Cmax

1 − Cmin
1

Nt

)
j (38)

C2j = Cmin
2 −

(
Cmax

2 − Cmin
2

Nt

)
j (39)

The capabilities of global and local search, which affect MCFO can be balanced by by updating
C2j and C2j, the current gravitational constant, Gj and the descending coefficient factor, γ . In this
development, the acceleration coefficients C1 and C2 change with time. The acceleration constant C1

changes from Cmax
1 = 1.5 to Cmin

1 = 0.1, whereas C2 is altered from Cmin
2 = 0.1 to Cmax

2 = 1.5.

The steps of the MCFO pseudo-code are recorded below:

Step 1 Initialization NP, Nd, Nt, G0, Frep, α, β,

Step 2 Compute initial probe distribution

Step 3 Compute initial fitness matrix, and select the best probe fitness

Step 4 Assign initial probe Position & acceleration

Step 5 For j = 0 to Nt and p = 1 to NP
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Step 5.1 Compute C1j and C2j using Eqs. (38) and (39)

Step 5.2 Update probe position (35)

Step 5.3 Update probe gravitational Gj (34)

Step 5.4 Retrieve errant probe using (36) and (37)

Step 5.5 Update fitness matrix, and select the best probe fitness

Step 5.6 Compute probe accelerations using (33)

Step 5.7 Shrink decision space matrix by updating Frep

Next J

Find the final solution

3 Numerical Results and Discussions

The performance of the proposed cooperative nano-system in MCvD with positive drift velocity is
presented in this section. In fact, we used numerical analysis to demonstrate the proposed nanosystem
performance in terms of the probability of error. We also compared the results to those of the direct
link case, also known as the direct link relay (DLR) scheme presented in [29]. All of our numerical
results are generated with MATLAB code and the parameters are listed in Table 1 [29].

Table 1: Simulation parameters

Parameter Description value

dsd The separation between the S and D 2 μm
DA, DB Diffusion coefficient 242, 78 μm2/s
v Drift velocity 0−0.6 mm/s
Ts Sampling interval 2, 3, 5, 7 ms
QA, QB Released molecules 200, 1000
I ISI length 10

Fig. 3 shows the performance of the probability of error in the proposed nano-system against the
drift velocity of molecules with variable symbol duration Ts, when the detection threshold τD is fixed.
As expected, the probability of error in the proposed nano-system is significantly reduced when the
symbol duration is long, due to the possibility of lowering the ISI. On the other hand, we notice that all
probability of error curves in the figure have a quasi-convex behavior, implying that the optimization
problem of determining the best velocity is a quasi-convex problem. As a result, the goal of the MCFO
algorithm in the cooperative nano-system is to select the optimal velocity of drug molecule injection.
It has been observed that the performance of probability of error increases with velocity increase until
a certain point is determined by the MCFO. At that point, the performance decreases. As a result, the
MCFO can solve the optimization problem of determining the best velocity.

Fig. 4 shows the performance of the proposed nano-system and the DLR [29] in terms of bit error
probability vs. detection threshold, when the drift velocity of molecules is fixed at 0.3 mm/sec. As can
be seen, the proposed cooperative nano-system improves performance significantly compared to DLR.
Furthermore, the plot shows the impact of the MCFO on performance by selecting an appropriate
detection threshold and drug molecule velocity.
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Figure 3: Probability of error of the proposed cooperative scheme as a function of drift velocity (QA =
QB = 400 and dsd = 2 μm)

Figure 4: Comparison of the proposed scheme and the DLR scheme in terms of probability of error
(QA = QB = 400 and dsd = 2 μm,Ts = 5 ms)

Table 2 shows the performance of the probability of error, when employing the proposed nano-
system and the DLR system against the molecular budget of types A and B. We consider S and R nano-
machines releasing equal molecular budget. The performance of the probability of error is depicted
with optimized parameters v and τD obtained by the proposed MCFO as illustrated in Fig. 3.

We observe that the proposed cooperative nano-system with the nano-relay based on a diversity
combining technique expends a lower molecular budget, and thus a significant increase in nano-system
performance is achieved compared with the DLR system. For example, at Ts = 5 ms and Ts = 7 ms, it is
clear that in the proposed cooperative nano-system expends fewer than 300 molecules for transmission
to realize a probability of error equal to 10−10 compared with the DLR. In addition, the figure indicates
that there is a direct influence of the symbol duration on the ISI issue, which means that with larger
symbol duration, ISI is reduced. We can conclude that with increased symbol duration in the proposed
cooperative nano-system, the performance is significantly better than that of the DLR.
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Figs. 5 and 6 show the joint optimization of nano-relay position and molecular budget for S and
R nanomachines with a fixed destination threshold, τD and v parameters. The probability of error is
given as a function of nano-relay position m in Fig. 5. Obviously, it is a quasi-convex function. As a
result, we can use BCDA method to optimize the nano-relay position with MCFO, which is based on
the idea of setting all parameters except one and determining the optimal value that minimizes the
objective function Pe, and then fixing m and finding the optimal molecular budget allocated to the S
and R nanomachines until convergence is achieved.

Table 2: Comparison between the proposed cooperative scheme and the DLR scheme in terms of Pe

with different system budget (QA = QB, dsd = 2 μm)

Molecular
budget

At T s = 3 ms with
optimized v = 0.47 mm/s

At T s = 5 ms with
optimized v = 0.3 mm/s

At T s = 7 ms with
optimized v = 0.254 mm/s

Proposed
scheme

DLR Proposed
scheme

DLR Proposed
scheme

DLR

200 4.23 × 10−5 8.27 × 10−3 3.97 × 10−7 4.24 × 10−3 7.99 × 10−8 9.91 × 10−4

400 1.19 × 10−5 1.48 × 10−3 2.09 × 10−10 4.32 × 10−4 3.22 × 10−12 1.84 × 10−5

600 8.70 × 10−6 7.21 × 10−4 3.55 × 10−12 1.56 × 10−4 7.58 × 10−15 2.54 × 10−6

800 7.74 × 10−6 4.89 × 10−4 2.88 × 10−13 8.98 × 10−5 9.93 × 10−17 7.91 × 10−7

1000 7.29 × 10−6 3.85 × 10−4 5.28 × 10−14 6.33 × 10−5 1.30 × 10−18 3.70 × 10−7

1200 7.04 × 10−6 3.27 × 10−4 1.55 × 10−14 4.98 × 10−5 3.50 × 10−21 2.16 × 10−7

Figure 5: Probability of error vs. relay node position, when the detection threshold and velocity are
fixed, (QA + QB = 800)

Unlike the previous literature, the proposed nano-system is considered non-linear due to the
effect of velocity that controls the diffusion of molecules and different types of molecules A and B
with different diffusion coefficients, and thus the optimal relay position is obtained when m = 0.3.
This indicates that the nano-relay, R is close to the nano-source, S and that an optimal molecular
distribution is achieved when the nano-relay QA = 1/3 QB, which means that more molecules are
allocated to the nano-relay R than those of the nano-transmitter S, indicating the importance of the
(R − D) path and that it has a greater influence on system performance than the (S − R) path.
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We can conclude from the preceding analysis that the proposed cooperative nano-system with
nano-relay outperforms the DLR system. Furthermore, when compared to the DLR system, the
proposed nano-system uses a lower molecular budget with low error probability.

Table 3 illustrates a comparison between PSO and MCFO before and after optimizing the flow
velocity v when the distance, dsd is 2 μm, for two different values of Ts = 2 and 5 ms. The flow
velocity is v = 0.6 and 0.4 mm/s before optimization and v = 0.5 and 0.3 mm/s after optimization
as explained in Fig. 3, when the resource budget QA = QB has 400 and 600 molecules. In fact, we
measured the BER of both PSO and MCFO before and after optimization using the nano-system
parameters listed in Table 3. As we can see, the performance of the proposed nano-system improves
with the optimized flow velocity rather than the original flow velocity. Furthermore, we see that the
PSO is slightly better than the MCFO. This is attributed to the PSO algorithm ability to optimize a
single value. Furthermore, it is demonstrated that the MCFO algorithm can achieve roughly the same
performance as the PSO, and it has the advantage of optimizing more than one parameter, unlike the
PSO algorithm.

Figure 6: Probability of error vs. number of molecules assigned to node S for various relay node
positions when the detection threshold and velocity are fixed (QA + QB = 800, dsd = 1 μm)

Table 3: Comparison between PSO and MCFO

Molecular budget Without optimization With optimization
PSO MCFO PSO MCFO

Pe τD Pe τD Pe τD Pe τD

QA = QB = 400 at Ts = 5 ms 3.172 × 10−6 642.84 3.077 × 10−6 640.5 3.688 × 10−14 651.2 2.884 × 10−13 650
QA = QB = 600 at Ts= 5 ms 3.092 × 10−6 944.17 3.093 × 10−6 944.90 1.168 × 10−14 937 1.148 × 10−14 933.7
QA = QB = 400 at Ts= 2 ms 9.133 × 10−4 675.9 9.133 × 10−4 673.6 1.252 × 10−11 697.8 1.259 × 10−11 692.7
QA = QB = 600 Ts = 2 ms 9.201 × 10−4 944.7 9.201 × 10−4 994.54 1.519 × 10−11 1000 1.039 × 10−11 993.78

4 Conclusion

This study proposes a nano-system with cooperative molecular communications based on nano-
relaying. It considers the molecular drift velocity in the proposed molecular communication system
based on diffusion. The noise and ISI issues have an impact on the molecular diffusion channel.
Furthermore, we proposed a collaborative optimization problem for nano relay positioning and deter-
mination of the fraction of the drug molecular budget that should be allocated to the nano transmitter
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and nano receiver. The probability of bit error is expressed in closed form, and this is used as an
objective function to determine the optimal velocity of the drug molecules and the detection threshold
at the nano receiver. The error probability equation is then used as an objective function to determine
the optimal drug molecule velocity and detection threshold to achieve a minimum probability of
error. The numerical results show that the proposed scheme can improve the performance of the
nanosystem, when compared to a system with a direct link relay (DLR). Furthermore, this approach
can be extended to a multi hop nano relay to make it more realistic for nano receivers with a large
number of receptors. Finally, the proposed nano system with the cooperative nano relaying approach
combined with the emerging nanotechnology can be implemented in advanced nanomedicine solutions
to perform disease detection, health monitoring, and targeted drug delivery more efficiently.
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Appendix

The steps for calculating the detection threshold at node R (τR) using the MAP detection approach
are provided in this appendix.

The threshold at node R has a closed-form expression and can be determined carefully [28]. The

likelihood-ratio test
Pr(yA

sr[k] | xs(k) = 0)

Pr(yA
sr[k] | xs(k) = 1)

as
π1

π0

is derived in Eqs. (9) and (10) as in [31,32]:

	0
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σ 2
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σ 2
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)
(40)
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B2 + 2A ln(C)

A
(41)
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σ 2
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− 1
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σ 2
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	1σ0,sr

exp
[

1
2

(
μ2

1,sr

σ 2
1,sr

− μ2
0,sr

σ 2
0,sr

)]
(44)

Because the number of molecules in the medium cannot be negative, the negative value should be
removed. Furthermore, because the number of molecules is an integer, the final positive answer must
be rounded to an integer.
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