
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.029177

ARTICLE

A Hybrid Parallel Strategy for Isogeometric Topology Optimization via
CPU/GPU Heterogeneous Computing

Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3 and Shuting Wang3

1The State Key Lab of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology,
Wuhan, 430074, China
2School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan, 430048, China
3School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

*Corresponding Author: Chen Yu. Email: mc_yuchen@whpu.edu.cn

Received: 06 February 2023 Accepted: 21 June 2023 Published: 17 November 2023

ABSTRACT

This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume
significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel
strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation
solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of
CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between
CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify
the hybrid parallel strategy in this paper. The results show that the efficiency of the hybrid method is faster than
serial CPU and parallel GPU, while the speedups can be up to two orders of magnitude.

KEYWORDS
Topology optimization; high-efficiency; isogeometric analysis; CPU/GPU parallel computing; hybrid OpenMP-
CUDA

1 Introduction

Developing advanced manufacturing techniques [1,2] puts forward new requirements for design
tools. Among design approaches, topology optimization (TO) is considered one of the most prospects
for generating product prototypes during the conceptual design stage. Over the past few decades, TO
has been improved significantly [3] and applied to various complex problems such as fluid-structure
interaction [4], and thermos-elastic behavior [5]. Bendsøe et al. [6] proposed a homogenization method,
laying a foundation for developing TO methods. According to the model expression, TO is roughly
divided into two categories. One is geometric boundary representation-based methods [7–9]. The
other is material representation-based methods [10–12], in which structural topology is defined by
0–1 distribution of material and evolved by making a material trade-off. Among them, the solid
isotropic material with penalization (SIMP) is the most classic method based on variable density
theory with the advantages of simple program implementation and stable solution. The SIMP is widely

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.029177
https://www.techscience.com/doi/10.32604/cmes.2023.029177
mailto:mc_yuchen@whpu.edu.cn

1104 CMES, 2024, vol.138, no.2

applied to various fields including multiscale and multi-material [13]. Doan et al. [14] presented a new
computational design optimization method that finds the optimal multi-material design by considering
structure strain energy and material cost. In most TOs, the finite element method (FEM) is employed
to analyze displacement field and sensitivity. However, due to the disconnection between the geometric
model and analysis [15], there are some errors in the calculation. Moreover, the Lagrange basis function
continuity between adjacent elements is low, reducing the analysis accuracy [16].

To improve the accuracy of optimization, isogeometric analysis (IGA) was introduced [17–19]
by using unified Non-Uniform Rational B-splines (NURBS) basis functions for the geometric and
computational models. With the merits of high accuracy and efficiency, IGA-based TOs have been
intensively studied [20]. Dedè et al. [21] utilized a phase field model for the formulation and solution,
and encapsulated the exactness of the design domain in TO by the IGA-based spatial approximation.
In the optimization of the lattice structure, the IGA is used to analyze the effective property for either
isotropic or an-isotropic cellular microstructures [22–24]. However, the computational cost of TO is
expensive for the complex large-scale model, since the number and order of elements need to be large
enough for high accuracy. Especially for the IGA-based TO, the optimization analysis with the high-
order NURBS elements leads to a further rise in computational complexity and memory usage [24,25].
Furthermore, TO is an iterative computing process and the computational cost will rise significantly
with the increasing scale and complexity. Parallel computing technology has been investigated to
accelerate the process of TO. In earlier work, Kim et al. [26] made use of parallel topology optimization
to solve large-scale eigenvalue-related structural design problems. Subsequently, Vemaganti et al. [27]
presented a parallel algorithm for 2D structure topology optimization based on the solid isotropic
material with the penalization (SIMP) method and the optimality criteria (OC). Aage et al. [28]
presented how to use PETSc for parallel computing and successfully applied it to solving large-scale
topology optimization in parallel. A minimum weight formulation with parallelization techniques
was used to accelerate the solving of the topology optimization problem in [29]. Since graphics
processing units (GPUs) have an architecture that supports the large number of threads required
for parallel computing, they can be applied for high-performance solutions to large-scale complex
scientific problems [30,31]. Wadbro et al. [32] first exploited the parallel computing capabilities and
programmability of GPUs to accelerate topological optimization methods. Schmidt et al. [33] used
GPU to accelerate the SIMP method, and experimental results demonstrate that the parallel algorithm
on the GeForce GTX280 runs faster than a 48-core shared memory central processing units (CPUs)
system with a speed-up ratio of up to 60. Ratnakar et al. [34] presented an implementation of
topology optimization on the GPU for a 3D unstructured mesh by developing efficient and optimized
GPU kernel functions. Karatarakis et al. [35] proposed the interaction-wise approach for the parallel
assembly of the stiffness matrix in IGA, which enables the efficient use of GPUs to substantially
accelerate the computation. There are rare research papers focusing on the parallel strategy for
isogeometric topology optimization (ITO). Xia et al. [25] proposed a GPU parallel strategy for level
set-based ITO and obtained a speedup of two orders of magnitude. Wu et al. [36] used an efficient
geometric multigrid solver and GPU parallelization in the FEM analysis session to accelerate the
topology optimization iterations on a desktop.

However, the above-mentioned studies focus on the efficient utilization of GPU, while the compu-
tational capacity of the CPU was ignored. The open multi-processing (OpenMP) based CPU parallel
and compute unified device architecture (CUDA) based GPU parallel [37] have been incorporated into
optimization algorithms to accelerate their process. Lu et al. [38] first exploited the computational
capacities of both CPUs and GPUs in the Tianhe-1A super-computer to perform a long-wave
radiation simulation, while the ways to distribute the workload between CPU and GPU to achieve

CMES, 2024, vol.138, no.2 1105

high computational efficiency were discussed. Subsequently, Cao et al. [39] took into account the cost
of communication between GPU and CPU and developed a formula method for workload allocation.
However, there are rare research papers focusing on parallel strategy both with CPU and GPU for ITO.
The challenge in designing ITO heterogeneous parallel algorithms is to achieve workload balancing on
the CPU/GPU to ensure computational efficiency. Meanwhile, the minimum mapping range of GPU
to host memory is determined to improve the efficiency of memory resource usage and reduce the data
transfer time from CPU to GPU.

There are few literatures on ITO with heterogeneous parallelism acceleration. In this paper, a
hybrid parallel strategy for ITO with CPU/GPU heterogeneous computing is proposed to accelerate
the main time-consuming aspects of the computational processes. The hybrid parallel strategy for
stiffness assembly based on control point pair is achieved by CPU/GPU hybrid computing for the first
time, contributing to efficiency improvements. A dynamic workload balancing method is presented
for its efficiency and versatility. The tasks are assigned according to the real-time local computing
power measured by the pre-run phase. The rest of the paper is structured as follows: NURBS-based
IGA and CPU/GPU heterogeneous parallel computing are briefly reviewed in Section 2. Section 3
illustrates the hybrid parallel strategy for ITO processes, including stiffness matrix assembly, equation
solving, sensitivity analysis, and update scheme. A dynamic workload balancing method is proposed
in Section 4. The advantages and correctness of the hybrid parallel strategy are demonstrated with
several benchmark cases in Section 5. Finally, Section 6 concludes the paper and presents an outlook
on future research.

2 Basic Theory

The theoretical foundations including IGA, ITO-SIMP and CPU/GPU heterogeneous computing
[40,41] are summarized in this section.

2.1 NURBS Basic Theory
In IGA, NURBS is commonly used to discretize the design domain [42]. A knot vector Ξ ,

representing parametric coordinates, is a sequence of non-decreasing real numbers:

Ξ = {
ξ1, ξ2, . . . , ξn+p+1

}
(1)

where n is the number of control points, and p denotes the order of the B-spline. By the Cox-de
Boor formula, the B-spline basis functions Bp

i (ξ) can be derived recursively from the given parameter
vector [43]:

B0
i (ξ) =

{
1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(2)

Bp
i (ξ) = ξ − ξi

ξi+p − ξi

Bp−1
i (ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi

Bp−1
i+1 (ξ) (3)

NURBS basis function Np
i (ξ) can be obtained by introducing a positive weight wi to each B-spline

basis function [44]:

Np
i (ξ) = Bp

i (ξ) wi∑n

j=1B
p
j (ξ) wj

(4)

1106 CMES, 2024, vol.138, no.2

Based on the tensor property, three-dimensional NURBS basis functions Np,q,r
i·j,k (ξ , η, ζ) are pro-

duced from the following formula [18]:

Np,q,r
i·j,k (ξ , η, ζ) = Bp

i (ξ) Bq
j (η) Bτ

k (ζ) wi,j,k

�n
i=1�

m
j=1�

l
k=1B

p
i (ξ) Bq

j (η) Bτ
k (ζ) wi,j,k

(5)

where wi,j,k is the weight value of the tensor product Bp
i (ξ) Bq

j (η) Bτ

k (ζ).

2.2 SIMP-Based ITO
SIMP material model is implemented to search for the optimized solution in ITO. The design

variable is the density x, which enables the distribution of the material under control [45]. ITO-SIMP
aims to maximize the structural stiffness, which can be converted to minimize compliance. In ITO-
SIMP, the density variables are stored at the control points, and the element density xe can be illustrated
with the control point density as [46]:

xe = xn (ec) =
∑
i∈m

Ni (ec) xi (6)

where the density of element e is equivalent to the element center xn(ec). m is the set of control
points related to element e. Ni denotes the NURBS basis function of the ith control point, and the
corresponding density is written as xi.

Based on the SIMP material model, Young’s modulus Eexe of the element can be represented
as [47]:

Ee(xe) = xn(ec)tE0, t > 1 (7)

where E0 is Young’s modulus of the base material. Penalty coefficient t is greater than 1, which penalizes
the material’s stiffness.

The SIMP-based topology optimization is to find the distribution of material for the minimum
compliance, which can be mathematically illustrated as follows [48]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min : C = UTkU = ∑N

e=1x
t
eE0uT

e keue

s.t :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

KU = F
V(x)

V0

= θ

0 < xm < xe ≤ 1, e = 1, . . . , N

(8)

where C is the compliance, K represents the global stiffness matrix, F denotes the load vector, and U
is the global displacement field. ke denotes the element stiffness matrix calculated from unit Young’s
modulus when ue is the element displacement vector. θ is the volume fraction, while V 0 and V (x)
denote the volume of the design domain and material, respectively. xe values from 0 to 1 to avoid the
singularity of the stiffness matrix.

2.3 CPU/GPU Heterogeneous Computing
2.3.1 GPU Parallel Architecture

GPUs are computer graphics processors which can compute extensive data in parallel [49]. Since
NVIDIA released CUDA in 2007, many researchers have been using GPUs to accomplish large-
scale scientific computing problems [50]. The CUDA programming model provides a heterogeneous

CMES, 2024, vol.138, no.2 1107

computing platform consisting of CPU and GPU architectures. Their applications are divided into
CPU host-side and GPU device-side code, while the information is exchanged via the peripheral
component interconnect express (PCIe) bus. Host-side code is responsible for controlling device and
data transfer, while device-side code defines operational functions to perform the corresponding
kernel functions. Thread is the smallest execution unit, while GPU uses many threads to execute
kernel functions during parallel computing. Logically, all threads are grouped into blocks by a certain
number. The threads in the block will run in warps (set of 32 threads) on the CUDA core processor,
as shown in Fig. 1. Warp is the execution unit of streaming multiprocessor (SM), while SM supports
concurrent execution of a large number of threads and threads are managed in a single-instruction-
multiple-threads (SIMT) fashion.

Streaming Multiprocessor

Instruction L1

Instruction Fetch/Dispatch

Core

Core

Core

Core

Core

Core

Core

Core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

...

Block 1

...

Warp

Threads 1-32

...

Block 2

...

Block n

Grid

Instruction
Stream

Warp

Warp

...
...

...

Threads 1-32

Threads 1-32

Figure 1: Warps in the block for thread scheduling

2.3.2 CPU/GPU Heterogeneous Parallel Architecture

Multi-core CPUs compute in parallel with fewer cores and have more arithmetic power per core
than GPUs [51]. CPU/GPU heterogeneous parallel programming model is based on a heterogeneous
computing platform where computing power involving both GPUs and CPUs is considered [52].
OpenMP supports multi-threaded concurrent execution of tasks on multi-core CPUs [53]. The
independence of CPU cores allows different tasks to be performed simultaneously among different
OpenMP threads. Typically, the CPU is involved in controlling GPU (e.g., the transfer of data and
the launching of kernel functions) but not computing tasks. Indeed OpenMP is used in CPU/GPU
heterogeneous parallel programming to enable multi-threading of the CPU, where one of the OpenMP
threads is responsible for interaction with the GPU and others for computation [54]. Hence, the CPU
and GPU work concurrently and cooperatively for the particular workload. As shown in Fig. 2, the
total workload is divided into CPU and GPU parts. The CPU runs in “one-thread-multi-node” mode
while each thread iterates through multiple tasks in a loop. Moreover, for the GPU, it operates in
“one-thread-one-node” mode, while each thread performs only one task.

1108 CMES, 2024, vol.138, no.2

CORE

CORE

CPU

CORE

CORE

CORE

CORE

GPU

Kernel
Function
of CUDA

OpenMP

WCPU WGPU

Input Input

Figure 2: Schematic diagram for OpenMP/CUDA parallel programming model

3 CPU/GPU Hybrid Parallel Strategy for ITO

The CPU/GPU heterogeneous parallel computing is expected to accelerate the ITO computational
processes. The proposed CPU/GPU hybrid parallel strategy for ITO consists of stiffness matrix
assembly, equation solving, sensitivity analysis, and design variable update.

3.1 Strategy for Stiffness Matrix Assembly
The global stiffness matrix assembly consumes substantial computational resources. A parallel

strategy is to calculate the local stiffness matrix among threads, where the contributions of Gaussian
points in each element are summed up [55]:

K e =
∑

G

wGBT
GDBG (9)

where BG is the deformation matrix calculated on Gaussian points and wG is the weight factor. Each
local stiffness matrix is appended to the global stiffness matrix K in the corresponding locations:

K =
∑

K e (10)

3.1.1 Thread Race Condition in Heterogeneous Parallelism

Theoretically, assembling a global stiffness matrix among elements can be directly executed [56].
However, due to shared control points among elements, a memory address may be written by multiple
threads when the element-wise heterogeneous parallel strategy shown in Fig. 3 is employed. Such a
conflict, called a thread race condition, will lead to incorrect updates on the stiffness coefficients.

Although atomic operations can avoid race conditions, the efficiency of heterogeneous parallelism
would be significantly reduced [57], and the assembly process would be critically degraded to serial-
ization. To fundamentally avoid race conditions and maintain the efficiency of parallel computation,
a hybrid parallel strategy for stiffness matrix assembly based on the control point pair is proposed
herein. The workload is appropriately assigned between the host CPU and device GPU, while the
heterogeneous parallel threads are divided by interacting i-j control point pair as shown in Fig. 4.
Considering the control point pair shared by elements, as shown in Fig. 5, the local stiffness matrix ke

of each element is discretized into a series of submatrices H ij defined at the control point pair [35]:

CMES, 2024, vol.138, no.2 1109

H ij = BT
i DBj (11)

where Bi, Bj are the deformation matrix corresponding to the i-j control point pair, and D is the
elasticity matrix. The submatrices H ij on all shared Gaussian points are calculated and multiplied
by the weight factors, then summed to generate the final coefficients K ij of the global matrix K :

K ij =
∑

G

wGH ij (12)

Thread
i

Thread
j 0

0,0,0 0,1,0 0,2,0 1,0,0 1,1,0 1,2,0 2,0,0 2,1,0 2,2,0 3,0,0 3,1,0 3,2,0

1 n 0 1 n

GPU Workload CPU Workload

...

WCPUWGPU

element

Global
stiffness matrix

Thread j
Loop: 0 to N

Thread i
Loop: 0 to N

...

... ...

Input Input

Figure 3: Element-wise heterogeneous parallel approach of assembling stiffness matrix

Thread
i

Thread
j 0

0,0,0 0,1,0 0,2,0 1,0,0 1,1,0 1,2,0 2,0,0 2,1,0 2,2,0 3,0,0 3,1,0 3,2,0

1 n 0 1 n

GPU Workload CPU Workload

...

WCPUWGPU

element

Global
stiffness matrix

Thread j
Loop: 0 to N

Thread i
Loop: 0 to N

...

... ...

......

Input Input

Figure 4: Interaction-wise heterogeneous parallel approach of assembling stiffness matrix

3.1.2 Hybrid Parallel Strategy and Data Structure for Stiffness Matrix Assembly

The proposed hybrid parallel strategy for stiffness matrix assembly is based on interacting control
point pair. Synchronized operations between threads on GPU and CPU can be avoided to make the
algorithm applicable for efficient hybrid parallel computing. There are two phases: (1) the derivatives
of the shape functions are calculated for all influenced Gaussian points. The computational workload
is divided by element, in which a set of Gaussian points are calculated for shape function derivatives.
(2) each heterogeneous parallel thread calculates derivatives in each element, as shown in Fig. 6, which
increases the flexibility for calculating the global stiffness coefficient.

1110 CMES, 2024, vol.138, no.2

Gauss point

Control point

Control point pair
shared by elements:

Figure 5: Shared control point pair between elements

CPU OpenMP

Core 1 Core n

CUDA

GPU device

TCPU

CORE Thread

for end

…

elements 0 : n
Core n Thread

...

element

... ...

TGPU

CPU

Core 2

TCPU

CORE Thread

for end

…

elements 0 : n

CPU CPU GPU

… … …… … … … …… … … … … … … …… …dRdx

CPU Thread 1

GPU Thread 1 n-1 n

CPU Thread 2 CPU Thread n

GPU Thread 2

element

Core 2 Thread

element

Core 1 Thread

element

Core
n-1

Thread

element

Figure 6: First phase in heterogeneous parallel computing of assembling stiffness matrix

The shape function derivatives are stored in GPU global memory and CPU shared memory in
the second phase. As shown in Fig. 7, the threads can access the random memory addresses and
concurrently access the same memory address among threads. The computational workload is divided
by control point pairs. Each thread completes the numerical integration process for shared Gaussian
points of the pair, and then calculates wGHij submatrices as Eq. (12). Finally, the parallel threads will
fill stiffness coefficients into the corresponding unique positions of matrix K . Race condition will be

CMES, 2024, vol.138, no.2 1111

eliminated by the hybrid parallel strategy, a precondition for efficient parallel computing. In addition,
the total computation task can be divided into multiple fine-grained subtasks between CPU and GPU,
which will contribute to efficiency improvements.

...

...

WGPUWCPU

Input

K

Input

Output

CUDA
Threads

...

t1

Global Stiffness matirx

a1

Control point pair i-j

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

a1

Control point pair l-n

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

CPU thread 1
Loop

...

a1

Control point pair p-q

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

a1

Control point pair s-t

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

CPU thread n-1
Loop

...

a1

Control point pair p-q

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

a1

Control point pair s-t

b1 y1 z1

a2 b2 y2 z2

...

...

...
...

...

t2
t3
t4

ti
tj

Gauss Point

Figure 7: Second phase in the heterogeneous parallel strategy of assembling stiffness matrix

The simplified heterogeneous parallel algorithm for stiffness matrix assembly is stated in Table 1.
“One-thread-one-stiffness matrix” mode in GPU and “one-thread-multi-stiffness matrix” mode in
CPU are adopted in the hybrid parallel strategy. The symbol ← indicates variable assignment
operations in local memory, and the double-linear arrow ⇒/⇐ indicates global memory read/write
operations. Table 1 shows the first phase of the heterogeneous parallel strategy for the stiffness matrix
assembly. The sensitivityFilter() function is a filtering scheme for smoothing free design boundaries
in narrow-band regions. By using a window function to filter the pseudo-density of the element, the
smoothness of the strain energy density is improved. The spaceConverter() function is for calculating
the coordinates of the control points in parameter space. The JacobianMapping() function is used to
transform Jacobian matrix. The Nurbs3Dders() function calculates the partial derivative values of the
shape function in parameter space and then multiplies them by Jacobian inverse matrix. The results
will be stored in matrix d_dRdx as information for the second stage of the calculation.

Table 1: Phase 1 heterogeneous parallel algorithm for IGA

Segment 1: Calculate the derivatives of the shape functions
Input: Indices of elements idx, degrees of freedom (DOFs) of the element ed, Coordinates of
control points P, Range of elements elU , elV, elW , Control point numbers cp, Knot vectors u, v,
w, weights W , Coordinates of Gauss points Q, Number of Gauss points Ngs.
Output: Void

1: ijk ← getThreadId();
2: let en ← ijk

(Continued)

1112 CMES, 2024, vol.138, no.2

Table 1 (continued)

3: DNen ⇐ sensitivityFilter (DNen);
4: idxen,0 ⇒ [iu, iv, iw]; elU iu,iv,iw ⇒ [eη, eζ , eθ];
5: cpen ⇒ ed0; Ped0 ⇒ p;
6: if DNen<tol do

DNen ⇐ tol
7: end if
8: for gp = 0 to Ngs−1 do
9: let pt ⇐ Qgp

10: [η, ζ , θ] ⇐ spaceConverter (eη, eζ , eθ);
11: [dη, dζ , dθ] ⇐ Nurbs3Dders ([η, ζ , θ], p, q, r, u, v, w, W);
12: J ⇐ getJacobianMatrix (p, dη, dζ , dθ);
13: d_J1en∗ Ngs+gp ⇐ det(J);
14: d_J2en∗ Ngs+gp ⇐ JacobianMapping(eη, eζ , eθ);
15: d_dRdxen∗ Ngs+gp ⇐ [dηT, dζ T, dθT]∗J−1;
16: end

In the second phase, the DOFs of the control point pairs are calculated by CalcPairDOF() function
as listed in Table 2. The DOFs indicate the locations of the stiffness coefficients in matrix K . Each
thread iterates through the elements shared by the control point pairs. The shape function derivatives
of node pairs are obtained according to the local indices of control points in the element, while the
stiffness coefficients K ij can be calculated by integrating overall shared Gaussian points.

Table 2: Phase 2 heterogeneous parallel algorithm for IGA

Segment 2: Assembly global stiffness matrix K

Input: Number of elements in pair M el, Weights of Gauss points Wei, Number of Gauss points Ngs,
Derivatives of the shape functions d_dRdx.
Output: Void

1: ijPair ← getThreadId();
% DOFs of the control point pair pd,

2: pd ⇐ CalcPairDOF(pd0);
3: for el = 0 to Mel −1 do
4: en ← getEleNumber(ijPair, el);

% Local number in element eli, elj
5: [eli, elj] ← getNumInEle(en, ijPair, el);
6: for gp = 0 to Ngs−1 do
7: Weigp⇒wt;
8: d_J1en∗Ngs+gp ⇒ J1; d_J2en∗Ngs+gp ⇒ J2;
9: convert(d_dRdxeli,elj) ⇒ Bij;

10: K pd,pd ⇐ Kpd,pd + BT
ij ∗ D ∗ Bij∗ J1∗J2∗wt;

11: end
12: end

CMES, 2024, vol.138, no.2 1113

The sparse matrix K is compressed and stored in COO format to save memory, which only records
non-zero element information. Arrays of the C/C++ structure store three vectors: the row and column
index vectors (iK, jK) and the non-zero value vectors (vK). Unlike adding the contribution of local
stiffness ke to assemble the matrix K , the final stiffness coefficient can be directly generated in the
hybrid parallel strategy. Therefore, there are no repeated combinations of row and column indices.
Non-zero values in matrix K are specified by the unique combinations of row and column as shown
in Fig. 8.

6

10

3

**
* *
**

**
**
**

6

*

**

.
.

.

**

**

10
3

ik jk vk
Sparse(iK, jK, vK)

Row
index

Col
index

value

Figure 8: Storage of sparse matrix in COO format

3.2 Strategy for Equation Solving
A fast solving of equilibrium equations can significantly accelerate optimization iteration [58].

A hybrid parallel strategy of PCG (preconditioned conjugate-gradient method) is studied herein to
improve equation-solving efficiency.

3.2.1 Preconditioned Conjugate-Gradient Method

Conjugate-gradient method (CG) is an iterative method for solving systems of linear algebraic
equations, preconditioned conjugate-gradient method (PCG) adopts a preconditioner to adjust the
coefficient matrix in the equation to increase the convergence [59]. A series of approximate solutions
are obtained during the iterations, and the iteration finally ends once the error reaches the given
tolerance. Applying PCG to solve the equation Kx = f in ITO, the algorithm can be described as:

Where M denotes the preconditioning matrix, and rk is the error between approximate and
accurate solutions. In the PCG method, the matrix M should make the condition number of (M−1K)
close to 1 according to the convergence rate [60]:

||x − xi||k−1 ≤ ||x − x0||k−1

(√
c − 1√
c + 1

)i

(13)

where c is the condition number of the coefficient matrix K . When the c(M−1K) is closer to 1 than
c(K), the convergence will be accelerated considerably.

An incomplete Cholesky factorization method is utilized to obtain a well-performing precondi-
tioning matrix M, which will be factorized as follows:

M = LLT (14)

where L is a lower triangular matrix. To accelerate the convergence, condition number c((LL)TK) is
closer to 1 than c(K).

1114 CMES, 2024, vol.138, no.2

From Table 3, the computation of the vector dot product zT
k+1rk+1, while zT

k rk are independent
during the iteration. Overlapping the independent computations will reduce the time of equation
solving.

Table 3: Algorithm for PCG method

Segment 1: PCG method

Input: coefficient matrix A, vector b.
Output: Result x

1: x0 = 0.1;
2: r0 ← b − Ax0, z0 ← (M)

−1 r0, p0 ← z0;
3: for k= 0, 1, 2, 3 . . . do
4: αk ← zT

k rk/pT
k Apk;

5: xk+1 ← xk + αkpk;
6: rk+1 ← rk − αkApk;
7: zk+1 ← (M)

−1 rk+1;
8: βk ← zT

k+1rk+1/zT
k rk;

9: pk+1 ← zk+1 + βkpk;
10: end;
11: Return x;

3.2.2 Hybrid Parallel Strategy of PCG

The CUDA stream, a kind of logical queue, is utilized for the hybrid parallel strategy of PCG.
Different streams can execute multiple commands concurrently on NVIDIA GPU [61,62], while the
sequence of operations is performed serially in order. Independent computations are executed in
different CUDA streams, making the original serial process parallel. As shown in Fig. 9, the same
number of CPU threads as the CUDA streams are adopted. Each CUDA stream executes different
parallel operations concurrently, and OpenMP threads can update data before or after the stream
launching.

Time Line

CORE

myDcopyKernel ()

myDcopyKernel ()

myDaxpyKernel ()

myDdotKernel ()myDaxpyKernel ()

aLpha ← n / d

naLpha ← -n / d

Threads

OpenMP

CPU

thread 1

thread 2

thread 3

Sync.

CUDA stream 1

CUDA stream 2

CUDA stream 3

Figure 9: Overlapping computations in OpenMP threads

CMES, 2024, vol.138, no.2 1115

The CPU threads launch kernel functions concurrently and complete related calculations of
kernel functions. Based on OpenMP, the total delay time for launching kernel functions in the
serial is reduced, and the data processing for different kernel functions is executed in respective
threads. It is beneficial to avoid synchronizing streams to update data in the master thread. The
simplified heterogeneous parallel algorithm of PCG is shown in Table 4. In each iteration, the
cuSPARSE library function cusparseSpSV_solve() is applied to solve the sparse triangular linear
system d_zm1 ⇐ (LT)−1∗L−1∗d_r1, i.e., zk+1 = M−1rk+1, which is a key to achieve an efficient
PCG solution. The multiplication of a sparse matrix matA and a dense vector d_p is performed by
cuSPARSE library function cusparseSpMV (). The sparse matrix is compressed and stored in CSR
format. Kernel functions myDcopyKernel() and myDdotKernel() are designed to perform copying and
dot product of dense vectors. The kernel function myDscalKernel() is used to calculate a vector and
scalar multiplication. Function myDaxpyKernel() computes d_x ⇐ alpha∗d_p + d_x, which multiplies
the vector d_p by the scalar alpha and adds it to the vector d_x. The OpenMP compile command
#pragma omp parallel sections initially create the threads (forks), and the command #pragma omp
section is followed by independent phases executed concurrently in each CPU worker thread.

Table 4: Heterogeneous parallel strategy of PCG

Segment 1: Heterogeneous parallel PCG solver
Input: Sparse matrix matA, Density vector d_y, Iteration tolerance tol.
Output: Result x

1: k = 0;
2: while r1>tol∗tol && k<=max_iter do;
3: call 2∗cusparseScsrsv2_solve(): d_y ⇐ L−1∗d_r1; d_zm1 ⇐ LT−1∗d_y;
4: k++;
5: if k==1 do

launch myDcopyKernel(): d_p ⇐ d_zm1;
6: else do launch 2∗myDdotKernel(): n←d_r1.∗d_zm1; d←d_rm2.∗d_zm2;

let beta←n/d;
launch myDscalKernel(): d_p ⇐ beta∗d_p;
launch myDaxpyKernel(): d_p ⇐ 1∗d_zm1+d_p;

7: end;
8: call cusparseSpMV():d_omega ⇐ matA∗d_p;
9: launch 2∗myDdotKernel(): n←d_r1.∗d_zm1; d←d_rm2.∗d_zm2;

% Enable OpenMP multi-threading, overlap computations
10: #pragma omp parallel sections
11: #pragma omp section %In CUDA stream1:

let alpha ← n/d;
launch myDaxpyKernel(): d_x ⇐ alpha∗d_p+d_x;

12: #pragma omp section %In CUDA stream2:
launch myDcopyKernel(): d_rm2 ⇐ d_r1
let nalpha ← −n/d
launch myDaxpyKernel(): d_r1 ⇐ nalpha∗d_omega
launch myDdotKernel(): r1←d_r1.∗d_r1

(Continued)

1116 CMES, 2024, vol.138, no.2

Table 4 (continued)

13: #pragma omp section %In CUDA stream3:
launch myDcopyKernel(): d_zm2 ⇐ d_zm1;

14: end;
15: Return x ⇐ d_x;

3.3 Strategy for Sensitivity Analysis and Update Scheme
3.3.1 Hybrid Parallel Strategy for Sensitivity Analysis

According to Eq. (4), the material properties of the element in SIMP model are represented by
Young’s modulus, and compliance C can be formulated as a summation of the element strain energy
multiplied by Young’s modulus [63]. Therefore, the element strain energy with unit Young’s modulus
Se is calculated as:

Se = uT
e K eue (15)

then the compliance C can be described as:

C =
∑N

e=1
Ee (xe) Se (16)

Therefore, the compliance sensitivity term
∂C
∂xe

can be described as:

∂C
∂xe

= −t (xe)
t−1 Se = −t (xe)

t−1 uT
e K eue (17)

In the process of sensitivity analysis, the calculation of strain energy is parallelized as the main
time-consuming part [64]. The heterogeneous parallel strategy for sensitivity analysis is illustrated in
Table 5. The task set is divided by element, as the strain energy of an element is calculated in a task. In
the hybrid parallel strategy, the “one-thread-one-strain energy” mode in GPU and the “one-thread-
multi-strain energy” mode in CPU are adopted.

Table 5: Heterogeneous parallel algorithm for sensitivity analysis

Segment 1: Sensitivity analysis

Input: Displacement vector U , Control point numbers cp, Elements stiffness matrix ke.
Output: Void

1: ijk ← getThreadId();
2: let en ← ijk;
3: cpen ⇒ ed0;
4: ed ← CalcEleDOF(ed0);
5: ue ⇐ Ued;
6: ke ⇐ keed;
7: Seen ⇐ ue∗ ke ∗ue;

CMES, 2024, vol.138, no.2 1117

3.3.2 Hybrid Parallel Strategy for Update Scheme

For discrete optimization problems with many design variables, iterative optimization techniques
such as the moving asymptote method and optimality criterion (OC) method are usually adopted [65].
The OC method is chosen herein due to its efficiency with a few constraints. A heuristic scheme in OC
iteration updates the design variables. Following the optimality condition, Be can be written as:

Be =
− ∂C

∂xe

�
∂V
∂xe

(18)

where V is the material volume, � is the Lagrange multiplier for the constraint. Finally, the update
method can be illustrated as:

xnew
e =

⎧⎪⎪⎨
⎪⎪⎩

max(0, xe − m) if xeBη

e ≤ max(0, xe − m)

xeBη

e if max(0, xe − m) ≤ xeBη

e ≤ min(0, xe + m)

min(1, xe + m) if xeBη

e ≥ min(0, xe + m)

(19)

where m is the move limit and η is the damping factor set to 0.3.

Here, the design variable x is updated in heterogeneous parallel during each OC iteration. The
workload is divided by element. Table 6 shows the procedure of the update method, and the strategy
is “one-thread-one-design variable” mode in GPU and “one-thread-multi-design variable” mode
in CPU.

Table 6: Heterogeneous parallel algorithm for the update scheme

Segment 1: Design variable update
Input: Density vector x, xnew, Bound of Lagrange multipliers Lmid, Derivation of the objective
function dc, Derivation of the constraint function dv, Move limit move.
Output: Void

1: ijk ← getThreadId();
2: let en ← ijk;
3: t1⇐min(xen+move, xen∗sqrt(-dcen/dven)/lmid);
4: t2⇐min(1, t1);
5: t3⇐max(xen-move, t2);
6: xnewen⇐max(0.0001, t3);

Segment 2: OC scheme
Input: Density vector x, Bound of Lagrange multipliers Ll, Lmid, Lr.
Output: New density vector xnew

1: Lmid ← 0.5∗ (Lr+Ll);
2: while (Lr-Ll)∗(Lr+Ll)>tol do

% Call function of segment 1
3: xnew ← variableUpdate(x, move, Lmid, dc, dv);
4: if sum(xnew) > volfrac∗nelx∗nely∗nelz do

Ll ← Lmid

(Continued)

1118 CMES, 2024, vol.138, no.2

Table 6 (continued)

5: else do
Lr ← Lmid

6: end
7: end;
8: Return xnew;

3.4 Strategy for CPU-GPU Data Transfer
A large amount of data transfer between CPU and GPU in the hybrid parallel strategy imple-

mentation is required, which is time-consuming. Therefore, achieving efficient data transfer is crucial
for CPU/GPU hybrid computing. To obtain high performance in CPU/GPU heterogeneous parallel
computing, an efficient data transfer method is adopted.

3.4.1 Data Flow between CPU and GPU

In the CPU/GPU-based heterogeneous computing system, the architecture and memory system
of the CPU are different from the GPU, so the GPU cannot directly access the memory of the CPU
for computation. When performing heterogeneous parallel computation, the computational data will
be transferred from the CPU to GPU side. Depending on the specific hardware and software, the data
flow process between the CPU host side and GPU device side is shown in Fig. 10:

CPU

Host
Memory

Device Memory

DMA

GPU board

PCI Bus

request

Input

Result

cudaMemcpyAsync()

HtoD

DtoH

Figure 10: Data flow process between CPU host side to GPU

In the hybrid parallel strategy, the data is written to system memory first by the CPU. Then, a
direct memory access (DMA) request to start the data transfer will be sent to the GPU by the CPU.
With DMA, a data transfer execution is initiated by the CPU, then the dedicated DMA controller on
the system bus will perform the transfer between the CPU and GPU. Thus, the involvement in the data
transfer of the CPU is avoided, which frees it up to perform other tasks.

3.4.2 CPU-GPU Data Transfer Method for Hybrid Parallel Strategy

In the hybrid parallel strategy, the CPU memory is set as page-locked memory to ensure highly
efficient data transfer between the CPU and GPU. The page-locked memory offers several advantages,
while the bandwidth between the CPU and GPU memory will be higher, and the transfer speed will
be faster. Page-locked memory allows the GPU to perform data transfer tasks directly through DMA
engine without CPU involvement, reducing overall latency and decreasing transfer time. In addition,
some asynchronous concurrent execution based on the page-locked memory is allowed in CUDA.
Many researchers have explored overlapping data transfer and kernel execution with speed-up results

CMES, 2024, vol.138, no.2 1119

when utilizing CUDA [65]. This approach is challenged in its direct application to ITO hybrid parallel
strategy and will be integrated into future work, as the data set is hard to divide into chunks of suitable
size for each kernel execution.

Several functions are provided by CUDA runtime for locked-page memory. One is cudaHostAl-
loc(), allocating new locked-page host memory; the other, cudaHostRegister(), can fix the allocated
unlocked-page memory into being locked-page. The latter is adopted in the data transfer method.
Then, cudaMemcpyAsync() is applied to transfer data asynchronously from the CPU to GPU. The
process of data transfer will be completed by the GPU and signaled to the CPU, which allows the
CPU to overlap data transfers with other computations, improving performance and reducing overall
execution time.

In the hybrid parallel strategies proposed in this paper, the whole workload is split into two
parts and the tasks will be allocated to the CPU and GPU. The GPU’s task set only corresponds
to a portion of the resource data in the host, which provides an opportunity to reduce data transfer
time by minimizing communication between the CPU and GPU. To minimize the communication, the
corresponding range for vectors of GPU should be figured out first. For example, in the process of
sensitivity analysis, the workload is divided by elements, where the corresponding range for vectors
such as indices of elements can be easily determined. When transferring data from the CPU to the
GPU, only related data are transferred, which saves communication time.

4 Loading Balance Strategy for CPU/GPU Heterogeneous Computing

In heterogeneous parallel computing, the loading balance strategy is key to ensuring computation
efficiency. Thus a dynamic workload balancing method is proposed in this section.

4.1 CPU/GPU Computing for ITO
Computing resources in heterogeneous clusters include one multi-core CPU and one many-core

GPU. In some GPU parallel studies, the CPU is responsible for data preparation and transfer, while
GPU performs arithmetic operations [66,67]. However, some CPU cores are idle when preparing and
transferring data for GPU, resulting in a waste of computational resources [68]. Therefore, cooperative
computation for a particular workload is researched herein.

As described in Section 3.1, the workload for the first phase of stiffness matrix assembly can
be subdivided into Nx ∗ Ny ∗ Nz independent tasks (Nx, Ny, Nz denote the mesh size in X, Y, Z axis
directions). Moreover, the workload for the second phase is subdivided into NP independent tasks,
where NP is the number of control point pairs. Therefore, the workload can be flexibly distributed
between CPU and GPU, as shown in Fig. 11. The workload � represents the total number of tasks
and is divided into two parts: one core in CPU is reserved for data interaction, and (n−1) CPU cores
are to handle the workload �(1−α), where α denotes the workload balancing ratio between CPU
and GPU.

4.2 Dynamic Workload Balancing
For heterogeneous parallelism, balancing the workload between the CPU and GPU with different

arithmetic capabilities for efficient computing is critical [69,70]. There are three main methods to
evaluate the best workload balancing ratio α: the enumeration method, the formula method, and
the pre-run method [71,72]. In the enumeration method, all possible workload balancing strategies
are executed, and then the best workload balancing ratio α with the shortest time is chosen. The
formula method requires quantifying the computing power of hardware devices. δCPU and δGPU denote

1120 CMES, 2024, vol.138, no.2

the computing power of one CPU core and all GPU cores, respectively, while the computing power
of the whole CPU is (n−1)δCPU . Then the wall-clock time τ for CPU/GPU computing can be
expressed as:⎧⎪⎨
⎪⎩

τ = max(τCPU , τGPU)

τGPU = �GPU/δGPU

τCPU = �CPU/(n − 1)δCPU

(20)

CPU

GPU

Loading
Balanceidx

Nx

Nz

Ny

mesh scale

Figure 11: Workload balancing between the CPU and GPU by loading balance strategy

where τ CPU is the wall-clock time for CPU computing and τ GPU is for GPU. The total computing time τ

is determined by the greater one of τ CPU and τ GPU. Therefore, when τ CPU equals τ GPU, the total computing
time is minimized to avoid the mutual waiting between CPU and GPU. Thereby, the best workload
balancing ratio α and workload �CPU, �GPU can be expressed as:⎧⎪⎨
⎪⎩

α = 1/(1 + (n − 1)(δCPU/δGPU))

�GPU = α�

�CPU = (1 − α)�

(21)

The formula method requires accurate quantification of hardware computing power. Although
this can be obtained directly from the APIs, the actual computational efficiency is affected by
the parallel algorithm and hardware running. Therefore, a dynamic workload balancing method
combining the formula and pre-run method is proposed in this paper, while the pre-run method
is utilized to amend the formula method (theoretical value) for the main parameters of workload
balancing. Assuming that there are Nx × Ny × Nz independent tasks, τ CPU can be written as:

τCPU = (1 − α)(Nx × Ny × Nz)tCPU (22)

where τ CPU is the computation time to execute one task for the CPU. Taking into account the time
consumed by the CPU and GPU data transfer, τ GPU can be written as:

τGPU = τDT + τG (23)

where τ DT is the time for data transfer, and τ G is the time for GPU computation. When the workload
balancing ratio α is given, τ DT and τ G can be evaluated as:⎧⎨
⎩τDT = α × k(Nx × Ny × Nz) × Sval

ν
, tdt = k × Sval

ν

τG = α(Nx × Ny × Nz)tGPU

(24)

CMES, 2024, vol.138, no.2 1121

where k denotes the space complexity factor, Sval is the bytes per data unit, and v is the bandwidth
capacity of the PCI-E bus data transfer connecting the CPU and GPU. tdt denotes the average data
transfer time for one task, and tGPU denotes the computation time to execute one task by GPU.
According to Eqs. (22) and (23), the total computing time τ is minimized when τ CPU = τ GPU as follows:

(1 − α)(Nx × Ny × Nz)tCPU = α(Nx × Ny × Nz)(tdt + tGPU) (25)

then the workload balancing ratio α can be expressed as:

α = tCPU

tCPU + tdt + tGPU

(26)

In the dynamic method, the pre-run phase aims to get the actual data transfer time tdt and the
computation time tGPU and tCPU as shown in Fig. 12. The workload �pre of the pre-run phase is greater
than (n−1), ensuring that each CPU core is loaded. After the pre-run phase, the execution times �1

and �2 for CPU and GPU are tailed. The formula has a pre-run part, making the load balancing in
real-time. Hence the data transfer time and the computation time can be evaluated:{

�1 = �preτCPU

�2 = �pre(τdt + τGPU)
(27)

main

TCPU

TGPU

main(1-)

CPU

GPU

T1

T2

Wpre

= T1 / (T1+T2)

OpenMP

CORE

CORE

CPU

CUDA

CORE

CORE

CORE

CORE

GPU

CORE Thread

for end

CORE Thread CORE Thread

CORE Thread CORE Thread

elements 0 : n

Time Line

pre-run phase main run phase

element

element

element

element

Figure 12: Dynamic workload balancing for CPU/GPU heterogeneous computing

Finally, the workload balancing ratio α can be expressed by �1 and �2 as follows:

α = �1

�1 + �2

(28)

The time consumed for the data transfer and the computation per task does not change as the
workload increases. The dynamic workload balancing algorithm is illustrated in Table 7. The total
computational tasks in ITO hybrid parallel strategies can be divided by control point pairs or elements.
For independence, the tasks are quite suitable for the workload balancing method based on a task set

1122 CMES, 2024, vol.138, no.2

division. Through the balancing, the tasks are assigned according to the real-time local computing
power measured by the pre-run phase. Therefore, the proposed dynamic workload balancing algorithm
is reliable and versatile.

Table 7: Dynamic workload balancing algorithm

Segment 1: Pre-run dynamic workload balancing

Input: Input parameters A, B, C . . .

Output: Result Ret
% Workload balancing of the pre-run phase

1: GPU_Wpre ← Wpre;
2: CPU_subWpre ← Wpre/(omp_get_num_procs()−1);

% Enable OpenMP multi-threading
3: #pragma omp parallel
4: In the master thread, launch Kernel(A,B,C, GPU_Wpre . . .) ⇒ RetGPU_Wpre, record runtime T1.
5: In each assistant threads, call:

CKernelFunction(A,B,C, CPU_subWpre . . .) →RetCPU_subWpre, record runtime T2.
% Get the best load distribution ratio α

6: α← T1/(T1 + T2);
7: GPU_Wmain ← alpha∗Wmain;
8: CPU_subWmain ← (1–alpha)∗Wmain/(omp_get_num_procs()−1);

% Execute the main workload with the balancing ratio α

9: #pragma omp parallel
10: In the master thread, launch Kernel(A,B,C, GPU_Wmain . . .) ⇒ RetGPU_Wmain.
11: In each assistant threads, call:

CKernelFunction (A,B,C, CPU_subWmain . . .) →RetCPU_subWmain.
12: Return Ret;

5 Numerical Experiments

There are three benchmarks examined to verify the performance of the heterogeneous parallel
ITO algorithm. Poisson’s ratio v = −εl/ε is set to 0.3, where εl is the strain in the vertical direction, ε

is the strain in the load direction. The modulus of elasticity E0 is 1.0 for solid materials and 0.0001 for
weak materials, and the convergence criterion r = (Ci-1 – Ci)/Ci is set to 0.01, where Ci is the compliance
in the ith OC iteration. When displaying the topology structure, the element density xe has a threshold
value of 0.5, which means that the density of elements below 0.5 is not displayed. The filter radius fr
is empirically set to 0.04 times the maximum length of the mesh in the axial direction. All examples
are running on a desktop. The Intel Xeon Gold 5218 2.3 GHz CPU contains 16 CPU cores, and the
RAM is DDR4 SDRAM (128 GB). The GPU is NVIDIA GeForce RTX 3090, which contains 5888
streaming multiprocessors and 10496 CUDA cores. The desktop OS is Windows 10.1 64-bit. As for
the compilation, the CPU code is compiled by Mathworks MATLAB 2019 or Visual Studio 2019,
while the GPU code is compiled by NVIDIA CUDA 11.6. The heterogeneous parallel algorithms
are implemented by the programming language C using CUDA and OpenMP, allowing developed
modules can be used in software written in C++. Fig. 13 shows the interface of efficient parallel
software, where parallel computing is used to solve the ITO problems:

CMES, 2024, vol.138, no.2 1123

Figure 13: Interface of an efficient parallel software

5.1 Cantilever Beam
The cantilever beam is examined in this section to demonstrate the accelerated efficiency of the

hybrid parallel strategy for ITO. The hybrid parallel strategy can be proved when the acceleration
efficiency is higher than that of GPU. Fig. 14 shows the design domain of the 3D cantilever beam.
The beam length, width, and height are set to 3 L, 0.2 L and L, respectively. The height L is set to 1,
which follows the dimensionless quantity calculation rules. A unit-distributed vertical load F is applied
downwards to the lower edge of the right end face while the left face is constrained.

3L

L

0.2L

F=1

Figure 14: Design domain and boundary conditions of 3D cantilever beam

Fig. 15 shows the three different environments to compare efficiency, i.e., CPU with MATLAB,
GPU with CUDA and the hybrid CPU/GPU with both C and CUDA. The original implementation
of ITO is based on MATLAB. C and CUDA are used to allow for parallelized acceleration due to low-
level access to computer hardware. To illustrate the speed-up of the CPU/GPU heterogeneous parallel
strategy, several sets of the cantilever beam problem with different levels of quadratic NURBS elements

1124 CMES, 2024, vol.138, no.2

are examined. The computational time of the ITO processes is shown in Table 8. The stiffness matrix
assembly and the sensitivity analysis are executed in iterations of the solving processes, which shows
that the parallel algorithm is more efficient than MATLAB. For the course mesh, the advantage of the
hybrid over CUDA is not apparent enough. However, when the DOFs are up to 1.5 million, each step
for the heterogeneous calculation takes tens of seconds faster than CUDA and thousands of seconds
faster than MATLAB.

S1 Isogeometric Analysis

S2 Equation Solving

S3 Sensitivity Analysis

S4 OC update scheme Hybrid C CUDA

GPU CUDA

CPU MatlabAccelerated processes in ITO

Topology
Optimization

Start ITO

Figure 15: Different environments for ITO implementing

Table 8: Time consumption for one iteration of ITO process in the cantilever problem (unit: s)

Elements nDOFs Stage CPUM GPUCUDA Hybrid

60 ∗ 20 ∗ 4 24552 S1 16.59 1.44 1.36
S2 0.94 2.94 2.80
S3 0.72 0.11 0.09
S4 4.6e-3 7.6e-3 1.9e-3

120 ∗ 40 ∗ 8 153720 S1 158.22 10.66 9.56
S2 12.71 11.68 11.53
S3 36.21 0.62 0.55
S4 0.017 0.012 0.011

180 ∗ 60 ∗ 12 473928 S1 547.32 36.50 30.72
S2 124.36 34.53 33.01
S3 324.96 2.01 1.82
S4 0.028 0.019 0.019

240 ∗ 80 ∗ 16 1071576 S1 1643.72 88.58 77.21
S2 545.99 92.29 87.37
S3 2004.50 5.35 4.60
S4 0.29 0.12 0.053

(Continued)

CMES, 2024, vol.138, no.2 1125

Table 8 (continued)

Elements nDOFs Stage CPUM GPUCUDA Hybrid

270 ∗ 90 ∗ 18 1501440 S1 3951 s 151.96 116.55
S2 fail 179.28 161.32
S3 7.23 6.08
S4 0.17 0.057

The speed-up ratio is obtained by comparing the hybrid computational time to others. As listed in
Table 9, taking S1 as an example, the speed-ups of the hybrid to MATLAB vary from 12.20 to 34.06,
while the hybrid to CUDA are from 1.06 to 1.30. The CPU parallel computing capability is poorer
than the GPU, and it is difficult for the hybrid CPU/GPU to get a large acceleration ratio compared
to the single GPU. From the table, the speed-up ratio is up to 2.96 in S4. Note that under the current
hardware conditions, MATLAB cannot solve the equations x = K/f at the mesh size of 270 ∗ 90 ∗ 18.
The time consumption of GPU contains data transfer time and computation time. When the scale
reaches a certain level and the computation time is larger than the data transfer time, the increasing
computation makes GPU’s parallel computing power fully utilized, which results in better acceleration.
The GPU acceleration effect peaks with increasing scale, which causes the speed-up ratio in the table
not to increase monotonically. Overall, from the data in the table, the speed-up ratio increases with
the larger scale. The remarkable speed-up ratio proves the efficiency of the hybrid parallel algorithm,
especially compared to MATLAB (achieving a speed-up ratio of 435.76 times). The ITO process based
on the hybrid parallel strategy with the dynamic load balancing method can be further accelerated by
utilizing the CPU and GPU parallel computing power.

Table 9: Speed-up for one iteration of the topology optimization in the cantilever problem

Elements Hybrid/CPU-M Hybrid/GPU-CUDA

S1 S2 S3 S4 S1 S2 S3 S4

60 ∗ 20 ∗ 4 12.20 0.34 8.00 2.42 1.06 1.05 1.22 4.00
120 ∗ 40 ∗ 8 16.55 1.10 65.84 1.54 1.12 1.01 1.13 1.09
180 ∗ 60 ∗ 12 17.80 3.76 178.35 1.47 1.19 1.05 1.10 1.00
240 ∗ 80 ∗ 16 21.29 6.24 435.76 5.47 1.15 1.06 1.16 2.26
270 ∗ 90 ∗ 18 34.06 / / / 1.30 1.11 1.19 2.98

The time consumption and speed-up ratios for the stiffness matrix assembly, equation solving,
sensitivity analysis and the update scheme are shown in Fig. 16. The advantage of the hybrid strategy is
not apparent on a small scale, but the hybrid strategy efficiency increases with the increasing scale. The
optimized results of the cantilever beam problem with different mesh scales are shown in Fig. 17, while
all the cases yield consistent, optimized results. The color mapping reflects the value of the element
density, increasing from blue to red in order. When the number of elements is small, the boundary part
of the structure appears jagged, and the continuity between element densities is low. With the number
of elements increasing, the boundary of the structure gradually becomes smooth, and no large color
gaps appear, indicating a high numerical continuity between adjacent element densities, consistent with
the characteristics of realistic material manufacturing.

1126 CMES, 2024, vol.138, no.2

(a) Assembly stiffness matrix K. (b) Equation solving.

(c) Sensitivity analysis. (d) The update scheme.

Figure 16: Time consumption and speed-up ration in ITO processes

(d) Hybrid with 120*40*8 elements

(b) Hybrid with 60*20*4 elements(a) GPU with 60*20*4 elements

(c) GPU with 120*40*8 elements

Figure 17: (Continued)

CMES, 2024, vol.138, no.2 1127

(j) Hybrid with 270*90*18 elements

(h) Hybrid with 240*80*16 elements

(f) Hybrid with 180*60*12 elements(e) GPU with 180*60*12 elements

(g) GPU with 240*80*16 elements

(i) GPU with 270*90*18 elements

Figure 17: ITO results of cantilever beam problem with different NURBS elements

The time consumption of each process in the ITO iterations is shown in Fig. 18. In the CPU
implementation with MATLAB, stiffness matrix assembly and sensitivity analysis are far more
time-consuming than equation solving. However, in the hybrid, with the scale increasing, the time
consumption ratios of stiffness matrix assembly decrease and become less than the equation solving.
Compared to GPU, the hybrid main reduces time in stiffness matrix assembly and will achieve more
significant results when the scale is larger. Thus, the efficiency of the hybrid parallel strategy for ITO
is demonstrated. Then, equation solving will be the main time-consuming section in ITO.

5.2 MBB Beam
The MBB beam problem is to demonstrate the robust adaptability of the hybrid parallel strategy.

Compared to the FEM-based TO, the IGA-based TO performs optimization analysis with higher-
order NURBS elements, resulting in a significant increase in computational complexity and memory
usage [24]. Considering the time cost, the maximum DOFs of the cases are set to two million, which
exceeds the handling capacity of the GPU. The design domain of MBB beam is shown in Fig. 19,
where the length is 6 L, width and height are both L. A unit load F is applied downwards to the center
of the upper-end face. The four corners of the lower end face of the MBB beam are constrained while
one side is free in the horizontal direction.

1128 CMES, 2024, vol.138, no.2

60×20×4 120×40×8 180×60×12 240×80×16 270×90×18

(a) (b) (c) (d) (e)

Figure 18: Time consumptions of IGA processes with different number of elements

6L

L

LF=1

Figure 19: Design domain and boundary conditions of 3D MBB beam

Here the ITO problems require enormous memory resources. Three 3D cases with meshes of
120 ∗ 20 ∗ 20, 210 ∗ 35 ∗ 35, and 270 ∗ 45 ∗ 45 are tested, while the memory usage is listed in Table 10.
When the scale reaches a critical level, it will lead to the failure of the CUDA parallel method since the
memory resources are consumed beyond the limitation of GPU. The NVIDIA GeForce RTX 3090
used in this paper has 24 GB memory, which has a large gap to the 120 GB CPU memory. Limited
memory is a performance bottleneck when using GPU to accelerate solving large-scale problems. In
this paper, the tasks can be appropriately assigned to CPU/GPU via the dynamic workload balancing
strategy. The management and efficient use of GPU memory can be achieved based on determining
the minimum corresponding dataset for GPU’s tasks, which reduces the demand on GPU’s memory.

CMES, 2024, vol.138, no.2 1129

Table 10: Memory usage of ITO processes in the cantilever problem (unit: GB)

Elements nDOFs Stage Memory

120 ∗ 20 ∗ 20 177144 S1 1.7
S2 0.6
S3 2.6
S4 <0.01

210 ∗ 35 ∗ 35 870684 S1 8.3
S2 7.5
S3 12.7
S4 <0.01

270 ∗ 45 ∗ 45 1802544 S1 17.5
S2 15.6
S3 26.9
S4 0.01

The optimized results of the 3D MBB beam problem are shown in Fig. 20. The 3D case with the
mesh of 270 ∗ 45 ∗ 45 can only be solved by the hybrid method, while the memory allocation between
CPU and GPU in each ITO process is shown in Table 11. The required memory in stages S1, S2, and
S4 is lower than the GPU memory. However, S3 costs 26.9 GB, which exceeds the GPU’s limitation. In
comparison, the hybrid method can allocate memory properly between CPU and GPU, and maximize
the utilization of local computing resources.

(d) Hybrid with 210×35×35 elements

(f) Hybrid with 270×45×45 elements

(b) Hybrid with 120×20×20 elements(a) GPU with 120×20×20 elements

(c) GPU with 210×35×35 elements

(e) GPU with 270×45×45 elements

Fail

Figure 20: ITO results of MBB beam problem with different NURBS elements

1130 CMES, 2024, vol.138, no.2

Table 11: Memory allocation between host and device in the hybrid method (unit: GB)

Elements nDOFs Stage Host Device Whole

270 ∗ 45 ∗ 45 1802544 S1 8.4 9.1 17.5
S2 0 15.6 15.6
S3 12.1 14.8 26.9
S4 0.009 0.001 0.01

5.3 Wheel Beam
To demonstrate the accuracy of the proposed method, a 3D wheel beam problem is examined. The

design domain is shown in Fig. 21. A unit external load F is applied to the center of the upper-end
face, and the four corners of the wheel beam’s lower-end face are constrained.

F=1

2L 2L

L

Figure 21: Design domain and boundary conditions of 3D wheel beam

The objective function values in ITO iteration are recorded in Table 12, and Fig. 22 shows the
history of convergence for the CPU and the hybrid. The objective function values, i.e., compliance,
decrease sharply in the beginning and smoothly converge over the iterations. The ITO process stops in
the 132th iteration for the CPU, and 132th iteration for the hybrid. The iteration numbers are similar,
while the results are illustrated in Fig. 23, which shows an identical structural topology.

Table 12: Objective function values in ITO iteration of CPU and Hybrid

Iteration CPU Hybrid

1 2.83e4 2.84e4
20 1.19e3 1.19e3
40 254.92 254.93
60 237.91 237.87
80 237.54 237.50
120 237.40 237.36

CMES, 2024, vol.138, no.2 1131

(a) CPU (b) Hybrid CPU/GPU

Figure 22: Convergent histories of the wheel beam

(b) Hybrid CPU/GPU(a) CPU

Figure 23: Optimization results of the wheel beam

The relative error of the objective function value between the CPU and the hybrid is calculated
for each iteration:

ε =
∣∣OCPU − OHy

∣∣
|OCPU | (29)

where ε is the relative error. OCPU and OHy are the objective function values obtained from the CPU
and the hybrid computing in an iteration.

Table 13 records the relative errors between CPU and hybrid computing, while the history of
relative error is shown in Fig. 24. In the 1–40 iterations, there is a significant fluctuation since double
precision is utilized in the CPU method, while both double and single are used in the hybrid strategy
to reduce memory consumption. After the 40th iteration, the relative error gradually becomes stable
and stays below 0.0002.

Table 13: Relative error between CPU and Hybrid computing in ITO iteration

Iteration Error

1 0.0013
20 2.43e-5

(Continued)

1132 CMES, 2024, vol.138, no.2

Table 13 (continued)

Iteration Error

40 4.67e-5
60 1.58e-4
80 1.63e-4
120 1.71e-4

Figure 24: History of relative error between CPU and Hybrid computing

6 Conclusion

A hybrid parallel strategy for isogeometric topology optimization is proposed in this paper.
Compared with the general GPU parallel strategy, the proposed method can improve computational
efficiency while enhancing the ability for large cases. In the hybrid method, the tasks can be assigned
to the GPU via the workload balancing strategy. Therefore, the local hardware resources can be
fully utilized to improve the ability to solve large ITO problems. Four parts of ITO: stiffness matrix
assembly, equation solving, sensitivity analysis, and update scheme, are accelerated by the hybrid
parallel strategy, which shows significant speed-ups.

Three benchmark examples are tested to verify the proposed strategy. The 3D cantilever beam
example demonstrates the high computational efficiency via the significant speed-up ratio over the
CPU and GPU at different discrete levels. In the 3D MBB beam example, the method while only
using the device GPU cannot afford the amount of memory when it ups to a specified mesh scale. It
shows the advantages of the hybrid parallel strategy in solving large ITO problems. Furthermore, the
3D wheel beam example demonstrates the accuracy of the hybrid parallel strategy.

Although the SIMP method is utilized in this paper, the proposed hybrid parallel strategy is
highly general and equally applicable to other TO methods. In the future, distributed CPU/GPU
heterogeneous parallel computing with multiple computing nodes will be researched based on the
current work.

CMES, 2024, vol.138, no.2 1133

Acknowledgement: Thank all the authors for their contributions to the paper.

Funding Statement: This work was supported by the National Key R&D Program of China
(2020YFB1708300), the National Natural Science Foundation of China (52005192), and the Project
of Ministry of Industry and Information Technology (TC210804R-3).

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: Zhaohui Xia; data collection: Haotian Han, Haobo Zhang; analysis and interpretation
of results: Zhaohui Xia, Baichuan Gao, Shuting Wang; manuscript writing: Zhaohui Xia, Baichuan
Gao; manuscript review and editing: Chen Yu. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The authors do not have permission to share data.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Thompson, M. K., Moroni, G., Vaneker, T., Fadel, G., Campbell, R. I. et al. (2016). Design for additive

manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals, 65(2), 737–760.
https://doi.org/10.1016/j.cirp.2016.05.004

2. Wang, Y., Li, X., Long, K., Wei, P. (2023). Open-source codes of topology optimization: A summary
for beginners to start their research. Computer Modeling in Engineering & Sciences, 137(1), 1–34.
https://doi.org/10.32604/cmes.2023.027603

3. Sigmund, O., Maute, K. (2013). Topology optimization approaches. Structural and Multidisciplinary
Optimization, 48(6), 1031–1055. https://doi.org/10.1007/s00158-013-0978-6

4. Lundgaard, C., Alexandersen, J., Zhou, M., Andreasen, C. S., Sigmund, O. (2018). Revisiting density-
based topology optimization for fluid-structure-interaction problems. Structural and Multidisciplinary
Optimization, 58(3), 969–995. https://doi.org/10.1007/s00158-018-1940-4

5. Meng, Q., Xu, B., Wang, C., Zhao, L. (2021). Thermo-elastic topology optimization with stress and
temperature constraints. International Journal for Numerical Methods in Engineering, 122(12), 2919–2944.
https://doi.org/10.1002/nme.6646

6. Bendsøe, M. P., Kikuchi, N. (1988). Generating optimal topologies in structural design using a
homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197–224.
https://doi.org/10.1016/0045-7825(88)90086-2

7. Wang, M. Y., Wang, X., Guo, D. (2003). A level set method for structural topology optimization.
Computer Methods in Applied Mechanics and Engineering, 192(1), 227–246. https://doi.org/10.1016/
S0045-7825(02)00559-5

8. Zhang, S., Da, D., Wang, Y. (2022). TPMS-infill MMC-based topology optimization considering over-
lapped component property. International Journal of Mechanical Sciences, 235, 107713. https://doi.org/
10.1016/j.ijmecsci.2022.107713

9. Xiao, M., Liu, X., Zhang, Y., Gao, L., Gao, J. et al. (2021). Design of graded lattice sandwich structures by
multiscale topology optimization. Computer Methods in Applied Mechanics and Engineering, 384, 113949.
https://doi.org/10.1016/j.cma.2021.113949

10. Bendsøe, M. P., Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of
Applied Mechanics, 69(9), 635–654. https://doi.org/10.1007/s004190050248

https://doi.org/10.1016/j.cirp.2016.05.004
https://doi.org/10.32604/cmes.2023.027603
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-018-1940-4
https://doi.org/10.1002/nme.6646
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/j.ijmecsci.2022.107713
https://doi.org/10.1016/j.cma.2021.113949
https://doi.org/10.1007/s004190050248

1134 CMES, 2024, vol.138, no.2

11. Huang, X., Xie, Y. M., Jia, B., Li, Q., Zhou, S. W. (2012). Evolutionary topology optimization of periodic
composites for extremal magnetic permeability and electrical permittivity. Structural and Multidisciplinary
Optimization, 46(3), 385–398. https://doi.org/10.1007/s00158-012-0766-8

12. Wang, Q., Han, H., Wang, C., Liu, Z. (2022). Topological control for 2D minimum compliance
topology optimization using SIMP method. Structural and Multidisciplinary Optimization, 65(1), 38.
https://doi.org/10.1007/s00158-021-03124-6

13. Doan, Q. H., Lee, D., Lee, J., Kang, J. (2019). Design of buckling constrained multiphase mate-
rial structures using continuum topology optimization. Meccanica, 54(8), 1179–1201. https://doi.org/
10.1007/s11012-019-01009-z

14. Doan, Q. H., Lee, D., Lee, J., Kang, J. (2020). Multi-material structural topology optimization with
decision making of stiffness design criteria. Advanced Engineering Informatics, 45, 101098. https://doi.org/
10.1016/j.aei.2020.101098

15. Rodriguez, T., Montemurro, M., Le Texier, P., Pailhès, J. (2020). Structural displacement requirement in
a topology optimization algorithm based on isogeometric entities. Journal of Optimization Theory and
Applications, 184(1), 250–276. https://doi.org/10.1007/s10957-019-01622-8

16. Wang, Y., Wang, Z., Xia, Z., Poh, L. H. (2018). Structural design optimization using isogeometric analysis:
A comprehensive review. Computer Modeling in Engineering & Sciences, 117(3), 455–507. https://doi.org/
10.31614/cmes.2018.04603

17. Seo, Y. D., Kim, H. J., Youn, S. K. (2010). Isogeometric topology optimization using trimmed spline
surfaces. Computer Methods in Applied Mechanics and Engineering, 199(49), 3270–3296. https://doi.org/
10.1016/j.cma.2010.06.033

18. Wang, Y., Benson, D. J. (2016). Isogeometric analysis for parameterized LSM-based structural topology
optimization. Computational Mechanics, 57(1), 19–35. https://doi.org/10.1007/s00466-015-1219-1

19. Qiu, W., Wang, Q., Gao, L., Xia, Z. (2022). Evolutionary topology optimization for continuum structures
using isogeometric analysis. Structural and Multidisciplinary Optimization, 65(4), 121. https://doi.org/
10.1007/s00158-022-03215-y

20. Lieu, Q. X., Lee, J. (2017). A multi-resolution approach for multi-material topology optimization
based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 323, 272–302.
https://doi.org/10.1016/j.cma.2017.05.009

21. Dedè, L., Borden, M. J., Hughes, T. J. R. (2012). Isogeometric analysis for topology optimization with
a phase field model. Archives of Computational Methods in Engineering, 19(3), 427–465. https://doi.org/
10.1007/s11831-012-9075-z

22. Wang, Y., Xu, H., Pasini, D. (2017). Multiscale isogeometric topology optimization for lattice
materials. Computer Methods in Applied Mechanics and Engineering, 316, 568–585. https://doi.org/
10.1016/j.cma.2016.08.015

23. Yu, C., Wang, Q., Mei, C., Xia, Z. (2020). Multiscale isogeometric topology optimization with unified
structural skeleton. Computer Modeling in Engineering & Sciences, 122(3), 779–804. https://doi.org/
10.32604/cmes.2020.09363

24. Yang, A., Wang, S., Luo, N., Xie, X., Xiong, T. (2022). Adaptive isogeometric multi-material topology
optimization based on suitably graded truncated hierarchical B-spline. Composite Structures, 294, 115773.
https://doi.org/10.1016/j.compstruct.2022.115773

25. Xia, Z., Wang, Y., Wang, Q., Mei, C. (2017). GPU parallel strategy for parameterized LSM-based topology
optimization using isogeometric analysis. Structural and Multidisciplinary Optimization, 56(2), 413–434.
https://doi.org/10.1007/s00158-017-1672-x

26. Kim, T. S., Kim, J. E., Kim, Y. Y. (2004). Parallelized structural topology optimization for eigen-
value problems. International Journal of Solids and Structures, 41(9), 2623–2641. https://doi.org/
10.1016/j.ijsolstr.2003.11.027

https://doi.org/10.1007/s00158-012-0766-8
https://doi.org/10.1007/s00158-021-03124-6
https://doi.org/10.1007/s11012-019-01009-z
https://doi.org/10.1016/j.aei.2020.101098
https://doi.org/10.1007/s10957-019-01622-8
https://doi.org/10.31614/cmes.2018.04603
https://doi.org/10.1016/j.cma.2010.06.033
https://doi.org/10.1007/s00466-015-1219-1
https://doi.org/10.1007/s00158-022-03215-y
https://doi.org/10.1016/j.cma.2017.05.009
https://doi.org/10.1007/s11831-012-9075-z
https://doi.org/10.1016/j.cma.2016.08.015
https://doi.org/10.32604/cmes.2020.09363
https://doi.org/10.1016/j.compstruct.2022.115773
https://doi.org/10.1007/s00158-017-1672-x
https://doi.org/10.1016/j.ijsolstr.2003.11.027

CMES, 2024, vol.138, no.2 1135

27. Vemaganti, K., Lawrence, W. E. (2005). Parallel methods for optimality criteria-based topol-
ogy optimization. Computer Methods in Applied Mechanics and Engineering, 194(34), 3637–3667.
https://doi.org/10.1016/j.cma.2004.08.008

28. Aage, N., Andreassen, E., Lazarov, B. S. (2015). Topology optimization using PETSc: An easy-to-use,
fully parallel, open source topology optimization framework. Structural and Multidisciplinary Optimization,
51(3), 565–572. https://doi.org/10.1007/s00158-014-1157-0

29. París, J., Colominas, I., Navarrina, F., Casteleiro, M. (2013). Parallel computing in topology opti-
mization of structures with stress constraints. Computers & Structures, 125, 62–73. https://doi.org/
10.1016/j.compstruc.2013.04.016

30. Baji, T. (2018). Evolution of the GPU device widely used in AI and massive parallel processing. 2018
IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM), pp. 7–9. Kobe, Japan.
https://doi.org/10.1109/EDTM.2018.8421507

31. Zhang, W., Zhong, Z., Peng, C., Yuan, W., Wu, W. (2021). GPU-accelerated smoothed particle finite
element method for large deformation analysis in geomechanics. Computers and Geotechnics, 129, 103856.
https://doi.org/10.1016/j.compgeo.2020.103856

32. Wadbro, E., Berggren, M. (2009). Megapixel topology optimization on a graphics processing unit. SIAM
Review, 51(4), 707–721. https://doi.org/10.1137/070699822

33. Schmidt, S., Schulz, V. (2011). T31 A 2589 line topology optimization code written for the graphics card.
Computing and Visualization in Science, 14(6), 249–256. https://doi.org/10.1007/s00791-012-0180-1

34. Ratnakar, S. K., Sanfui, S., Sharma, D. (2021). SIMP-based structural topology optimization using
unstructured mesh on GPU. In: Kumar, N., Tibor, S., Sindhwani, R., Lee, J., Srivastava, P. (Eds.), Advances
in interdisciplinary engineering, pp. 1–10. Singapore: Springer. https://doi.org/10.1007/978-981-15-9956-9_1

35. Karatarakis, A., Karakitsios, P., Papadrakakis, M. (2014). GPU accelerated computation of the isogeo-
metric analysis stiffness matrix. Computer Methods in Applied Mechanics and Engineering, 269, 334–355.
https://doi.org/10.1016/j.cma.2013.11.008

36. Wu, J., Aage, N., Westermann, R., Sigmund, O. (2018). Infill optimization for additive manufacturing—
approaching bone-like porous structures. IEEE Transactions on Visualization and Computer Graphics, 24(2),
1127–1140. https://doi.org/10.1109/TVCG.2017.2655523

37. Ram, L., Sharma, D. (2017). Evolutionary and GPU computing for topology optimization of structures.
Swarm and Evolutionary Computation, 35, 1–13. https://doi.org/10.1016/j.swevo.2016.08.004

38. Lu, F., Song, J., Cao, X., Zhu, X. (2012). CPU/GPU computing for long-wave radiation physics on large
GPU clusters. Computers & Geosciences, 41, 47–55. https://doi.org/10.1016/j.cageo.2011.08.007

39. Cao, W., Xu, C., Wang, Z., Yao, L., Liu, H. (2014). CPU/GPU computing for a multi-block structured
grid based high-order flow solver on a large heterogeneous system. Cluster Computing, 17(2), 255–270.
https://doi.org/10.1007/s10586-013-0332-1

40. Sigmund, O. (2001). A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary
Optimization, 21(2), 120–127. https://doi.org/10.1007/s001580050176

41. Song, P., Zhang, Z., Zhang, Q., Liang, L., Zhao, Q. (2020). Implementation of the CPU/GPU hybrid parallel
method of characteristics neutron transport calculation using the heterogeneous cluster with dynamic work-
load assignment. Annals of Nuclear Energy, 135, 106957. https://doi.org/10.1016/j.anucene.2019.106957

42. Liao, Z., Wang, Y., Gao, L., Wang, Z. P. (2022). Deep-learning-based isogeometric inverse design for tetra-
chiral auxetics. Composite Structures, 280, 114808. https://doi.org/10.1016/j.compstruct.2021.114808

43. Liu, G., Gao, F., Liao, W. H. (2022). Design and optimization of a magnetorheological damper based
on B-spline curves. Mechanical Systems and Signal Processing, 178, 109279. https://doi.org/10.1016/
j.ymssp.2022.109279

https://doi.org/10.1016/j.cma.2004.08.008
https://doi.org/10.1007/s00158-014-1157-0
https://doi.org/10.1016/j.compstruc.2013.04.016
https://doi.org/10.1109/EDTM.2018.8421507
https://doi.org/10.1016/j.compgeo.2020.103856
https://doi.org/10.1137/070699822
https://doi.org/10.1007/s00791-012-0180-1
https://doi.org/10.1007/978-981-15-9956-9_1
https://doi.org/10.1016/j.cma.2013.11.008
https://doi.org/10.1109/TVCG.2017.2655523
https://doi.org/10.1016/j.swevo.2016.08.004
https://doi.org/10.1016/j.cageo.2011.08.007
https://doi.org/10.1007/s10586-013-0332-1
https://doi.org/10.1007/s001580050176
https://doi.org/10.1016/j.anucene.2019.106957
https://doi.org/10.1016/j.compstruct.2021.114808
https://doi.org/10.1016/j.ymssp.2022.109279

1136 CMES, 2024, vol.138, no.2

44. Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194(39),
4135–4195. https://doi.org/10.1016/j.cma.2004.10.008

45. Gao, J., Gao, L., Luo, Z., Li, P. (2019). Isogeometric topology optimization for continuum structures using
density distribution function. International Journal for Numerical Methods in Engineering, 119(10), 991–
1017. https://doi.org/10.1002/nme.6081

46. Wang, Y., Liao, Z., Ye, M., Zhang, Y., Li, W. et al. (2020). An efficient isogeometric topology optimization
using multilevel mesh, MGCG and local-update strategy. Advances in Engineering Software, 139, 102733.
https://doi.org/10.1016/j.advengsoft.2019.102733

47. Sigmund, O. (2022). On benchmarking and good scientific practise in topology optimization. Structural and
Multidisciplinary Optimization, 65(11), 315. https://doi.org/10.1007/s00158-022-03427-2

48. Herrero-Pérez, D., Martínez Castejón, P. J. (2021). Multi-GPU acceleration of large-scale
density-based topology optimization. Advances in Engineering Software, 157–158, 103006.
https://doi.org/10.1016/j.advengsoft.2021.103006

49. Kiran, U., Sharma, D., Gautam, S. S. (2019). GPU-warp based finite element matrices generation
and assembly using coloring method. Journal of Computational Design and Engineering, 6(4), 705–718.
https://doi.org/10.1016/j.jcde.2018.11.001

50. Martínez-Frutos, J., Herrero-Pérez, D. (2017). GPU acceleration for evolutionary topology optimiza-
tion of continuum structures using isosurfaces. Computers & Structures, 182, 119–136. https://doi.org/
10.1016/j.compstruc.2016.10.018

51. Ahn, J. M., Kim, H., Cho, J. G., Kang, T., Kim, Y. et al. (2021). Parallelization of a 3-Dimensional
hydrodynamics model using a hybrid method with MPI and OpenMP. Processes, 9(9), 1548.
https://doi.org/10.3390/pr9091548

52. Poljak, M., Glavan, M., Kuzmić, S. (2019). Accelerating simulation of nanodevices based on 2D mate-
rials by hybrid CPU-GPU parallel computing. 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), pp. 47–52. Opatija, Croatia.
https://doi.org/10.23919/MIPRO.2019.8756964

53. Lim, R., Lee, Y., Kim, R., Choi, J. (2018). OpenMP-based parallel implementation of matrix-matrix
multiplication on the intel knights landing. Proceedings of Workshops of HPC Asia, 63–66. New York, NY,
USA. https://doi.org/10.1145/3176364.3176374

54. Yang, W., Li, K., Li, K. (2017). A hybrid computing method of SpMV on CPU-GPU
heterogeneous computing systems. Journal of Parallel and Distributed Computing, 104, 49–60.
https://doi.org/10.1016/j.jpdc.2016.12.023

55. Karatarakis, A., Metsis, P., Manolis, P. (2013). GPU-acceleration of stiffness matrix calculation and efficient
initialization of EFG meshless methods. Computer Methods in Applied Mechanics and Engineering, 258, 63–
80. https://doi.org/10.1016/j.cma.2013.02.011

56. Bartoň, M., Puzyrev, V., Deng, Q., Calo, V. (2020). Efficient mass and stiffness matrix assembly via weighted
Gaussian quadrature rules for B-splines. Journal of Computational and Applied Mathematics, 371, 112626.
https://doi.org/10.1016/j.cam.2019.112626

57. Liu, H., Tian, Y., Zong, H., Ma, Q., Wang, M. Y. et al. (2019). Fully parallel level set method
for large-scale structural topology optimization. Computers & Structures, 221, 13–27. https://doi.org/
10.1016/j.compstruc.2019.05.010

58. Mukherjee, S., Lu, D., Raghavan, B., Breitkopf, P., Dutta, S. et al. (2021). Accelerating large-scale topology
optimization: State-of-the-art and challenges. Archives of Computational Methods in Engineering, 28(7),
4549–4571. https://doi.org/10.1007/s11831-021-09544-3

59. Liao, Z., Zhang, Y., Wang, Y., Li, W. (2019). A triple acceleration method for topology optimization.
Structural and Multidisciplinary Optimization, 60(2), 727–744. https://doi.org/10.1007/s00158-019-02234-6

https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1002/nme.6081
https://doi.org/10.1016/j.advengsoft.2019.102733
https://doi.org/10.1007/s00158-022-03427-2
https://doi.org/10.1016/j.advengsoft.2021.103006
https://doi.org/10.1016/j.jcde.2018.11.001
https://doi.org/10.1016/j.compstruc.2016.10.018
https://doi.org/10.3390/pr9091548
https://doi.org/10.23919/MIPRO.2019.8756964
https://doi.org/10.1145/3176364.3176374
https://doi.org/10.1016/j.jpdc.2016.12.023
https://doi.org/10.1016/j.cma.2013.02.011
https://doi.org/10.1016/j.cam.2019.112626
https://doi.org/10.1016/j.compstruc.2019.05.010
https://doi.org/10.1007/s11831-021-09544-3
https://doi.org/10.1007/s00158-019-02234-6

CMES, 2024, vol.138, no.2 1137

60. Amir, O., Aage, N., Lazarov, B. S. (2014). On multigrid-CG for efficient topology optimization. Structural
and Multidisciplinary Optimization, 49(5), 815–829. https://doi.org/10.1007/s00158-013-1015-5

61. Grubov, V. V., Nedaivozov, V. O. (2018). Stream processing of multichannel EEG data using parallel
computing technology with NVIDIA CUDA graphics processors. Technical Physics Letters, 44(5), 453–
455. https://doi.org/10.1134/S1063785018050188

62. Wang, R., Gu, T., Li, M. (2017). Performance prediction based on statistics of sparse matrix-vector
multiplication on GPUs. Journal of Computer and Communications, 5(6), 65–83. https://doi.org/10.4236/
jcc.2017.56005

63. Weng, L., Huang, L., Taheri, A., Li, X. (2017). Rockburst characteristics and numerical simulation based
on a strain energy density index: A case study of a roadway in Linglong gold mine, China. Tunnelling and
Underground Space Technology, 69, 223–232. https://doi.org/10.1016/j.tust.2017.05.011

64. Xie, X., Yang, A., Wang, Y., Jiang, N., Wang, S. (2021). Fully adaptive isogeometric topology optimization
using MMC based on truncated hierarchical B-splines. Structural and Multidisciplinary Optimization, 63(6),
2869–2887. https://doi.org/10.1007/s00158-021-02850-1

65. Knap, M., Czarnul, P. (2019). Performance evaluation of unified memory with prefetching and oversub-
scription for selected parallel CUDA applications on NVIDIA pascal and volta GPUs. The Journal of
Supercomputing, 75(11), 7625–7645. https://doi.org/10.1007/s11227-019-02966-8

66. Yang, W., Li, K., Li, K. (2018). A parallel computing method using blocked format with optimal
partitioning for SpMV on GPU. Journal of Computer and System Sciences, 92, 152–170. https://doi.org/
10.1016/j.jcss.2017.09.010

67. Martínez-Frutos, J., Martínez-Castejón, P. J., Herrero-Pérez, D. (2017). Efficient topology optimiza-
tion using GPU computing with multilevel granularity. Advances in Engineering Software, 106, 47–62.
https://doi.org/10.1016/j.advengsoft.2017.01.009

68. Xue, W., Roy, C. J. (2020). Heterogeneous computing of CFD applications on CPU-GPU platforms using
OpenACC directives. AIAA Scitech 2020 Forum, Orlando, FL, USA, American Institute of Aeronautics
and Astronautics. https://doi.org/10.2514/6.2020-1046

69. Zamani, Y., Huang, T. W. (2021). A High-performance heterogeneous critical path analysis frame-
work. 2021 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA.
https://doi.org/https://doi.org/10.1109/HPEC49654.2021.9622872

70. Padhi, A. P., Chakraborty, S., Chakrabarti, A., Chowdhury, R. (2022). Efficient hybrid topology opti-
mization using GPU and homogenization based multigrid approach. arXiv:2201.12931. https://doi.org/
10.48550/arXiv.2201.12931

71. Mittal, S., Vetter, J. S. (2015). A survey of CPU-GPU heterogeneous computing techniques. ACM Comput-
ing Surveys, 47(4), 69:1–69:35. https://doi.org/10.1145/2788396

72. Wang, Y., Xiao, M., Xia, Z., Li, P., Gao, L. (2023). From computer-aided design (CAD) toward human-
aided design (HAD): An isogeometric topology optimization approach. Engineering, 22, 94–105.

https://doi.org/10.1007/s00158-013-1015-5
https://doi.org/10.1134/S1063785018050188
https://doi.org/10.4236/jcc.2017.56005
https://doi.org/10.1016/j.tust.2017.05.011
https://doi.org/10.1007/s00158-021-02850-1
https://doi.org/10.1007/s11227-019-02966-8
https://doi.org/10.1016/j.jcss.2017.09.010
https://doi.org/10.1016/j.advengsoft.2017.01.009
https://doi.org/10.2514/6.2020-1046
https://doi.org/https://doi.org/10.1109/HPEC49654.2021.9622872
https://doi.org/10.48550/arXiv.2201.12931
https://doi.org/10.1145/2788396

	A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing
	1 Introduction
	2 Basic Theory
	3 CPU/GPU Hybrid Parallel Strategy for ITO
	4 Loading Balance Strategy for CPU/GPU Heterogeneous Computing
	5 Numerical Experiments
	6 Conclusion
	References

