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ABSTRACT

The objective of this study is to investigate the methods for soil liquefaction discrimination. Typically, predicting soil
liquefaction potential involves conducting the standard penetration test (SPT), which requires field testing and can
be time-consuming and labor-intensive. In contrast, the cone penetration test (CPT) provides a more convenient
method and offers detailed and continuous information about soil layers. In this study, the feature matrix based on
CPT data is proposed to predict the standard penetration test blow count N. The feature matrix comprises the CPT
characteristic parameters at specific depths, such as tip resistance qc, sleeve resistance f s, and depth H. To fuse the
features on the matrix, the convolutional neural network (CNN) is employed for feature extraction. Additionally,
Genetic Algorithm (GA) is utilized to obtain the best combination of convolutional kernels and the number of
neurons. The study evaluated the robustness of the proposed model using multiple engineering field data sets.
Results demonstrated that the proposed model outperformed conventional methods in predicting N values for
various soil categories, including sandy silt, silty sand, and clayey silt. Finally, the proposed model was employed
for liquefaction discrimination. The liquefaction discrimination based on the predicted N values was compared
with the measured N values, and the results showed that the discrimination results were in 75% agreement. The
study has important practical application value for foundation liquefaction engineering. Also, the novel method
adopted in this research provides new ideas and methods for research in related fields, which is of great academic
significance.
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1 Introduction

Soil liquefaction refers to the compaction of saturated soil caused by vibrations that lead to a rapid
increase in pore water pressure, correspondingly resulting in a gradual decrease in effective stress until
it disappears ultimately [1–5]. Eventually, the soil is unable to resist any external load. As a geological
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hazard with severe consequences, soil liquefaction usually leads to uneven settlement of foundations,
building collapse, and slope instability, seriously threatening people’s lives [6–10]. Many studies have
been conducted on the mechanism of soil liquefaction and related discrimination procedures, such
as the Seed simplified method [11–15], laboratory studies [16,17], and liquefaction discrimination
methods based on artificial intelligence [18–21].

As an earthquake-prone country, China has accumulated valuable experience in liquefaction
discrimination [22–24]. The discrimination method currently used in China is the empirical analysis
method that mainly includes the SPT-based and CPT-based approaches, which is summarized by
investigating and studying many liquefaction and non-liquefaction data collected over the years.
Among them, the liquefaction discrimination theory of the SPT-based approach is relatively mature
due to its technical maturity, and liquefaction discrimination parameters derived from SPT data can
be directly applied to existing design specifications and standards. However, the test result of SPT is
significantly influenced by the operation of the geotechnical personnel, such as the drilling method,
penetration speed, and perpendicularity of the drill pipe, which leads to difficulty in obtaining test
data. In contrast, the CPT test is a simpler and faster process that causes less damage to the soil
layer and allows for continuous recording of soil information. However, the quality of the data
referenced by the CPT-based method is not high enough, especially in complex sites where the lack of
data is more prominent, which limits its prediction accuracy and reliability. Additionally, compared
with the SPT-based liquefaction discrimination method, the CPT method is based on relatively less
research on liquefaction phenomena, so the understanding of liquefaction phenomena is limited,
and its liquefaction discrimination mechanism needs further in-depth study. In summary, developing
an economical and simple method to combine the two liquefaction discrimination methods can
better meet the requirements of practical engineering applications, such as obtaining the standard
penetration test blow count N by CPT parameters for liquefaction discrimination.

Table 1 lists studies about empirical equations for predicting N based on one or more CPT
parameters, and these methods mainly use regression analysis to establish the relationship. Acka
[25] investigated the correlation between SPT and CPT data in the UAE and proposed an empirical
equation to predict CPT values from SPT data. Dos Santoz et al. [26] developed correlation models
between SPT-CPT and DPL-CPT data for sandy soils in Brazil. Shahri et al. [27] performed statistical
analysis to develop a high-accuracy correlation model between SPT and CPT data. Zhao et al. [28]
established correlations between SPT and CPT parameters for liquefaction evaluation in China,
proposing two correlation equations for N value and qc. Li et al. [29] used the least squares method
to establish a regression model between N with qc and investigated the impact of three factors on
liquefaction discrimination. Liu et al. [30] determined the selection principle of SPT-CPT comparison
holes and the acquisition method of parameters in several actual projects, and further used statistical
methods to fit the scatter plot formed by N and qc values. The emergence of artificial intelligence
has given rise to the widespread use of intelligent techniques for problem-solving in science and
engineering. Among these techniques, machine learning has proven to be a powerful tool for extracting
information from data. Recently, it has been increasingly applied to predict the N value using CPT
parameters. Tarawneh [31] analyzed a dataset consisting of both SPT and CPT data and used the
Artificial Neural Networks (ANN) model to predict the N value from the CPT data. The study found
that the ANN model provided accurate predictions of the N value, demonstrating the potential for
using this approach as an alternative to traditional SPT testing. Fernando et al. [32] explored the
feasibility of using ANN to predict SPT values and compared the prediction accuracy with and without
data normalization. The study found that an ANN model using CPT data and soil properties as
input variables could accurately predict SPT values, with data normalization further improving the
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accuracy and reliability of the predictions. Gupta et al. [33] investigated the correlations between SPT
and CPT data for liquefaction assessment using the statistical programming language R. The study
compared different correlation methods and found that the developed correlations using the random
forest regression method provided the best prediction accuracy.

Table 1: The study of correlation analysis between SPT and CPT

Studies Soil category Relationship

Acka [25]
Sand (n) = qc/N = 0.77
Silty sand (n) = qc/N = 0.7
Sandy silt (n) = qc/N = 0.58

Dos Santoz et al. [26] Sandy soil (n) = qc/N = 0.44

Shahri et al. [27]

Silty sand qc = 0.282N1.212

Clay qc = 0.409N0.779

Sandy silt qc = 0.563N−0.366
Sand qc = 0.605N−0.842
Gravelly sand to sand qc = 0.3975N1.13

Zhao et al. [28]
Silt N = 2.089qc + 1.485
Silty sand N = 1.384 qc + 9.063

Li et al. [29] All categories of soils N = [2.834 −
0.106ln(qc)–0.073(qc)0.54]qc

Liu et al. [30] Silt N = 1.970 qc + 1.485
Silty sand N = 1.408 qc + 9.008

To match CPT and SPT data, many of the above studies have employed the method of averaging
CPT parameters or selecting representative values within a given soil layer to correspond to N values.
This method has the advantage of being simple and easy to implement. However, it is important to
note that this approach has some limitations. One limitation is that this method may overlook critical
local or inhomogeneous features. Averaging or selecting representative values may smooth out small-
scale variations within the soil layer, and these variations may be important for understanding the
geotechnical behavior of the soil. Another potential limitation of averaging or selecting representative
values for CPT data is that it may obscure the variability between different categories of soil layers. Soil
layers can exhibit different geotechnical properties, and ignoring this variability can lead to inaccurate
correlations between the CPT and SPT data. When performing CPT and SPT data matching, factors
such as soil properties, structure, and variability characteristics usually need to be considered to obtain
accurate and reliable matching results.

To address a common problem faced by current SPT-CPT correlation studies, this study proposed
to correspond to N values by establishing the CPT feature matrix. The CPT feature matrix consists of
the CPT parameters of the two CPT exploration holes closest to the SPT exploration holes within a
given soil layer. The numerical matrix divides the CPT data of different exploration holes into different
column vectors. By doing so, the CPT feature matrix approach can make full use of the information
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from multiple exploration holes, allowing for the extraction of richer information regarding soil
characteristics. Additionally, the numerical matrix approach divides the CPT data into different row
vectors based on the different depths of CPT parameters. This method enables the extraction of
feature information at different depths, which accurately reflects the changing characteristics of soil
properties. In contrast, the averaging method simply averages the CPT data, which may not fully
capture the local variations in depth and can lead to inaccuracies in characteristic soil estimations.
Drawing inspiration from the characteristics of Convolutional Neural Network (CNN) in image
recognition [34,35], the paperproposed that a sliding window function performing the convolution
principle can be effectively applied to the constructed CPT feature matrix. As the convolution kernel
slides over the matrix, the features are integrated by multiplying the convolution kernel with the input
matrix. The CNN network performs higher-level feature extraction on the input CPT feature matrix
to predict the N value.

In summary, this paper presents a novel approach for establishing the correlation between N and
CPT parameters using the CNN model. The Genetic Algorithm (GA) is utilized to optimize the CNN
network hyperparameters in a data-driven manner. The model can predict the values of N based on the
CPT parameters. Finally, the predicted N values are expected to be used for assessing the liquefaction
potential based on the discriminatory liquefaction method outlined in the Chinese Specification for
Seismic Design of Buildings.

The remainder of this paper is as follows: Section 2 introduces the experimental data used in this
paper and data pre-processing work; Section 3 introduces the principle of CNN and GA; Section 4
presents the establishment of the optimized CNN model; Section 5 shows a comparative study with the
empirical methods; Section 6 demonstrates the feasibility of utilizing the predicted N values obtained
from proposed model for liquefaction discrimination.

2 Experimental Data Introduction
2.1 Data Source

The standard penetration test blow count N is a crucial geotechnical parameter that reflects soil
resistance properties. It is determined by counting the number of blows required to drive a split-spoon
sampler 30 cm into the soil using standard energy of 60 joules per blow during the SPT (Fig. 1a). The
tip resistance qc and sleeve resistance f s, obtained through the CPT, are equally important geotechnical
parameters for evaluating soil mechanical properties. The qc value measures the resistance of a cone-
shaped penetrometer to penetration into the soil at a constant rate, while the f s value measures the
resistance of the penetrometer’s side friction against the soil (Fig. 1b).

The experimental data were collected from five investigation engineering sites in Shanghai, China,
as shown in Fig. 1c. The whole data included 138 SPT exploration holes and 198 CPT exploration
holes, with the number of exploration holes varying across each site. Specifically, the number of
exploration holes for each site is statistically illustrated as follows:

Engineering site 1: 25 SPT exploration holes and 41 CPT exploration holes

Engineering site 2: 42 SPT exploration holes and 63 CPT exploration holes

Engineering site 3: 7 SPT exploration holes and 14 CPT exploration holes

Engineering site 4: 20 SPT exploration holes and 27 CPT exploration holes

Engineering site 5: 44 SPT exploration holes and 53 CPT exploration holes
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Figure 1: Data source: (a) Standard penetration test; (b) Cone penetration test (c) The location of the
engineering site

2.2 Abnormal Data Filtering
This research investigates three categories of soil layers: sandy silt, silty sand, and clayey silt. To

ensure that the data used for correlation analysis is of good quality and reduces the risk of overfitting
during model training, the box plot method [36] is used to identify and remove outliers from the
experimental dataset. It works by first arranging the data in ascending order and then calculating
statistical metrics such as the median value, quartiles Q1 and Q3, and the interquartile range (IQR).
The upper limit (UL) and lower limit (LL) are then calculated based on the quartiles and IQR. Data
points outside the UL and LL are considered outliers and removed from the dataset. Figs. 2–4 illustrate
the distribution of both raw and filtered data for different soil categories, including sandy silt, silty
sand, and clayey silt. The removal of data outliers leads to a more concentrated data distribution,
significantly reducing the impact of outliers on data analysis and improving the reliability of data
analysis.
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Figure 2: Abnormal data filtering (sandy silt)

Figure 3: Abnormal data filtering (silty sand)
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Figure 4: Abnormal data filtering (clayey silt)

2.3 The Matching Principle between CPT and SPT Data
The data of SPT is discrete, while the data of CPT is continuous, and a principle needs to be

established to match the SPT and CPT data. This study proposes a solution using the CPT feature
matrix to match the N value. First, the maximum distance between CPT and SPT was set at 30 m, and
only data within this range was considered for correlation analysis. In the vertical direction, the upper
and lower 0.2 m of each depth of the N value were taken as the soil’s upper and lower characteristic
boundary to capture the detailed variance characteristics of CPT data. For the horizontal direction,
the CPT hole with the two closest distances to the SPT exploration hole was selected. The feature
matrix corresponding to the N was established based on the qc, fs, and H of the two selected CPT holes
(Fig. 5). Note that SPT exploration holes without a nearby CPT hole within 30 m were eliminated. If
only one CPT hole was available, its feature information was duplicated to establish the feature matrix.

As described in Eq. (1), the CPT feature matrix consists of the CPT parameters of the two CPT
exploration holes closest to the SPT exploration holes within a given soil layer.

X = (
x(1), H, x(2)

) =

∣∣∣∣∣∣∣∣∣∣

qc
(1) fs

(1) Hi+0.2 fs
(2) qc

(2)

qc
(1) fs

(1) Hi+0.1 fs
(2) qc

(2)

qc
(1) fs

(1) Hi fs
(2) qc

(2)

qc
(1) fs

(1) Hi−0.1 fs
(2) qc

(2)

qc
(1) fs

(1) Hi−0.2 fs
(2) qc

(2)

∣∣∣∣∣∣∣∣∣∣
5×5

(1)

where X refers to the CPT characteristic matrix corresponding to N, x refers to the CPT hole with the
two closest distances to the SPT hole, i refers to the penetration depth of SPT, and the subscripts (1)
and (2) at the top right corner of x refer to the number of CPT exploration hole that is closest to the
SPT exploration hole, respectively.
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Figure 5: The matching principle between SPT and CPT

The proposed method utilizes a CNN model to establish the relationship between the CPT feature
matrix and N. Through the sliding window function, the convolution kernel integrates the qc and
f s information from different depths of the first CPT exploration hole (Fig. 6a), then integrates the
fs information and depth H (Fig. 6b). Subsequently, the window integrates CPT information from
the second exploration hole (Figs. 6c and 6d). When the window slides down to the next level, it can
integrate CPT information from different depths (Fig. 6e).

Figure 6: The principle of feature fusion based on the feature matrix
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3 Analytical Method
3.1 Machine Learning Algorithm CNN

CNN is a powerful machine learning algorithm that uses convolutional operations for feature
extraction and a layered combination of neural networks to learn complex data efficiently. The
convolution operation refers to sliding a data window to different locations of the input data, then
performing dot product and accumulation operations on the data in the window with a convolution
kernel (also called a filter) to obtain the output feature map, as shown in Eq. (2):

aij = f

(
2∑

m=0

2∑
n=0

ωm,nxi+m,j+n + ωb

)
(2)

where xij refers to the value of the ith row and jth column of the input matrix, aij refers to the value of
the ith row and jth column of the output matrix, f refers to the activation function, wm,n refers to the
weight assigned by the filter to the mth row and nth column of the input matrix, wb refers to the bias
assigned by the filter.

CNN consists of multiple convolutional, pooling, activation functions, and fully connected layers
(Fig. 7). The input values are passed through the layers to the final output layer. Eq. (3) is the formula
for calculating the difference between the output and the true values.

J = 1
2

(
yfianl − ytrue

)2
(3)

During the training process, CNN improves the accuracy and generalization of the model by
continuously adjusting the parameters of the convolutional kernel and the weights between neurons,
as described in Eqs. (4) and (5):

(W , b) = arg min (J (w, b)) (4)

(W , b)
n+1 = (W , b)

n − r · grad
(
J (W , b)

n) (5)

where r refers to the learning rate, and grad refers to the derivative of the loss function J to the w or b.

Figure 7: CNN algorithm

3.2 Genetic Algorithm
The Genetic Algorithm (GA) is a powerful optimization algorithm that simulates the process of

natural selection and biological evolution in nature. As shown in Fig. 8, the GA converts multiple
problem solutions into corresponding chromosomes, which are then evaluated based on their fitness
to the problem. The chromosomes with higher fitness are selected and undergo genetic operations,
including gene exchange and mutation. The process of selection, elimination, mutation, and exchange
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is repeated multiple times until the remaining chromosomal genes represent the most optimal solution
to the problem.

Figure 8: Genetic algorithm

3.3 Evaluation Metric
Mean absolute error (MAE), root mean square error (RMSE), mean squared error (MSE), and the

coefficient of determination R2 are the metrics used to evaluate the model performance in this paper.
MAE represents the average of the absolute error, which can better reflect the actual situation of the
prediction value error. RMSE is a measure of the dispersion of the sample distribution, indicating
the deviation between the observed value and the true value, and is often used as a standard for
measuring the prediction results of machine learning models. MSE is a more common error calculation
in statistics, which is the expectation of the error square between the true value and the predicted value.
R2 is a metric used to evaluate regression models, which indicates the proportion of the variance in the
data that the model can explain. Generally, the closer to 1, the smaller the error between the predicted
and true values. The above metrics are calculated by:

MAE =
√√√√ 1

N

N∑
i=1

∣∣∣ ∧
yi − yi

∣∣∣ (6)

RMSE =
√√√√ 1

N

N∑
i=1

( ∧
yi − yi

)2

(7)

MSE = 1
N

N∑
i=1

( ∧
yi − yi

)2

(8)

R2 =
1 −

N∑
i=1

( ∧
yi − yi

)2

N∑
i=1

(
yi − −

yi

)2
(9)

where yi is the true value, ŷi is the predicted value, yi is the average value of the true values, and N is
the number of data.

To certify the robustness of the model, the cross-validation method was introduced in this study.
The method evenly divides the whole data into several groups, selecting one as the testing dataset,
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while the corresponding remaining part is the training dataset. Each data group was selected as the
testing dataset and avoided overlapping with the data from the training dataset. Take the average of
all testing dataset scores as the final model performance score, which is calculated in Eq. (10):

CV(k) = 1
k

k∑
i=1

R2
i (10)

where k refers to the number of groups of all datasets that were divided, and R2
i refers to the R2 value

when the ith group dataset is the testing dataset.

4 The Optimization of the CNN Model

The structure of the CNN model, especially the number of filters per convolutional layer and
neurons per full-connection layer, significantly impacts the model performance. Therefore, optimizing
the model structure is crucial to achieving high accuracy and efficiency. In this study, the genetic
algorithm was utilized to optimize the structure of the model. The designed CNN network comprises
five layers, including three convolutional layers and two fully connected layers. The structural
information of the model was encoded as chromosomes, as presented in Fig. 9.

Figure 9: The optimization of the CNN model structure
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Each chromosome consists of five parameters, with the first three determining the number of filters
per convolutional layer, ranging from 1 to 20, and the last two determining the number of neurons
per fully connected layer, ranging from 1 to 15. The fitness of each chromosome was calculated using
Eq. (11), where chromosomes with higher fitness correspond to superior model structures and are thus
more likely to be inherited to the next generation. The probability of inheritance for each chromosome
was determined using Eq. (12), which calculates the ratio of the fitness of that chromosome to the sum
of the fitness values of the entire population. The chromosomes with greater fitness have a higher
probability of being selected and could potentially be selected multiple times, further improving the
average performance of the next-generation model. The hyperparameters of the genetic algorithm are
summarised in Table 2. For more information, refer to Appendix A for the pseudocode of optimizing
the CNN model using the genetic algorithm.

fitnessi = CV(10,R2) (populationi) = CV(10,R2) (Modeli (a, b)) (11)

probabilityi = fitnessi

K∑
k=1

fitnessk

(12)

where i refers to each population, K refers to the number of populations, and a, b refers to the number
of filters per convolutional layer and the number of neurons per full connection layer.

Table 2: GA parameters used for hyper-parameter tuning

GA parameter Description

Fitness function Eq. (11)
Selection method Eq. (12)

Genetic possibility
Crossover (80%)
Mutation (5%)

Number of chromosomes 50
Number of generations 20

The optimal combination of filter and neuron numbers for the model could be identified by
using the GA algorithm for tuning the hyperparameters of the CNN model. Fig. 10 illustrates the
convergence of the average population fitness after several generations of selection, exchange, and
mutation, indicating the effectiveness of the Genetic Algorithm in hyperparameter tuning. In our
study, the optimized model had three convolutional layers with 9, 7, and 13 filters, respectively, and
two full-connection layers with 12 and 8 neurons. The use of the Genetic Algorithm greatly reduced
the workload of the optimization process compared to permutation or variable analysis, which is time-
consuming and inefficient.

Table 3 compares the performance of the optimized CNN model with other machine-learning
algorithms. The results indicate that the optimized CNN model outperforms the other models with a
minimum error, demonstrating that it is the most suitable model for this particular scenario. The R2
values obtained for the optimized CNN model (0.797) are higher than those obtained for the other
models, including Linear Regression (0.743), SVR (0.746), XGBRegressor (0.757), and AdaBoostRe-
gressor (0.682). Furthermore, the feature matrix computation based on the convolution principle is
interpretable in fusing multifaceted features, which enhances the researchers’ comprehension of the
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model. Therefore, the optimized CNN model is a promising approach for predicting the outcome of
this specific task.

Figure 10: Average value of model score vs. generation

Table 3: Comparative results with other machine learning models

Algorithm R2

LinearRegression 0.743
SVR 0.746
XGBRegressor 0.757
AdaBoostRegressor 0.682
CNN-GA 0.797

5 Analysis of the Built Model
5.1 Comparison with the Equation Methods

This section compares the prediction of the CNN-GA model with equation methods in terms of
N values for various soil categories. The characteristics of datasets from the same engineering site are
likely to be similar. Therefore, a model trained on data from one engineering site may perform well
when tested on data from the same site, but it may not perform as well when tested on data from a
different site. To ensure the robustness and generalizability of the models across different sites, the
training and testing datasets were divided based on engineering sites. A cross-validation approach was
utilized, where the test set consisted of data from one engineering site while the training set comprised
data from the other engineering sites. This approach ensured that the models were trained and tested
on a diverse set of data, enabling them to be more robust and generalizable. This method provides a
stringent test of the generalizability of our model, as it ensures that there is no overlap or similarity
between the data in the training and testing sets.

This section only analyzes the performance of the models when data from engineering site 1 is
used as the testing set and the data from the remaining engineering sites are used as the training set,
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and other cases are detailed in Appendix B. The soil at engineering site 1 contains two main categories,
including sandy silt and silty sand, and this section analyzes them separately. The comparison results
are presented through scatter distribution and frequency distribution graphs. The scatter distribution
graph shows the true and predicted values on the horizontal and vertical axes, respectively. Points closer
to the diagonal indicate a smaller discrepancy between the predicted and true values. In a frequency
distribution plot, the ratio of predicted to true values for a given sample is represented by the variable
n. The frequency distribution curve of n is more centralized at x = 1 means the prediction result is
accurate.

For sandy silt (Fig. 11), Acka [25] and Shahri et al. [27] consistently underestimated true N values,
and Zhao et al. [28], Li et al. [29], and Liu et al. [30] performed poorly for data with true values above 30.
In contrast, the CNN-GA model provided more accurate predictions, especially for data with smaller
true values.

Figure 11: The comparative prediction results of different methods for N (sandy silt)

Compared to the CNN-GA model, the traditional methods of Acka [25], Dos Santoz et al. [26],
Shahri et al. [27], Zhao et al. [28], Li et al. [29], and Liu et al. [30] for predicting N values in silty sand
yielded poor results (Fig. 12). Specifically, Acka [25], Dos Santoz et al. [26], and Shahri et al. [27]
produced predicted values that were significantly far from the true N values; Zhao et al. [28],
Li et al. [29], and Liu et al. [30] consistently underestimated the true N values. In contrast, the CNN-
GA model demonstrated superior predictive performance for silty sand, outperforming traditional
methods in terms of accuracy.

Table 4 presents the error metrics of various models for different soil categories, including sandy
silt, silty sand, and clayey silt. The results demonstrate that the CNN-GA model studied in this
paper outperformed other studies, achieving lower MAE, RMSE, and MSE values for all three soil
categories. In addition to the improved accuracy, the CNN-GA model is a comprehensive model
that predicts soil parameters without prior knowledge of soil category, which makes it an attractive
alternative to other methods.
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Figure 12: The comparative prediction results of different methods for N (silty sand)

Table 4: The performance comparison of the different method

Different methods MAE RMSE MSE Soil category

Acka [25] 6.479 8.476 71.840 Sandt silt

Shahri et al. [27] 5.890 7.829 61.296
Zhao et al. [28] 4.796 6.381 40.715
Li et al. [29] 4.721 6.221 38.751
Liu et al. [30] 5.018 6.695 44.827
CNN-GA 3.746 4.708 22.164

Acka [25] 15.675 16.866 284.465 Silty sand

Dos Santoz et al. [26] 7.656 9.620 92.541
Shahri et al. [27] 10.868 12.454 155.108
Zhao et al. [28] 7.751 9.513 90.489
Li et al. [29] 6.787 8.798 77.426
Liu et al. [30] 7.553 9.320 86.861
CNN-GA 6.129 7.384 54.528

5.2 The Analysis of CNN-GA Model Prediction Results
This section further analyzed the prediction accuracy of our proposed model for N values at

different soil depths. Fig. 13 illustrates the discrepancy between the predicted and true values of
N, and the prediction results for relatively deep soil layers are not well. However, the liquefaction
discrimination problem focuses primarily on soils within 20 m below ground, so the poor predicted
results for deep soils have less impact on the latter study of liquefaction discrimination. Table 5
summarizes the error metrics of different categories of soils in different depth ranges. The result showed
that the prediction for the soil with a depth of less than 20 m has a minor error, which is more beneficial
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to the subsequent liquefaction discrimination study. The results demonstrate that the model has minor
prediction errors for soils with a depth of less than 20 m, which is particularly beneficial for subsequent
liquefaction discrimination studies.

Figure 13: Analysis of CNN-GA model prediction results

Table 5: The comparative prediction error metric of different penetration depth H

0 < h < 20 (m) h > 20 (m)

MAE RMSE MSE MAE RMSE MSE

Sandy silt 2.379 3.074 9.451 4.437 5.816 33.830
Silty sand 2.409 3.289 10.820 6.441 8.285 68.634

6 The Application of Liquefaction Discrimination Based on the Built Model

This section demonstrates the feasibility of utilizing the predicted N values for liquefaction
discrimination. The approach for liquefaction discrimination utilized in this study was based on the
code for the seismic design of buildings (GB50011-2010). According to this code, liquefaction is
considered to occur when the standard penetration test blow count N of the saturated soil is less than
or equal to the critical value Ncr. The formula for Ncr is given in Eq. (13):

Ncr = N0β [ln (0.6ds + 1.5) − 0.1dw]
√

3/ρc (13)

where N0 is the reference value of the SPT for liquidation discrimination, ds is the penetration depth
(m), dw is the depth of the groundwater level (m), ρc is the percentage of clay, and β is the regulation
factor.
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After determining the Ncr value based on soil factors, the predicted and measured N values were
compared with Ncr for each exploration hole to assess the liquefaction potential. Take engineering
site 1 as an illustration, and the liquefaction discrimination results are summarized in Table 6. The
number 0 in the table indicates that the sample is classified as liquefied, while the number 1 indicates
that the sample is classified as non-liquefied.

√
represents consistent discriminatory results, while

× represents inconsistent discriminatory results. The results showed that the discriminatory results
based on predicted N values had a consistency of 75% with the results obtained from measured N
values, indicating the reliability of the proposed model in evaluating the liquefaction potential of an
engineering site. Moreover, using predicted N values can significantly reduce the workload and time
required for geotechnical personnel to perform liquefaction assessments, particularly when many SPT
exploration holes need to be tested. At the initial stage of liquefaction discrimination, a preliminary
assessment can be conducted using the predicted N values, and the SPT can be selectively performed
based on the preliminary results for further evaluation. This simplified and efficient approach can
enhance the effectiveness of the geotechnical investigation, making our proposed model a valuable
tool for geotechnical engineers.

Table 6: The comparison of liquefaction discrimination results

Borehole No. Liquefaction discrimination

Measured values Predicted values Consistency

C01 0 0 √
C07 0 0 √
C13 0 0 √
C17 0 0 √
C19 1 1 √
C21 0 0 √
C25 0 1 ×
C27 0 0 √
C34 0 0 √
C36 0 0 √
C41 1 0 ×
C45 0 0 √
C46 0 0 √
C48 0 0 √
C50 1 0 ×
C52 1 0 ×
C55 1 1 √
C57 0 0 √
C59 0 0 √
C61 1 0 ×
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7 Conclusion

The CPT feature matrix is a novel feature extraction method proposed in this study, which converts
the traditional CPT test data into a matrix form for processing. Each element in the feature matrix
represents the CPT data at a specific depth, such as tip resistance qc and sleeve resistance f s. By
convolving the feature matrix, the multidimensional features were fused, effectively improving the
prediction accuracy of the N value. Additionally, the Genetic Algorithm (GA) was employed to
optimize the model and improve its accuracy and generalization. The study verified the prediction
performance of the model for different soil categories, and the results showed that the method has
higher prediction accuracy than the conventional method. Then the study validates the feasibility
of liquefaction discrimination based on the developed model. The study utilized the predicted N
values obtained from the model for liquefaction discrimination and compared the results with the
measured N values, using the liquefaction discrimination criteria outlined in the seismic design
code for buildings (GB50011-2010). The experimental results show that the agreement between the
liquefaction discrimination results based on the predicted N values and the measured N values is 75%,
which indicates that the proposed model has reliability in assessing the liquefaction potential of the
engineering site.

Given the high level of uncertainty associated with geotechnical engineering, the feature matrix
proposed in this study has the potential for broad applications in other geoengineering fields. The use
of multidimensional features can improve the accuracy and reliability of predictions in contexts where
data is often limited and uncertainty is high. Although this study yielded some meaningful results,
some shortcomings need to be acknowledged. The primary deficiencies of this study include:

1. While the proposed method has shown promising results for liquefaction discrimination, its
reliability needs to be further verified in multiple regions. There is also scope for refinement and
enhancement of the method in the future. To this end, we intend to conduct further studies and collect
data on liquefaction cases in China to verify the effectiveness of our proposed method.

2. The current study did not include a comparison with other state-of-the-art AI methods, such
as related deep learning methods, because it would involve the authors’ source code and experimental
data. In future studies, we plan to include more comprehensive and systematic comparisons with other
methods to provide a more thorough understanding of the effectiveness of our proposed method.
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Appendix A.

Algorithm 1: Genetic Algorithm for Optimizing CNN Hyperparameters
Input: Fitness evaluation function F (Eq. (11)), Training data D
Output: Optimized hyperparameters for the CNN model

(Continued)
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Algorithm 1 (Continued)
1: DNA size←5 // The first three values are the number of convolutional filters corresponding to the
three convolutional layers, and the last two values are the number of neurons corresponding to the two
fully connected layers
2: Population size←m
3: Crossover rate←pc

4: Mutation rate←pm

5: Generations←n
6: Initialize an array of size (Population size, DNA size) with zeros and assign it to P(t)
7: for i in the range of Population size do
8: Generate three random integers from 1 to 20 and assign them to Pop filters
9: Generate three random integers from 1 to 15 and assign them to Pop neutrons
10: Concatenate Pop filters and Pop neutrons into a single array and assign it to Pop stack
11: Assign Pop stack to the ith row of P(t)
12: end for
13: for i in the range of Generations do
14: Initialize an array of size Population size with zeros and assign it to Fitness
15: for i in the range of Population size do
16: Convert the ith row of P(t) to a list and assign it to Pop list
17: Convert each element in the Pop list to build the CNN model
18: Evaluate the fitness of the CNN model using the fitness evaluation function F and training
dataset D
19: Assign the fitness to the ith element of Fitness
20: end for
21: Select a new population P′(t) from the current population P(t) using tournament selection based
on Fitness
22: for each individual in P′(t) do // Crossover(P′(t)) with probability pc

23: if rand() < pc then
24: Select another individual mate from P′(t)
25: Choose a random crossover point cross_point
26: individual [cross_point]←mate [cross_point]
27: mate [cross_point]←individual [cross_point]
28: end if
29: for each point in DNA size do // Mutation(P′(t)) with probability pm

30: if rand() < pm then
31: if point >3 then // change the number of neurons corresponding to the two fully connected
layers
32: Generate a random integer from 1 to 15 and assign it to individual [point]
33: else // change the number of convolutional filters corresponding to the three convolutional
layers
34: Generate a random integer from 1 to 20 and assign it to individual [point]
35: end if
36: end if
37: end for
38: end for

(Continued)
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Algorithm 1 (Continued)
39: Evaluate the fitness of P′(t) using the fitness evaluation function F and training dataset D
40: Merge P(t) and P′(t) into a combined population Q
41: Sort Q in descending order of fitness
42: Select the top Population size individuals from Q to form the new population P(t+1)
43: Set the best individual in P(t+1) as the new optimal hyperparameters
44: end for
45: Return the highest-fitness individual as the result

Note:

1. The first three values of each DNA are the number of convolutional filters corresponding to
the three convolutional layers, and the last two values of each DNA are the number of neurons
corresponding to the two fully connected layers.

2. At the crossover point, the initial three genes encoding the number of filters in each con-
volutional layer can be interchanged between two individuals. Moreover, at an additional
randomly-selected crossover point, the final two genes representing the number of neurons in
the two fully connected layers can be exchanged between the same two individuals. This process
generates two novel individuals that amalgamate the genetic information of the original two
individuals.

3. Mutation provides a mechanism to explore new regions of the search space and can prevent
premature convergence to sub-optimal solutions. The genes representing the number of filters
in the convolutional layer or the number of neurons in the fully connected layer can randomly
generate new values during mutation operation.

Appendix B.

Table: The performance comparison of the different method

Testing dataset Different methods MAE RMSE MSE Soil category

Engineering site 1
(including sandy silt and
silty sand)

Acka [25] 6.479 8.476 71.840

Sandy silt

Shahri et al. [27] 5.890 7.829 61.296
Zhao et al. [28] 4.796 6.381 40.715
Li et al. [29] 4.721 6.221 38.751
Liu et al. [30] 5.018 6.695 44.827
CNN-GA 3.746 4.708 22.164

Acka [25] 15.675 16.866 284.465

Silty sand

Dos Santoz et al. [26] 7.656 9.620 92.541
Shahri et al. [27] 10.868 12.454 155.108
Zhao et al. [28] 7.751 9.513 90.489
Li et al. [29] 6.787 8.798 77.426
Liu et al. [30] 7.553 9.320 86.861
CNN-GA 6.129 7.384 54.528

(Continued)
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Table (continued)

Testing dataset Different methods MAE RMSE MSE Soil category

Engineering site 2
(including sandy silt and
silty sand)

Acka [25] 6.298 8.894 79.106

Sandy silt

Shahri et al. [27] 5.689 8.392 70.431
Zhao et al. [28] 4.981 7.517 56.501
Li et al. [29] 5.260 7.755 60.137
Liu et al. [30] 5.062 7.652 58.557
CNN-GA 2.911 4.446 19.769

Acka [25] 6.187 10.960 120.125

Silty sand

Dos Santoz et al. [26] 4.693 8.098 65.583
Shahri et al. [27] 4.859 9.2554 85.637
Zhao et al. [28] 7.226 9.634 92.807
Li et al. [29] 4.464 7.978 63.655
Liu et al. [30] 7.204 9.579 91.763
CNN-GA 2.369 3.597 12.935

Engineering site 3
(including sandy silt, silty
sand, and clayey silt)

Acka [25] 8.311 10.593 112.201

Sandy silt

Shahri et al. [27] 7.793 9.941 98.820
Zhao et al. [28] 7.067 8.628 74.435
Li et al. [29] 6.889 8.537 72.886
Liu et al. [30] 7.218 8.864 78.569
CNN-GA 4.022 5.207 27.114

Acka [25] 18.306 18.645 347.647

Silty sand

Dos Santoz et al. [26] 12.814 12.949 167.685
Shahri et al. [27] 14.523 14.822 219.706
Zhao et al. [28] 9.533 10.218 104.400
Li et al. [29] 12.003 12.155 147.745
Liu et al. [30] 9.432 10.097 101.948
CNN-GA 3.691 4.390 19.276

Li et al. [29] 12.003 12.155 147.745 Clayey silt
CNN-GA 3.691 4.390 19.276

Engineering site 4
(including sandy silt and
silty sand)

Acka [25] 5.054 6.590 43.426

Sandy silt

Shahri et al. [27] 4.322 6.030 36.367
Zhao et al. [28] 3.500 5.557 30.879
Li et al. [29] 3.820 5.786 33.478
Liu et al. [30] 3.966 5.887 34.662
CNN-GA 3.463 5.422 29.402

Acka [25] 6.573 9.010 82.807
Dos Santoz et al. [26] 4.039 5.107 20.086
Shahri et al. [27] 4.731 6.804 46.288

(Continued)
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Table (continued)

Testing dataset Different methods MAE RMSE MSE Soil category

Zhao et al. [28] 6.179 7.224 52.189 Silty sand
Li et al. [29] 3.767 4.931 24.318
Liu et al. [30] 6.113 7.123 50.736
CNN-GA 3.656 5.117 26.186

Engineering site 5 (silty
sand)

Acka [25] 22.162 27.757 770.452

Silty sand

Dos Santoz et al. [26] 14.611 20.291 411.749
Shahri et al. [27] 18.175 24.226 586.899
Zhao et al. [28] 15.332 21.651 461.784
Li et al. [29] 14.626 20.365 414.745
Liu et al. [30] 15..194 21.477 461.276
CNN-GA 11.052 13.834 191.383
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