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ABSTRACT

Watermarks can provide reliable and secure copyright protection for optical coherence tomography (OCT) fundus
images. The effective image segmentation is helpful for promoting OCT image watermarking. However, OCT
images have a large amount of low-quality data, which seriously affects the performance of segmentation methods.
Therefore, this paper proposes an effective segmentation method for OCT fundus image watermarking using a
rough convolutional neural network (RCNN). First, the rough-set-based feature discretization module is designed
to preprocess the input data. Second, a dual attention mechanism for feature channels and spatial regions in the
CNN is added to enable the model to adaptively select important information for fusion. Finally, the refinement
module for enhancing the extraction power of multi-scale information is added to improve the edge accuracy
in segmentation. RCNN is compared with CE-Net and MultiResUNet on 83 gold standard 3D retinal OCT data
samples. The average dice similarly coefficient (DSC) obtained by RCNN is 6% higher than that of CE-Net.
The average 95 percent Hausdorff distance (95HD) and average symmetric surface distance (ASD) obtained by
RCNN are 32.4% and 33.3% lower than those of MultiResUNet, respectively. We also evaluate the effect of feature
discretization, as well as analyze the initial learning rate of RCNN and conduct ablation experiments with the four
different models. The experimental results indicate that our method can improve the segmentation accuracy of
OCT fundus images, providing strong support for its application in medical image watermarking.
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1 Introduction

The application of optical coherence tomography (OCT) images can impact the privacy of patients
because they record important information about patients with fundus diseases [1]. Watermarks
can provide reliable and secure copyright protection for OCT fundus images [2,3]. Moreover, image
segmentation, an essential computer-aided diagnosis technology, has extensive applications and
research value in medical image processing [4]. Image segmentation can extract regions of interest and
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measure the size, volume, or capacity of organs, tissues, and lesions, enabling 3D reconstruction and
visualization of medical images [5]. Therefore, effective image segmentation is helpful for promoting
OCT image watermarking.

Deep learning is an efficient method for data analysis [6,7]. Jiang et al. addressed the reliability
concerns of zeroing neural networks using a robust neural dynamic model [8]. Wu et al. developed an
unsupervised generative adversarial network to effectively fuse panchromatic and multispectral images
[9]. Recently, deep learning technology has attracted much attention in medical image segmentation
owing to its success in vision applications [10–13]. Kepp et al. used the convolutional neural network
(CNN) to produce robust and topologically correct retinal segmentation [14]. Masood et al. used
deep learning and morphological operations to accurately segment the choroid layer and Bruch’s
membrane [15].

Although deep learning technology can improve the efficiency of segmentation, it still faces
performance bottlenecks caused by poor data quality [16,17]. Feature discretization is an effective
image preprocessing technology [18]. It can convert continuous attributes in OCT images into discrete
attributes, weakening the negative effects of low-quality data. Moreover, feature discretization can
analyze incomplete data [19]. Therefore, feature discretization is a feasible scheme to raise the accuracy
of segmentation methods based on deep learning technology.

Current mainstream discretization methods are based on information entropy [20], class-attribute
correlation [21], Chi-square [22], and rough sets [18]. Rough sets can mine important knowledge
through quantifying the uncertainty of data. Phophalia et al. used rough set theory to denoise
Magnetic Resonance Imaging (MRI) data [23]. Huang et al. utilized rough sets to enhance the
overall performance of the denoising algorithms [24]. Chen et al. combined rough sets and fuzzy
sets to discretize mixed pixels [18]. The rough-set-based discretization methods can adapt to most
application scenarios because they do not need prior knowledge. However, the optimal discretization
of continuous attributes is an NP-hard problem [25]. Swarm intelligence algorithms are often used to
solve such problems [26]. The genetic algorithm (GA), an efficient global optimization algorithm, has
the characteristic of parallelism and is independent of gradient calculation [27]. It has been shown to
have clear advantages in solving discretization problems [25].

OCT images have a lot of low-quality data, which seriously affects the performance of segmen-
tation methods. In addition, there is a lack of expert knowledge in the medical field. To this end,
we propose an effective segmentation method for OCT fundus image watermarking using a rough
convolutional neural network (RCNN). Our work is as follows:

• We design the rough-set-based feature discretization module to preprocess the input data;

• We add a dual attention mechanism for feature channels and spatial regions in the CNN,
enabling the model to adaptively select important information for fusion;

• We add the refinement module to enhance the extraction power of multi-scale information,
improving the edge accuracy in segmentation.

We compare RCNN with the mainstream OCT fundus image segmentation algorithms. Experi-
ments show that RCNN can weaken the negative effects of low-quality data in OCT fundus images
without any prior knowledge and can accurately segment lesions, which provides strong support for
its application in medical image watermarking.

The remaining part of this article is arranged as follows: the relevant concepts are introduced
in Section 2; Section 3 demonstrates our method; Section 4 analyzes and discusses the experimental
results; and Section 5 concludes the whole work.
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2 Relevant Concepts

We introduce the basic concepts of an informed decision table and feature discretization and
provide a description of the rough set and the GA. In addition, we illustrate the deep attention
mechanism.

2.1 Information Decision Table
The information decision table is a quadruple S = (U , A, V , f ), where U is a universe, A is an

attribute set containing condition attributes and decision attributes, V is the value ranges of attributes,
and f is a function mapping objects to attribute values [25]. The information decision table can be used
to describe the segmentation problem about OCT fundus images. U is the set of pixels. The brightness
of the pixel corresponds to the condition attribute, and the segmentation category corresponds to the
decision attribute.

2.2 Feature Discretization
Industrial big data contain a lot of noise and redundant information [28–30]. Feature dis-

cretization technology divides continuous features in the data into subintervals associated with a
group of discrete values [18]. Feature discretization can not only greatly reduce the data size but
can also weaken the negative effects of low-quality data, improving the efficiency of medical image
processing. Brightness is a continuous condition attribute of OCT fundus image. The execution
order of discretization algorithm includes top-down and bottom-up. In top-down discretization, the
entire value domain is regarded as an original interval, and the discrete subintervals are obtained by
iteratively splitting intervals. In bottom-up discretization, starting from a series of intervals formed by
all attribute values, discretization result is derived by continuously merging adjacent intervals. Fig. 1
depicts the top-down feature discretization of OCT fundus image. First, all brightness values are
sorted and de-duplicated to generate initial breakpoints. Second, a subset of the initial breakpoint
set is chosen to split intervals according to the adopted discretization criterion, and the temporary
discretization result generated by each breakpoint selection is evaluated. Finally, the discretization
result satisfying the termination condition is output.
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Figure 1: Top-down feature discretization of optical coherence tomography fundus image
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2.3 Rough Sets
Rough set can efficiently deal with the uncertainty information [31]. Rough set uses knowledge

to classify data. Two-tuple K = (U ,R) is regarded as a knowledge base, where R is the cluster of
equivalence relations on U . For x ∈ U , R ∈ R, the equivalence class of x under R is [x]R = {y ∈
U|(x, y) ∈ R}. U/R = {[x]R|x ∈ U} is a quotient set, called knowledge. Let R be a binary equivalence
relation on U , X ⊆ U , where the lower and upper approximations of X with respect to R are given by

R−X = {x ∈ U|[x]R ⊆ X}, (1)

R−X = {x ∈ U|[x]R ∩ X �= ∅}. (2)

The feature discretization based on rough sets evaluates the discretization scheme by the depen-
dence of X with respect to R. The dependence of X with respect to R is given by

γR (X) = |R−X |
|U| , (3)

where | • | is the cardinality of the set, and 0 ≤ γR(X) ≤ 1. When γR(X) → 1, the dependence
of X with respect to R is high, and when γR(X) = 1, X completely depends on R, which means
that the compatibility of the system is not destroyed. γR(X) generally quantifies the effect of feature
discretization on system compatibility. Obviously, rough set can fully exploit the known knowledge
base to model the discretization problem in the absence of prior information.

2.4 GA
GA is a global optimization algorithm [25]. It can achieve satisfactory performance on many

complex optimization problems. Fig. 2 shows the implementation process of GA. First, the parameter
set of the given problem is encoded, and the fitness function is constructed. Individuals with smaller
fitness are more likely to be eliminated in the evolutionary process. Second, the population is initialized,
and the population is evaluated by calculating the fitness function values of all individuals. If the
quality of the contemporary population does not meet the requirements, genetic operations are carried
out to produce the next generation of population. This loops until the termination conditions have
been satisfied. Finally, the solution corresponding to the optimal individual is output.

Determination of the parameter set

Encoding of the parameter set and 
construction of the fitness function

Initialization of population P (t)

Evaluation of population P(t)
1. Decoding of parameters ;
2. Calculation of objective function value s;
3. Mapping of objective function value s to fitness function 
values;
4. Adjustment of fitness function value s.

Three basic genetic operators :
1. Selection
2. Crossover
3. Mutation

Meet the termination 
condition?

Genetic operations

End

Generation of population P (t + 1)

Yes

No

P(t)=P(t+1);

Figure 2: Implementation process of GA
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There are three basic operations in GA: selection, crossover, and mutation. The selection operation
retains the superior individuals with large fitness and eliminates the inferior individuals with small
fitness in the population. In this way, high-quality genes can be inherited by the next generation of the
population. The crossover operation refers to the exchange and recombination of the partial segments
of two paternal chromosomes to produce new chromosomes. The mutation operation refers to the
modification of values at certain loci of a chromosome. GA conducts the above three basic operations
on each generation of the population to optimize the population by simulating the laws of inheritance
and evolution for a biological gene.

To facilitate modeling of the discretization problem, we encode the candidate breakpoint set
through binary encoding. The length of a binary code string is the number of elements in the set
of candidate breakpoints. The value 1 means that the corresponding breakpoint is chosen, while the
value 0 means that the corresponding breakpoint is discarded. The binary code string represents a
discretization scheme.

2.5 Deep Supervised Attention Mechanism
The attention mechanism enables neural networks to focus on important information, thus

improving the learning efficiency of networks [32]. The deep supervised attention mechanism has a
stronger ability to extract important features, as shown in Fig. 3. The rough segmentation map is
formed by deep supervision. The relationship between area objects and pixels is constructed by the
rough segmentation map and the raw input, which attains the mapping of the representation of pixels
to area objects. Then, the representation of pixels with respect to their categories is enhanced by reverse
mapping [33]. This way, the segmentation performance can be optimized.

Raw input
Rough 

segmentation

Pixels Area objectsRelationship

Area objects

Mapping

Representation 
of pixels

Output

Reverse mapping

Figure 3: Working principle of the deep supervised attention mechanism



1554 CMES, 2024, vol.138, no.2

3 OCT Fundus Image Segmentation Based on RCNN

First, we establish the fitness function based on rough sets. We then design the loss function of the
proposed RCNN. Finally, we expound on the flow of RCNN.

3.1 Fitness Function Based on Rough Sets
Let U be the set of pixels in an OCT image, k be the number of segmentation categories, B be the

feature of brightness, and Xi be the set of pixels belonging to the i-th category (1 ≤ i ≤ k). Then, the
average dependence of the sets corresponding to all categories with respect to B is given by

γ = 1
k

k∑

i=1

|B−Xi|
|U| . (4)

The quality of discretization is determined by the average dependence and breakpoints. Assuming
that |D| is the difference between the number of breakpoints obtained by the discretization scheme D
and the number of initial breakpoints, the fitness function is designed as follows:

Fitness = α × |D| + β × γ , (5)

where α and β are weight coefficients (α ≥ 0, β ≥ 0, α + β = 1). The weight coefficients are set
by experimental observations and the characteristics of dataset. |D| determines the magnitude of the
reduction in the number of breakpoints, while γ controls the accuracy of the data. If the value of α is
much larger than that of β, the data accuracy will be extremely low. If the value of α is much smaller
than that of β, the number of breakpoints obtained will be extremely large to fail to achieve the purpose
of discretization. To improve the classification accuracy directly related to the average dependence of
data after discretization, we set β slightly larger than α (α = 0.1, β = 0.9) in the experiment.

3.2 Loss Function
Our main function consists of dice similarity coefficient (DSC) loss LDSC, cross entropy (CE) loss

LCE, and weighted CE loss LW to alleviate the sensitivity of DSC loss to subretinal fluid (SRF) or
missing categories in the retinal edema area. The loss function of RCNN is defined as follows:

LW = −
k∑

i=1

wigi log (pi), (6)

LDSC = 1 − 1
k

k∑

i=1

2gipi + ε

(gi + pi) + ε
, (7)

LCE = −
k∑

i=1

gi log (pi), (8)

Ltotal = κLDSC + γ LCE + λLW , (9)

where k is the number of segmentation categories, gi is the gold standard of the i-th category, pi is
the prediction probability of the i-th category, and wi is the weight of the i-th category. We set ε to
1e-6. κ, γ , and λ are the hyperparameters to balance all loss functions. In the experiment, these three
hyperparameters are set to 1, 1, and 0.5, respectively.

3.3 Framework of RCNN
Our network handles 3D blocks of size 64 × 64 × 64. For each input 3D patch, the network outputs

an SRF probability map of the same size as the input in an end-to-end manner. In the beginning,
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a series of feature maps with different resolutions are extracted. The shallow feature maps contain the
high-resolution details used to accurately delineate the SRF boundary, while the deep feature maps
contain coarse and high-level information, which are helpful in predicting the overall profile of SRF.
Our backbone network uses the residual structure with forward skip connections as the underlying
convolutional module of the segmentation model, which is conducive to the propagation of gradient
information. We add a dual attention mechanism of spatial regions and feature channels in the CNN
and use the refinement module to enhance the extraction power of multi-scale information. The size
of convolution kernel is 3 × 3 × 3. ReLU is chosen as the activation function [34].

Fig. 4 presents the basic framework of RCNN. We add the rough-set-based feature discretization
module to the improved CNN. Discretizing the brightness values of all pixels can eliminate redundant
information and can also weaken the interference of noise. RCNN combines rough sets and the CNN
organically to raise the segmentation accuracy of the network while considering both interpretability
and computational efficiency.
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Figure 4: OCT fundus image segmentation based on RCNN

4 Experiments

We explain the source of experimental data and the experimental platform. We then compare
RCNN with the mainstream segmentation methods and analyze the results.

4.1 Data Source
We use 83 gold standard 3D retinal OCT data with a resolution of 1024 × 512 × 128 for the

experiments. The dataset contains 10624 2D slices with a resolution of 1024 × 512, of which 7680
comprise the training set, 1280 comprise the validation data, and 1664 comprise the test set. OCT
fundus images contain the four types of regions: background, retinal edema area (REA), pigment
epithelium detachment (PED), and SRF, which account for about 38.27%, 61%, 0.03%, and 0.7% of
the total area, respectively.

4.2 Experimental Environment
The experimental equipment is a server with Intel Xeon CPU processor, 16 GB memory, and an

NVIDIA Tesla V100 PCIe GPU (11 GB video memory). The design and testing of the algorithm and
the visualization of the experimental results are implemented in the environment of Python 3.8 [35].
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4.3 Model Setting
The initial learning rate of the network is 1e-3. When the program runs to the 3000th iteration,

the initial learning rate is updated to 0.1 times the current learning rate. When the program runs to the
4500th iteration, the initial learning rate is updated again to 0.1 times the current learning rate. The
batch size is 4. The network stops training after 6000 iterations.

4.4 Segmentation Results
We compare RCNN with two mainstream OCT image segmentation methods, CE-Net [10] and

MultiResUNet [36]. We use DSC, 95 percent Hausdorff distance (95HD), and average symmetric
surface distance (ASD) as evaluation indicators. Table 1 shows the comparison results of segmentation
algorithms.

Table 1: Segmentation evaluation results of RCNN and the two methods

Method DSC↑ 95HD↓ ASD↓
CE-Net 0.84 ± 0.05 1.37 ± 0.78 0.46 ± 0.35
MultiResUNet 0.82 ± 0.07 1.36 ± 0.52 0.42 ± 0.38
RCNN 0.89 ± 0.07 0.92 ± 0.27 0.28 ± 0.13

RCNN is superior to CE-Net and MultiResUNet in all evaluation indicators. The average DSC,
average 95HD, and average ASD obtained by RCNN are 0.89, 0.92, and 0.28, respectively. The average
DSC obtained by CE-Net is second only to RCNN. The average DSC obtained by RCNN is 6%
higher than that of CE-Net. The average 95HD and average ASD obtained by MultiResUNet are
second only to RCNN. The average 95HD and average ASD obtained by RCNN are 32.4% and 33.3%
lower than those of MultiResUNet, respectively. Then, we compare RCNN-based discretization with
information-entropy-based discretization [20], class-attribute correlation-based discretization [21],
and Chi-square-based discretization [22] in terms of the average data inconsistency and the average
number of breakpoints. Table 2 shows the comparison results of discretization algorithms.

Table 2: Discretization evaluation results of the four algorithms

Method Average number of
breakpoints

Average data
inconsistency

Information-entropy-based 167 13
Class-attribute correlation-based 148 16
Chi-square-based 98 20
RCNN-based 79 3

The RCNN-based discretization method obtains the lowest average data inconsistency and the
smallest average number of breakpoints. Table 3 shows the effect of feature discretization.
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Table 3: Effect of feature discretization

Method DSC↑ 95HD↓ ASD↓
UnFD-Net 0.86 ± 0.07 0.94 ± 0.27 0.31 ± 0.13
RCNN 0.89 ± 0.07 0.92 ± 0.27 0.28 ± 0.13

UnFD-Net is an RCNN that does not perform feature discretization. The average DSC obtained
by RCNN is 3.5% higher than that of UnFD-Net. The average 95HD and average ASD obtained
by RCNN are 2.1% and 9.7% lower than those of UnFD-Net, respectively. RCNN significantly
weakens the negative effects of low-quality data by feature discretization to improve the segmentation
performance.

4.5 Hyperparameter Analysis and Ablation Study
In general, the initial learning rate affects the learning efficiency of the network. Table 4 shows

the comparison results of initial learning rates.

Table 4: Segmentation evaluation results of the four initial learning rates

Initial learning rate DSC↑ 95HD↓ ASD↓
0.1 0.9511 0.6724 0.1625
0.01 0.9485 0.6866 0.1713
0.001 0.9586 0.6538 0.1542
0.0001 0.9398 0.6896 0.1795

The segmentation results of the four initial learning rates show little difference, indicating that
RCNN is stable. Table 5 shows the comparison results of Baseline, deep supervision (DS), dual
attention block (DAB), attention refinement block (ARB), and RCNN.

Table 5: Segmentation evaluation results of RCNN and the four models

Model DSC↑ 95HD↓ ASD↓
Baseline 0.76 ± 0.02 1.81 ± 0.50 0.68 ± 0.18
Baseline+DS 0.78 ± 0.05 1.71 ± 0.58 0.67 ± 0.31
Baseline+DAB 079 ± 0.03 1.43 ± 0.37 0.61 ± 0.49
Baseline+ARB 0.85 ± 0.05 1.39 ± 0.63 0.55 ± 0.32
RCNN 0.89 ± 0.07 0.92 ± 0.27 0.28 ± 0.13

Baseline has the lowest average DSC and the highest average 95HD and average ASD. Although
DS has the ability to deal with imbalanced data, its overall segmentation performance is still poor.
The attention mechanism enables DAB and ARB to achieve better segmentation performance than
Baseline and DS. The average DSC obtained by RCNN is 4.7% higher than that of ARB. The
average 95HD and average ASD obtained by RCNN are 33.8% and 49.1% lower than those of ARB,
respectively. Fig. 5 shows the visualization of segmentation results.
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Baseline ARBDS DAB RCNN

Figure 5: Visualization of the ablation experiment

The segmentation effect of Baseline is the worst. DS lacks the ability to extract important features,
which may lead to wrong segmentation results. Although the segmentation results of DAB and ARB
are better than those of Baseline and DS, these two models are still challenging to deal with regions
with boundaries. Obviously, RCNN has the best segmentation effect.

4.6 Discussion
None of CE-Net and MultiResUNet have a special preprocessing module for dealing with

noise and redundant information. Moreover, CE-Net and MultiResUNet have limited capabilities in
capturing important features and multi-scale information. RCNN eliminates redundant information
and weakens the interference of noise by discretizing the brightness attribute. On this basis, RCNN
employs the attention mechanism to improve the feature extraction ability of the network. Therefore,
RCNN can obtain better segmentation result.

5 Conclusion

We have proposed an OCT fundus image segmentation method based on an RCNN. Our work is
as follows: (1) we have designed the rough-set-based feature discretization module to preprocess the
input data; (2) we have added a dual attention mechanism for feature channels and spatial regions
in the CNN, enabling the model to adaptively select important information for fusion; (3) we have
added the refinement module to enhance the extraction power of multi-scale information, improving
the edge accuracy in segmentation. We have compared RCNN with CE-Net and MultiResUNet on
83 gold standard 3D retinal OCT data with a resolution of 1024 × 512 × 128. The average DSC
obtained by RCNN is 6% higher than that of CE-Net. The average 95HD and average ASD obtained
by RCNN are 32.4% and 33.3% lower than those of MultiResUNet, respectively. We have also
evaluated the effect of feature discretization. In addition, we have analyzed the initial learning rate
of RCNN and have conducted ablation experiments with the four different models. The experiments
have shown that RCNN achieves the best segmentation results, which is helpful for promoting OCT
image watermarking.
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Although RCNN has achieved impressive segmentation results, discretization based on rough
sets is difficult to effectively depict the boundaries between different regions. Therefore, our future
work will include (1) introducing fuzzy sets to optimize the feature discretization module of RCNN
to strengthen the anti-noise ability; (2) applying RCNN to more datasets for testing to enhance the
reliability.
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