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ABSTRACT

Failure detection is an essential task in industrial systems for preventing costly downtime and ensuring the seamless
operation of the system. Current industrial processes are getting smarter with the emergence of Industry 4.0.
Specifically, various modernized industrial processes have been equipped with quite a few sensors to collect
process-based data to find faults arising or prevailing in processes along with monitoring the status of processes.
Fault diagnosis of rotating machines serves a main role in the engineering field and industrial production. Due
to the disadvantages of existing fault, diagnosis approaches, which greatly depend on professional experience
and human knowledge, intellectual fault diagnosis based on deep learning (DL) has attracted the researcher’s
interest. DL reaches the desired fault classification and automatic feature learning. Therefore, this article designs a
Gradient Optimizer Algorithm with Hybrid Deep Learning-based Failure Detection and Classification (GOAHDL-
FDC) in the industrial environment. The presented GOAHDL-FDC technique initially applies continuous wavelet
transform (CWT) for preprocessing the actual vibrational signals of the rotating machinery. Next, the residual
network (ResNet18) model was exploited for the extraction of features from the vibration signals which are then
fed into the HDL model for automated fault detection. Finally, the GOA-based hyperparameter tuning is performed
to adjust the parameter values of the HDL model accurately. The experimental result analysis of the GOAHDL-FDC
algorithm takes place using a series of simulations and the experimentation outcomes highlight the better results
of the GOAHDL-FDC technique under different aspects.
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1 Introduction

Industrial system integration and information technology seem to be increasing due to the
tremendous growth of advanced industry, highly reliable systems and components are the assurance
for the safe operation of aerospace [1]. Hidden aviation faults might result in catastrophic actions of
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aviation machinery. Since the building blocks of aircraft engines, space shuttles, and other rotating
machines, the mechanical transmission technique is inclined to different faults under harsh operating,
heavy load conditions, and high speed for a longer time directly affects the safe operation of
the mechanical technique [2]. The rotating machinery denoted by aviation equipment has gained
popularity among researcher workers. Earlier fault diagnosis and detection (FD) techniques could
forecast the fault growth trend that had a main role in preventing mechanical engineering transmission
system faults [3]. Thus, every industry attaches considerable attention to the intelligent FD technique
on rotating machinery to prevent the existence of succeeding major accidents caused by minor faults
[4]. FD of rotating machinery is a method of FD, identification, and isolation that is employed on the
data about the operational condition of the equipment. There are three fundamental tasks of FD: (1)
find the incipient failure and its reason; (2) forecast the trend of fault growth; (3) determine whether
the equipment is normal or not [5]. Thus, essentially, FD is considered a pattern recognition problem
with respect to the rotating machinery condition.

As a robust pattern recognition method, artificial intelligence (AI) has gained popularity among
several researcher workers and shows efficacy in rotating machinery FD applications [6]. Because
of the richness and variability of the response signal, it is not possible to directly identify fault
patterns. Thus, a typical FD technique often involves two main stages: fault recognition, and data
processing (feature extraction) [7]. The most common intelligent FD system is constructed by using
the preprocessing by feature extraction algorithm to convert the input pattern such that they can be
denoted by low-dimension feature vectors for easy comparison and match [8]. Several AI techniques
or tools were applied involving convex optimization, and mathematical optimization, along with
probability-, classification- and statistical learning-based techniques [9]. Especially, statistical learning
methods and classifiers were extensively exploited in FD of rotating machinery, which involves support
vector machine (SVM), artificial neural network (ANN), k-nearest neighbor (KNN), and Bayesian
classifier. Previously, deep learning (DL) methods have begun to be employed in the field of FD [10].
Based on the modern advances in DL algorithm, most of the AI technology lack of explainability traits
and they need a massive amount of data labeled for fault and normal conditions, drastically limiting
the industrial applications.

The motivation behind the proposed model is to bring advancements in industrial processes
through sensor-based data collection for monitoring and fault detection. However, traditional fault
diagnosis approaches still rely on human expertise and have limitations in accuracy and scalability.
Therefore, there is a need for novel approaches that leverage the power of advanced technologies such
as deep learning and optimization algorithms to improve fault diagnosis in the industrial environment.

The following are the contributions, and it is included in the introduction section:

In this article, we present a novel approach called the Gradient Optimizer Algorithm with
Hybrid Deep Learning-based Failure Detection and Classification (GOAHDL-FDC) for accurate
fault detection and classification in the industrial environment. Our approach combines several
existing theoretical knowledge and techniques, including Continuous Wavelet Transform (CWT),
Residual Network (ResNet18) model, Hybrid Deep Learning (HDL), and Gravitational Optimization
Algorithm (GOA), in a unique and synergistic way to overcome the limitations of existing fault
diagnosis approaches. The contributions of this work can be summarized as follows:

Design of GOAHDL-FDC technique: We propose a novel technique that integrates CWT for
preprocessing, ResNet18 for feature extraction, HDL for automated fault detection, and GOA for
hyperparameter tuning. This unique combination of techniques aims to improve the accuracy and
effectiveness of fault detection and classification in the industrial environment.



CMES, 2024, vol.138, no.2 1343

Addressing limitations of existing approaches: Our GOAHDL-FDC technique is designed to over-
come the limitations of traditional fault diagnosis approaches that rely on human expertise, may lack
scalability, incomplete feature extraction, limited hyperparameter tuning, and insufficient utilization
of optimization techniques. By leveraging advanced deep learning and optimization techniques, our
approach aims to provide a more accurate and scalable solution for fault diagnosis in the industrial
environment.

Experimental result analysis: We conduct a series of simulations and experiments to evaluate the
performance of the GOAHDL-FDC technique. The outcomes of the experimentation highlight the
effectiveness and superiority of our approach compared to existing methods, showcasing the potential
of our proposed approach for modern data-driven applications in Industry 4.0.

This article designs a Gradient Optimizer technique with Hybrid Deep Learning-based Fail-
ure Detection and Classification (GOAHDL-FDC) in the industrial environment. The presented
GOAHDL-FDC technique initially applies continuous wavelet transform (CWT) to preprocess the
actual vibrational signals of the rotating machinery. Next, the residual network (ResNet18) method
was used for the extraction of features from the vibration signals, which are then fed into the HDL
model for automated fault detection. Finally, the GOA based hyper parameter tuning process was
performed to adjust the parameter values of the HDL model accurately. The experimental validation
of the GOAHDL-FDC approach is carried out using a series of simulations.

2 Literature Review

Zhao et al. [11] proposed a novel FD technique by using Local-Global DNN (LGDNN)
algorithm. Initially, this FD method could directly apply the presented technique for extracting global
and local structural features from the original vibration spectral signal. Then, the highest level feature
which is extracted was employed for classifying the different fault conditions based on the Softmax
classifier. Li et al. [12] developed a DL-related domain generalization technique for FD machinery.
The presented method is adopted for expanding the presented data. Domain adversarial training
was performed, and generalized features are learned from distinct domains that hold in new working
scenarios without considering the availability of the testing dataset. Also, distance metric learning is
utilized for further enhancing the robustness of the model in fault classification.

Gong et al. [13] introduced a novel CNN-SVM technique. This technique enhances the traditional
CNN architecture by presenting the global average pooling technique and SVM. Initially, the spatial
and temporal multi-channel raw information from different sensors was inputted directly towards
the enhanced CNN-Softmax architecture for training the CNN technique. Next, the enhanced CNN
is applied to the extra representation feature from the raw fault information. Lastly, the derived
sparse representation feature vector was inputted into SVM for the classification of the fault. In
[14], an innovative technique grounded on RNN was developed for identifying the type of fault in
rotating machinery. Next, GRU is proposed for exploiting temporal data of time-series datasets and
learning representation features from built images. Finally, an MLP is applied for implementing FD.
Yongbo et al. [15] designed a FD technique with CNN for InfRared Thermal (IRT) images. Initially,
the IRT method is applied to capture the IRT images of rotating machinery. Next, the CNN is exploited
for extracting fault features from the IRT image. Lastly, the attained feature was given into the Softmax
Regression (SR) classifiers for fault pattern detection.

Surendran et al. [16] proposed an Intelligent Industrial FD with Sailfish Optimized Incep-
tion using Residual Network (IIFD-SOIR). The presented method exploits a Continuous Wavelet
Transform (CWT) for pre-processed representation of the original vibration signal. Additionally,
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the parameter tuning of Inception including the ResNet v2 method is implemented by the sailfish
optimizers. Lastly, an MLP is exploited as a classification method for proficiently diagnosing the fault.
Liu et al. [17] devised a technique integrating a 1D-CNN and 1D denoising convolutional autoencoder
(DCAE) for addressing these problems, where the initial one is applied for the noise reduction of raw
vibration signal and the next one is applied for FD using the denoised signal.

The study by [18] presented a novel approach for analyzing the random vibration of bridges under
the influence of vehicle dynamic interaction. The authors propose a Bayesian deep learning approach,
which combines deep learning techniques with Bayesian inference, to accurately predict the response
of bridges to random vibrations caused by vehicles. The proposed approach takes into account the
uncertainties associated with bridge parameters, vehicle loadings, and environmental conditions, and
provides probabilistic predictions of bridge responses, which are crucial for ensuring the safety and
reliability of bridges. The study addresses a critical issue in the field of bridge engineering, as the
dynamic interaction between bridges and vehicles can cause significant vibrations that can potentially
lead to structural damage or failure. By incorporating Bayesian inference into deep learning, the
proposed approach provides a probabilistic framework that captures the uncertainties in the analysis,
making it more robust and reliable compared to traditional deterministic methods.

By observing the following are the shortcomings of the existing approaches: Reliance on human
expertise: Traditional fault diagnosis approaches in the industrial environment heavily depend on
professional experience and human knowledge, which may result in subjective and less accurate results.
Lack of scalability: Existing methods may not be scalable enough to handle large amounts of data
from modern industrial processes equipped with numerous sensors, leading to limitations in real-time
or near-real-time fault detection and classification.

Incomplete feature extraction: Feature extraction, which is crucial for accurate fault diagnosis,
may not be optimized in existing methods, leading to suboptimal performance.

Limited hyperparameter tuning: Hyperparameters of deep learning models used for fault diag-
nosis may not be properly tuned, leading to suboptimal model performance and limited accuracy.
Insufficient utilization of optimization techniques: Existing approaches may not fully utilize advanced
optimization techniques for hyperparameter tuning, leading to suboptimal performance of the deep
learning models.

The proposed approach in the title aims to address these limitations by introducing a novel
gradient optimizer algorithm and leveraging hybrid deep learning techniques, with a focus on
improving fault diagnosis in the industrial environment. The proposed method was trained by the
noisy input for denoising learning. In this proposed method, a global average pooling layer, rather
than an FC layer is exploited as a classifier for reducing the risk of overfitting and the amount of
parameters.

3 The Proposed Model

In this article, we have focused on the design of the GOAHDL-FDC technique for accurate failure
detection and classification in the industrial environment. The presented GOAHDL-FDC technique
encompasses a series of operations such as CWT-based preprocessing, ResNet feature extraction,
HDL-based failure detection, and GOA-related hyperparameter tuning.

In this article, the design of the GOAHDL-FDC technique for accurate failure detection and
classification in the industrial environment is focused and the following reasons, the proposed model
overcomes the existing model.
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“Gradient Optimizer Algorithm”: The proposed algorithm incorporates a gradient optimizer,
specifically the Gravitational Optimization Algorithm (GOA), for hyperparameter tuning of the
Hybrid Deep Learning (HDL) model. This introduces a new optimization approach for improving
the performance of the HDL model in the context of failure detection and classification in industrial
systems.

“Hybrid Deep Learning-based Failure Detection and Classification”: The proposed approach
combines the power of deep learning techniques, specifically the continuous wavelet transform (CWT)
for preprocessing and a residual network (ResNet18) model for feature extraction, with the GOA-
based hyperparameter tuning. This hybrid approach brings together different deep-learning compo-
nents to create a novel solution for failure detection and classification in the industrial environment.

“Improved Fault Diagnosis in an industrial environment”: The proposed approach is specifically
designed for the context of Industry 4.0, which refers to the modernization and digitization of
industrial processes. By leveraging deep learning and optimization techniques, the proposed approach
aims to improve fault diagnosis in industrial systems, addressing the limitations of existing approaches
that rely heavily on human expertise and knowledge. Overall, the title highlights the novelty of the
proposed approach, which combines a gradient optimizer algorithm, hybrid deep learning techniques,
and a focus on Industry 4.0 for improved failure detection and classification in the industrial
environment. Fig. 1 represents the overall process of GOAHDL-FDC method.

3.1 Data Preprocessing and Feature Extraction
Rotating machinery is a process of several rotating speeds and loads. In order to execute fault

detection in any working conditions, the vibration signal from machine in complete speed range and
load was crucial to gain for training it [19]. Primarily, the vibration signal was get together in rotating
speed database. Specially, the rotating speed from trained case is considered that constant as it could
be together once the machinery is constant working method. The CWT maintains and creates the
localization proposal of STFT. The CWT of signal x(t) was defined as convolution of signals x(t)
exploiting wavelet function �a,b(t). In this process, the CWT has been executed for decomposing the
data in scale 1 to l, but l signifies the usually superior or equivalent to, 2q:

Ca (k) =
∫

x (t) · �a,b (t) dt (1)

whereas Ca(a = 1, 2, 3, . . . , l) signifies the wavelet coefficient of x(t) in ath scale and �a,b(t) denotes the
difficult conjugate. The CWT creates the coefficient on many signal portions in scaling element. Using
the wavelet coefficient, a signal in time frequency domain can be directly presented by 2-D images. The
graph of wavelet coefficient creates the CWTS.

Attaining every wavelet coefficient in matrix P = [C1, C2, . . . , Cl], it could be altered to gray matrix
Pnew as:

Pnew(i, j) =
[

P (i, j) − pmin

pmax − pmin

× 255 + 1
2

]
(2)

In which pmin and pmax defines the minimal and maximal components of P correspondingly. The
value of modules in Pnew signifies the gray value in the range of [0–255]. Thus, Pnew determines the
CWTS of novel signals.



1346 CMES, 2024, vol.138, no.2

Figure 1: Overall process of GOAHDL-FDC approach

Then, the features are extracted by the use of ResNet-18 model. ResNet is a CNN that removes
particular layers in the network using skip connection. The skip connection decreases the training time
and helps to resolve the challenges of gradient disappearing in the CNN. The nonlinear activation
function is applied between the skipped layers. Also, BN function is used between the shortcut
connections. A weight matrix is applied which evaluates the weight of jump connection. In the later
stage of the network, the expansion is applied, afterward learning the feature of the input. Many
instances of the residual block are applied all over the network. The mapping from χ → f (x) is
learned in this CNN. In the central block of the ResNet, the mapping can be performed by an FFNN
model which contains shortcut connection named skip or jump connection, viz., χ → f (x) + g(x).
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The function g(x) is an identity connection if the dimensions matches the input and output, otherwise,
zero padding is applied.

In the network, the resultant residual blocks for the stacked layer with a similar dimension are
provided using Eq. (3).

y = f (x, {Wi}) + x (3)

During the training, the function f (x, {Wi}) characterizes the convolutional layer mapping that
is learned. The ResNet18 CNN presented, exploits the filters of 3 × 3 size having stride of 1, the
vanpooling layer has filter of 1 × 1 size and at the end, one FC layer is applied. This can be followed
by the last SoftMax layer for the classification. The network encompasses an overall 17 convolution
layers with one FC layer at the end that can be reshaped to extract 1000 features.

3.2 Failure Detection Using HDL Model
In this work, the HDL model is applied to the failure detection process in rotating machinery [20].

LSTM mechanism on the backpropagation (BP) rule as it should compute gradients for the procedure
optimizer. Its variations are weighted based on the rate of errors it computes at every cell level. LSTM
is accomplished sufficient for learning long-term dependencies over a long time utilizing its memory
unit. The main element of LSTM is the cell state. It goes straight down the whole time steps with
only minor however vital connections. LSTM is remove or adds data in the cell state utilizing many
gates. All the gates develop a sigmoid NN layer. These sigmoid layers create output numbers between
zero and one, which signifies that several data of all the components are supposed to be allowed. 0
represents nothing with the layers but 1 implies letting everything with 3 layers out of four are utilized
for controlling the cell state tanh.

Assume the subsequent diagram for understanding the LSTM structure. LSTM contains 3
functions gates are:

• Forget gate ft resolves which part of long-term state Ct also, be omitted.

• Input gate it manages that part of Ct suppose to be additional to long-term state ct.

• Output gate Ot defines that part of Ct also needs that read and Output to ht and O.

whereas, xt refers the input as LSTM cell, ht−1 defines the resultant of preceding cell and ct−1 signifies
the cell state which is received by current cell. It supports the predictive of current cells. The primary
gate is the forget gate, the formula is under:

fT = σ
(
Wf . [ht−12xt] + bf

)
(4)

The sigmoid of multiplication of the input additional with bias value occurred. This layer supports
returning zero and one if it is require this data from predictive or not. The next gate is input gate, assume
the under declared formula.

it = σ
(
Wi. [ht−1,xt] + bi

)
(5)

C̃t = tanh (Wc. [ht−1−12xt] + bc) (6)

Ct = fT ∗ Ct−1 + it ∗ C̃t (7)

A primary part of input layer formula is like the formula of forget gate, rather than being the
weight and bias. It endures a sigmoid function. During the next 2 formulas, it manages that part to



1348 CMES, 2024, vol.138, no.2

add a cell state utilizing tanh function. The final step is to define that values are scheme will offer as the
output. The output dependent upon cell state but sifted edition of it. Primary the sigmoid layer selects
that parts of cell states are established as output. Afterward, at that point the cell state accomplishes
the tanh function for changing the qualities among −1 and 1, the outcome of which is them multiplied
with sigmoid layers output for obtaining the result. The mathematical formulas for this stage are:

ot = σ
(
Wo. [ht−1,xt] + bo

)
(8)

ht = ot ∗ tanh (Ct) (9)

GRU is considered the variant of LSTM. It contains 3 sigmoid layers as tanh layer, update gate,
and reset gate. Assume the attached diagram to optimum realizes the formulas. The GRU utilizes the
reset and update gates for vanishing gradient issues and these support in determining the outcome. A
primary point of this technique was update gate. Initially, the subsequent equation computes update
gate zt at time interval t:

zt = σ
(
W (z)xt + ht−1

)
(10)

whereas xt is additional to product ht−1 and it is weighted. Then, a sigmoid function normalization the
outcome among zero and one. It defines the required count of past data to pass beside for the future
time step with support of update gates. The subsequent formula calculates reset gate rt, at time step t:

rt = σ
(
W (r)xt + ht−1

)
(11)

Computation begins if xt is additional to product ht−1 and it is weighted. Afterward, the sigmoid
function was exploited to alteration on the output among the range of zero and one. The reset gate
supports the model with determining the count of past data must be ignored. It can be involved the
reset gate. It starts with offering another memory content which is employ the reset gate and save the
vital information from the previously time.

h′
t = tanh (Wxt + rt � ht−1) (12)

The estimate starts with augmentation of data xt with its weighted. Afterward the element-wise
multiplication was completed to reset gate rt and the showing outcome ht−1. After that, at that moment
both defined results can be added together, and tanh function was executed. Finally, the unit requires
to figure the ht vector that retains data for current unit, and it permits the data more down to network.
The update gate zt considers a crucial part.

ht = zt � ht−1 + (1 − zt) � h′
t (13)

From the calculation, once the vector zt is nearby 0, an important piece of present substance is
disregarded as it is insignificant for predicting. At the same time, as zt shall be closer to 0 right now
step, 1 − zt is nearby 1, allowing one of the past data that retained.

Considering the technique from left to right. The method composed of LSTM layers, bidirectional
layers, GRU layers considered feed-forward, to better train and predict the price values and electrical
load precisely. LSTM layer is the input normalized features presented to the first layer and training
inputted features in feed-forward way. GRU layer is applicable in the bidirectional layer. Initially,
it goes through training in feed-forward manner than in feed backward manner. The hybrid layer
comprising layers of LSTM and GRU in a given manner is enriching the predictions accuracy of the
predictive techniques. A dropout layer to avoid overfitting, followed by a bidirectional GRU layer,
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follows the LSTM Layer. From all input neurons, the dense layer which is connected deeply receives
the output.

3.3 Hyperparameter Tuning Using GOA
Finally, the GOA based hyperparameter tuning process was performed to adjust the parameter

values of the HDL model accurately. GOA is the newly developed algorithm that has two mechanisms:
local escaping operator and gradient search rule [21]. Fig. 2 illustrates the flowchart of GOA.

Figure 2: Flowchart of GOA

3.4 Gradient Search Rule
During the optimization process, the presented GSR assist the GOA to represent the random

behaviour, which promotes exploration and escaping local optimum. The direction of movement (DM)
has been utilized to construct an appropriate local search tendency for promoting the convergence
rate of the GOA technique. The subsequent expression is used for updating the location of the present
vector (xm

n ) based on the GSR and DM:

X1m
n = xm

n − randn × ρ1 × 2�x × xm
n

(xworst − xbest + ε)
+ rand × ρ2 × (

xbest − xm
n

)
(14)

In Eq. (14), ρ1 and ρ2 are shown below:

ρ1 = 2 × rand × α − α (15)

α =
∣∣∣∣β × sin

(
3π

2
+ sin

(
β × 3π

2

))∣∣∣∣ (16)

β = βmin + (βmax − βmin) ×
(

1 −
( m

M

)3
)2

(17)

ρ2 = 2 × rand × α − α (18)
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where m denotes the amount of iterations, randn is a random number distributed normally, ε denotes
a smaller number within [0, 0.1] , βmin and βmax are 0.2 and 1.2, correspondingly, and M indicates the
overall amount of iterations.

�x = rand (1: N) × |step| (19)

step = (xbest − xm
r1) + δ

2
(20)

δ = 2 × rand ×
(∣∣∣∣xm

r1 + xm
r2 + xm

r3 + xm
r4

4
− xm

n

∣∣∣∣) (21)

where r1, r2, r3, and r4 (r1 �= r2 �= r3 �= r4 �= n) indicate diverse integers randomly selected from
[1, N], step denotes a step size that can be represented as xbest and xm

r1 and rand (1: N) denotes a
randomly generated value with N dimensions.

The novel vector (X2m
n ) is generated by Eq. (22) by replacing the location of the better vector (xbest)

with the existing vector (xm
n ) in the above mentioned formula:

X2m
n = xbest − randn × ρ1 × 2�x × xm

n(
ypm

n − yqm
n + ε

) + rand × ρ2 × (
xm

r1 − xm
r2

)
(22)

where

ypn = rand ×
(

[zn+1 + xn]
2

+ rand × �x
)

(23)

yqn = rand ×
(

[zn+1 + xn]
2

− rand × �x
)

(24)

The newly generated solution at the following iteration (xm+1
n ) is formulated according to the

position X1m
n , X2m

n , and the existing location (X m
n ), as follows:

xm+1
n = ra × (

rb × X1m
n + (1 − rb) × X2m

n

) + (1 − ra) × X3m
n (25)

X3m
n = X m

n − ρ1 × (
X2m

n − X1m
n

)
(26)

3.5 Local Escaping Operator
A local escaping operator (LEO) is proposed for increasing the efficacy of GOA. The LEO

generates a solution with better performance (X m
LEO) based on different solutions that has better

location (xbest), the solutions X1m
n and X2m

n , two random solutions xm
r1 and xm

r2, and a novel randomly
generated solution (xm

k ):

Algorithm 1: Pseudocode of LEO
If rand < pr
X m

LEO = X m+1
n + f1 × (u1 × xbest − u2 × xm

k ) + f2 × ρ1 × (u3 × (X2m
n − X1m

n ) + u2 × (xm
r1 − xm

r2))/2
X m+1

n = X m
LEO

else
X m

LEO = xbest + f1 × (u1 × xbest − u2 × xm
k ) + f2 × ρ1 × (u3 × (X2m

n − X1m
n ) + u2 × (xm

r1 − xm
r2))/2

X m+1
n = X m

LEO

end
end
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where pr denotes the probability, u1, u2, and u3 indicate three random numbers that are shown below f1

denotes a randomly generated number within [1, 1], and f2 denotes a randomly generated value from
a uniform distribution within [0, 1]:

u1 = L1 × 2 × rand + (1 − L1) (27)

u2 = L1 × rand + (1 − L1) (28)

u3 = L1 × rand + (1 − L1) (29)

If parameter μ1 is lesser than 0.5, the value of L1 is 1, or else it is zero. L1 indicate the binary
parameter within [0, 1]. To determine the solution xm

k , the succeeding method is proposed:

xm
k =

{
xrand if μ2 < 0.5
xm

p otherwise
(30)

xrand = Xmin + rand (0, 1) × (xmax − Xmin) (31)

where xm
p represent a randomly chosen solution of the population (p ∈ [1, 2, . . . , N, xrand indicates a

new solution, and μ2 indicates a random integer within [0, 1].

xm
k = L2 × xm

p + (1 − L2) × xrand (32)

In Eq. (32), if μ2 is lesser than 0.5, the value of L2 is 1, or else it is zero. L2 denotes the binary
parameter within [0, 1]. The fitness choice is an essential feature of the GOA technique. The solution
encoded was utilized to improve the aptitude of candidate outcomes. At this time, the accuracy value
is the key condition exploited to plan a fitness function.

Fitness = max (P) (33)

P = TP
TP + FP

(34)

where TP defines the true positive and FP signifies the false positive value.

4 Results and Discussion

The performance of the GOAHDL-FDC technique is experimentally authenticated using auto-
motive gearbox [22] and bearing [23] fault dataset. The previous dataset covers seven classes where the
latter dataset contains 10 classes. The primary dataset has seven different kinds of health statuses, like
three kinds of compound faults (Missing tooth (0.2 mm), Normal, Minor-chipped tooth, and missed
tooth gear fault, outer race-bearing fault, the Missing tooth (2 mm) and minor-chipped gear fault.
The second dataset includes normal along with fault data. The bearing fault has some kinds, like the
Ball faults (BF), Inner race (IF), and Outer race (OF).

In this article, we present the Gradient Optimizer Algorithm with Hybrid Deep Learning-based
Failure Detection and Classification (GOAHDL-FDC) for accurate fault detection and classification
in the industrial environment. To ensure a fair comparison with existing methods, we have carefully
designed the experimental setup, including the selection of hyperparameters, the number of repeated
experiments, and the evaluation of stability and complexity of our proposed model.
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Experimental Setup:

Hyperparameter tuning: We utilize the Gravitational Optimization Algorithm (GOA) for hyper-
parameter tuning of the HDL model in our GOAHDL-FDC technique. The hyperparameters, such
as learning rate, batch size, and number of hidden layers, are carefully selected based on empirical
studies and domain expertise. We conduct a systematic search over a range of hyperparameter values
to optimize the performance of our model.

Number of repeated experiments: To ensure the robustness and reliability of our results, we con-
duct multiple repeated experiments with different random seeds. The number of repeated experiments
is determined based on statistical considerations and typically ranges from 5 to 10, depending on the
complexity of the dataset and the computational resources available.

Evaluation of stability and complexity: To assess the stability of our proposed model, we calculate
the standard deviation of accuracy for the repeated experiments. A lower standard deviation indicates
higher stability and consistency in the performance of our model. Additionally, we evaluate the
complexity of our model in terms of time-consuming. We measure the runtime of our GOAHDL-
FDC technique for different datasets and compare it with existing methods to assess its computational
efficiency.

In Table 1 and Fig. 3, the experimental results of the GOAHDL-FDC approach are studied under
70:30 of TRP/TSP of gearbox dataset. The average result analysis reported that the GOAHDL-FDC
technique identifies all kinds of faults in the gearbox dataset. For instance, with 70% of TRP, the
GOAHDL-FDC technique attains average accuy of 99.01%, precn of 96.67%, recal of 96.59%, Fscore of
96.60%, and MCC of 96.04%. Besides, with 30% of TSP, the GOAHDL-FDC method reaches average
accuy of 98.78%, precn of 95.67%, recal of 95.90%, Fscore of 95.72%, and MCC of 95.05%.

Table 1: Classifier outcome of GOAHDL-FDC approach with 70:30 of TRP/TSP under gearbox
dataset

Class Accuy Precn Recal Fscore MCC

Training phase (70%)
Class-0 100.00 100.00 100.00 100.00 100.00
Class-1 99.39 98.51 97.06 97.78 97.43
Class-2 98.57 96.97 92.75 94.81 94.02
Class-3 99.18 98.65 96.05 97.33 96.86
Class-4 98.37 92.11 97.22 94.59 93.68
Class-5 98.57 95.77 94.44 95.10 94.27
Class-6 98.98 94.67 98.61 96.60 96.03
Average 99.01 96.67 96.59 96.60 96.04

Testing phase (30%)
Class-0 98.10 97.30 92.31 94.74 93.62
Class-1 99.05 96.88 96.88 96.88 96.31
Class-2 99.05 93.94 100.00 96.88 96.38
Class-3 99.05 92.31 100.00 96.00 95.56
Class-4 99.05 96.43 96.43 96.43 95.88
Class-5 99.05 100.00 92.86 96.30 95.84

(Continued)
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Table 1 (continued)

Class Accuy Precn Recal Fscore MCC

Class-6 98.10 92.86 92.86 92.86 91.76
Average 98.78 95.67 95.90 95.72 95.05

Figure 3: Average outcome of GOAHDL-FDC approach with 70:30 of TRP/TSP under gearbox
dataset

In Table 2 and Fig. 4, the experimental results of the GOAHDL-FDC approach are studied under
80:20 of TRP/TSP of gearbox dataset. The average result analysis stated that the GOAHDL-FDC
technique identifies all kinds of faults in the gearbox dataset. For example, with 80% of TRP, the
GOAHDL-FDC technique attains average accuy of 98.83%, precn of 95.90%, recal of 95.93%, Fscore of
95.90%, and MCC of 95.22%. Further, with 20% of TSP, the GOAHDL-FDC method attains average
accuy of 98.37%, precn of 94.53%, recal of 94.17%, Fscore of 94.28%, and MCC of 93.37%.

Table 2: Classifier outcome of GOAHDL-FDC approach with 80:20 of TRP/TSP under gearbox
dataset

Class Accuy Precn Recal Fscore MCC

Training phase (80%)
Class-0 98.57 93.42 95.95 94.67 93.85
Class-1 98.57 95.12 95.12 95.12 94.29
Class-2 99.11 95.12 98.73 96.89 96.40
Class-3 98.75 96.15 94.94 95.54 94.82
Class-4 98.21 95.06 92.77 93.90 92.87
Class-5 98.75 96.39 95.24 95.81 95.08
Class-6 99.82 100.00 98.73 99.36 99.26
Average 98.83 95.90 95.93 95.90 95.22

(Continued)
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Table 2 (continued)

Class Accuy Precn Recal Fscore MCC

Testing phase (20%)
Class-0 97.86 96.00 92.31 94.12 92.83
Class-1 99.29 100.00 94.44 97.14 96.79
Class-2 97.86 90.91 95.24 93.02 91.79
Class-3 98.57 91.30 100.00 95.45 94.75
Class-4 97.14 88.24 88.24 88.24 86.61
Class-5 99.29 100.00 93.75 96.77 96.44
Class-6 98.57 95.24 95.24 95.24 94.40
Average 98.37 94.53 94.17 94.28 93.37

Figure 4: Average outcome of GOAHDL-FDC approach with 80:20 of TRP/TSP under gearbox
dataset

A brief precision-recall (PR) curve of the GOAHDL-FDC technique is demonstrated on the
Gearbox dataset in Fig. 5. The figure stated that the GOAHDL-FDC approach results in increasing
values of PR. In addition, it is noticeable that the GOAHDL-FDC technique can reach higher PR
values in all classes.

Fig. 6 inspects the accuracy of the GOAHDL-FDC approach during the training and validation
process on Gearbox dataset. The figure specifies that the GOAHDL-FDC technique reaches increas-
ing accuracy values over increasing epochs. As well, the increasing validation accuracy over training
accuracy reveals that the GOAHDL-FDC technique learns efficiently on the Gearbox dataset.

The loss analysis of the GOAHDL-FDC method at the time of training and validation is given
on the Gearbox dataset in Fig. 7. The outcomes indicate that the GOAHDL-FDC technique reaches
closer values of training and validation loss. The GOAHDL-FDC approach learns efficiently on the
Gearbox dataset.
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Figure 5: PR curve of GOAHDL-FDC approach under gearbox dataset

Figure 6: Accuracy curve of GOAHDL-FDC approach under gearbox dataset
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Figure 7: Loss curve of GOAHDL-FDC approach under gearbox dataset

In Table 3 and Fig. 8, the brief experimental results of the GOAHDL-FDC technique is studied
under 70:30 of TRP/TSP of Bearing dataset. The average result analysis reported that the GOAHDL-
FDC technique identifies all kinds of faults in the Bearing dataset. For instance, with 70% of TRP, the
GOAHDL-FDC approach attains average accuy of 98.89%, precn of 94.47%, recal of 94.36%, Fscore of
94.38%, and MCC of 93.78%. Besides, with 30% of TSP, the GOAHDL-FDC method attains average
accuy of 98.73%, precn of 94.12%, recal of 93.64%, Fscore of 93.73%, and MCC of 93.12%.

Table 3: Classifier outcome of GOAHDL-FDC approach with 70:30 of TRP/TSP under Bearing
dataset

Class Accuy Precn Recal Fscore MCC

Training phase (70%)
Class-0 98.29 90.77 90.77 90.77 89.82
Class-1 99.00 94.67 95.95 95.30 94.75
Class-2 98.86 95.38 92.54 93.94 93.32
Class-3 99.00 95.71 94.37 95.04 94.48
Class-4 99.29 95.45 96.92 96.18 95.79
Class-5 98.71 90.54 97.10 93.71 93.06
Class-6 99.00 98.36 90.91 94.49 94.03
Class-7 98.71 92.86 94.20 93.53 92.81
Class-8 99.00 95.89 94.59 95.24 94.68

(Continued)
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Table 3 (continued)

Class Accuy Precn Recal Fscore MCC

Class-9 99.00 95.06 96.25 95.65 95.09
Average 98.89 94.47 94.36 94.38 93.78

Testing phase (30%)
Class-0 99.33 94.59 100.00 97.22 96.89
Class-1 99.00 92.59 96.15 94.34 93.81
Class-2 98.00 90.91 90.91 90.91 89.79
Class-3 99.00 96.43 93.10 94.74 94.20
Class-4 98.33 89.47 97.14 93.15 92.30
Class-5 98.00 90.32 90.32 90.32 89.21
Class-6 98.67 91.67 97.06 94.29 93.58
Class-7 98.67 100.00 87.10 93.10 92.64
Class-8 98.67 100.00 84.62 91.67 91.32
Class-9 99.67 95.24 100.00 97.56 97.42
Average 98.73 94.12 93.64 93.73 93.12

Figure 8: Average outcome of GOAHDL-FDC approach with 70:30 of TRP/TSP under Bearing
dataset

In Table 4 and Fig. 9, the experimental results of the GOAHDL-FDC technique are studied under
80:20 of TRP/TSP of the Bearing dataset. The average result analysis reported that the GOAHDL-
FDC technique identifies all kinds of faults in the Bearing dataset. For instance, with 80% of TRP,
the GOAHDL-FDC technique attains average accuy of 98.97%, precn of 94.91%, recal of 94.88%, Fscore

of 94.87%, and MCC of 94.31%. Besides, with 20% of TSP, the GOAHDL-FDC technique attains
average accuy of 98.70%, precn of 93.88%, recal of 93.32%, Fscore of 93.43%, and MCC of 92.81%.



1358 CMES, 2024, vol.138, no.2

Table 4: Classifier outcome of GOAHDL-FDC approach with 80:20 of TRP/TSP under Bearing
dataset

Class Accuy Precn Recal Fscore MCC

Training phase (80%)

Class-0 98.50 91.46 93.75 92.59 91.77
Class-1 99.12 92.77 98.72 95.65 95.22
Class-2 99.00 92.77 97.47 95.06 94.54
Class-3 98.88 94.87 93.67 94.27 93.65
Class-4 98.75 94.87 92.50 93.67 92.99
Class-5 99.12 97.47 93.90 95.65 95.19
Class-6 99.38 97.56 96.39 96.97 96.62
Class-7 98.88 96.10 92.50 94.27 93.67
Class-8 99.12 96.00 94.74 95.36 94.88
Class-9 99.00 95.18 95.18 95.18 94.62

Average 98.97 94.91 94.88 94.87 94.31

Testing phase (20%)

Class-0 97.00 85.00 85.00 85.00 83.33
Class-1 99.00 91.67 100.00 95.65 95.20
Class-2 99.50 95.45 100.00 97.67 97.43
Class-3 98.00 86.96 95.24 90.91 89.91
Class-4 99.50 100.00 95.00 97.44 97.20
Class-5 99.00 100.00 88.89 94.12 93.77
Class-6 99.00 89.47 100.00 94.44 94.07
Class-7 98.00 94.44 85.00 89.47 88.52
Class-8 99.00 95.83 95.83 95.83 95.27
Class-9 99.00 100.00 88.24 93.75 93.42

Average 98.70 93.88 93.32 93.43 92.81

A brief PR curve of the GOAHDL-FDC technique is illustrated on the Bearing dataset in Fig. 10.
The figure states that the GOAHDL-FDC technique results in increasing values of PR. Also, it is
noticeable that the GOAHDL-FDC approach can reach higher PR values in all classes.

Fig. 11 illustrates the accuracy of the GOAHDL-FDC technique during the training and val-
idation process on Bearing dataset. The figure states that the GOAHDL-FDC technique reaches
increasing accuracy values over increasing epochs. In addition, the increasing validation accuracy over
training accuracy displays that the GOAHDL-FDC approach learns efficiently on the Bearing dataset.

The loss analysis of the GOAHDL-FDC approach at the time of training and validation is
demonstrated on the Bearing dataset in Fig. 12. The figure indicate that the GOAHDL-FDC approach
reaches closer values of training and validation loss. It is observed that the GOAHDL-FDC technique
learns efficiently on the Bearing dataset.
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Figure 9: Average outcome of GOAHDL-FDC approach with 80:20 of TRP/TSP under Bearing
dataset

Figure 10: PR curve of GOAHDL-FDC approach under Bearing dataset
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Figure 11: Accuracy curve of GOAHDL-FDC approach under Bearing dataset

Figure 12: Loss curve of GOAHDL-FDC approach under Bearing dataset
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To highlight the better performance of the GOAHDL-FDC method, a wide range of comparison
studies is made in Table 5 [19]. Fig. 13 assesses the accuy results of the GOAHDL-FDC algorithm with
recent approaches on the gearbox database. The results indicate that the GOAHDL-FDC method
reaches effectual outcome over other ones with higher accuy of 99.01%. Contrastingly, the FFTKNN,
FFTSVM, FFTDBN, FFTSAE, CNN, CNN2, IIFD-SOIR, and SPOAI-FD models accomplish
reduced accuy of 85.26%, 98.54%, 96.66%, 98.64%, 98.35%, 97.91%, 98.27%, and 98.52%, respectively.

Table 5: Accuracy analysis of GOAHDL-FDC method with other systems on two datasets

Accuracy (%)

Method Gearbox dataset Bearing dataset

FFTKNN 85.26 98.03
FFTSVM 98.54 97.09
FFTDBN 96.66 98.35
FFTSAE 98.64 98.11
CNN 98.35 98.24
CNN2 97.91 98.29
IIFD-SOIR 98.27 97.10
SPOAI-FD 98.52 98.39
GOAHDL-FDC 99.01 98.97

Figure 13: Accuracy analysis of GOAHDL-FDC approach under gearbox database

Fig. 14 assesses the accuy results of the GOAHDL-FDC technique with recent methods on the
Bearing databases. The figure indicates that the GOAHDL-FDC technique reaches effectual outcome
over other ones with higher accuy of 98.97%. Contrastingly, the FFTKNN, FFTSVM, FFTDBN,
FFTSAE, CNN, CNN2, IIFD-SOIR, and SPOAI-FD models accomplish reduced accuy of 98.03%,
97.09%, 98.35%, 98.11%, 98.24%, 98.29%, 97.10%, and 98.39%, respectively.

These results highlighted the superior characteristics of the GOAHDL-FDC technique in the
failure detection process.



1362 CMES, 2024, vol.138, no.2

Figure 14: Accuracy analysis of GOAHDL-FDC approach under Bearing database

In this work, a novel approach is proposed that combines a gradient optimizer algorithm with
hybrid deep learning techniques for failure detection and classification in the industrial environment.
The proposed approach utilizes continuous wavelet transform (CWT) for preprocessing, a residual net-
work (ResNet18) model for feature extraction, and the Gravitational Optimization Algorithm (GOA)
for hyperparameter tuning of the Hybrid Deep Learning (HDL) model. The experimental results from
simulations and experiments highlight the effectiveness of the proposed approach in improving fault
diagnosis performance in various aspects. The proposed approach offers a promising paradigm for
modern data-driven applications in the Industrial environment, providing a new direction for further
research in the field of fault diagnosis in industrial systems.

5 Conclusion

In this article, we have focused on the design of the GOAHDL-FDC technique for accurate failure
detection and classification in the industrial environment. The presented GOAHDL-FDC technique
encompasses a series of operations such as CWT-based preprocessing, ResNet feature extraction,
HDL-based failure detection, and GOA-based hyperparameter tuning. The presented GOAHDL-
FDC technique primarily makes use of the CWT approach to preprocess the actual vibrational signals
of the rotating machinery. Next, the ResNet18 model was utilized for the extraction of features from
the vibration signals which are then fed into the HDL model for automated fault detection. Finally, the
GOA-based hyperparameter tuning procedure is performed to adjust the parameter values of the HDL
model accurately. The experimental validation of the GOAHDL-FDC approach is performed using a
series of simulations and the experimentation outcomes highlight the better results of the GOAHDL-
FDC technique under different aspects. In the future, the presented GOAHDL-FDC approach can be
extended to the detection of intrusions in the industrial environment.
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