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ABSTRACT

In this paper, we investigate the energy efficiency maximization for mobile edge computing (MEC) in intelligent
reflecting surface (IRS) assisted unmanned aerial vehicle (UAV) communications. In particular, UAV can collect the
computing tasks of the terrestrial users and transmit the results back to them after computing. We jointly optimize
the users’ transmitted beamforming and uploading ratios, the phase shift matrix of IRS, and the UAV trajectory to
improve the energy efficiency. The formulated optimization problem is highly non-convex and difficult to be solved
directly. Therefore, we decompose the original problem into three sub-problems. We first propose the successive
convex approximation (SCA) based method to design the beamforming of the users and the phase shift matrix
of IRS, and apply the Lagrange dual method to obtain a closed-form expression of the uploading ratios. For the
trajectory optimization, we propose a block coordinate descent (BCD) based method to obtain a local optimal
solution. Finally, we propose the alternating optimization (AO) based overall algorithm and analyzed its complexity
to be equivalent or lower than existing algorithms. Simulation results show the superiority of the proposed method
compared with existing schemes in energy efficiency.

KEYWORDS
Mobile edge computing (MEC); unmanned aerial vehicle (UAV); intelligent reflecting surface (IRS); energy
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1 Introduction

Recently, unmanned aerial vehicle (UAV) technology has aroused widespread concern in industry
and academia [1–3]. The unique advantages of the UAV are its flexibility and mobility [4,5]. The glider
UAV can move to different positions at different time slots, while the rotor UAV can hover at the same
position, which could significantly improve channel gain and thus improve the transmission rate [6–8].

In [9], the authors have done some basic research on the flexibility of UAVs, which can effectively
improve the communication rate when a UAV is used as a base station. The author focuses on the
flexible deployment of UAVs, and can adjust the position of UAVs under different channel conditions
to improve channel gain; In [10], the author considered the mobility of UAVs. When the UAV hovers,
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its energy consumption is a huge expense, and the glider UAV cannot hover. The author designs the
trajectory of the UAV, making full use of the mobility of the UAV.

Intelligent reflector technology is also an emerging technology, which is used to improve the
channel environment and is applied to scenes with poor channel conditions [11,12]. In [13], the authors
combined the IRS technology with the UAV technology and uses the UAV to carry the IRS to further
improve the flexibility of the IRS, thus further improving the communication rate.

With the continuous development of communication technology, the demand for communication
rate is increasing [14,15]. Due to the limitation of Shannon’s information theory, the upper limit of the
communication rate is closely related to the communication bandwidth and the background noise in
the communication [16,7]. Under the existing technical framework, the use of mobile edge computing
technology is undoubtedly an important means to improve the communication user experience in a
new way [17,18].

Mobile edge computing technology transmits the user’s computing tasks to the ECS for comput-
ing [19,20], and then transmits the computing results back. Although the transmission of computing
tasks will increase the communication frequency, the advantage of this is that the computing efficiency
of cloud servers is usually higher than that of local computing [21–23]. The data volume of the
calculation result is much smaller than that of the local calculation. The research on mobile edge
computing has made some progress [24–26]. For example, in [26], two modes of partial unloading and
full unloading were considered, and it is proposed that the total delay of computing can be greatly
reduced under the partial unloading mode.

The research on the combination of mobile edge computing and IRS technology has also
made great progress [27,28]. As a means of channel reconstruction, IRS can effectively reduce the
transmission delay of data, thus reducing the overall delay of mobile edge computing.

In this paper, we consider using UAVs to carry IRS to assist mobile edge computing tasks. The
main contributions of this paper are summarized as follows:

(1) We consider a new paradigm that uses IRS to assist users in mobile edge computing tasks.
Meanwhile, the UAV is applied as a cloud server to improve the efficiency of computing and
transmission.

(2) We propose an original optimization problem. We jointly design the unloading ratio, the phase
shift matrix of the IRS, the flight path of the UAV, and the user’s unloading strategy to minimize the
computing delay.

(3) After relaxing the original optimization problem, we put forward three subproblems, put
forward the results of closed expressions for two subproblems, and transform the other subproblem
into a convex problem to solve.

(4) The simulation results show that the proposed scheme is better than the existing scheme in
terms of energy efficiency.

The rest of the paper is organized as follows: In Section 2, we introduce the system model
and formulate the original problem; In Section 3, we propose the solution to the original problem,
which could be divided into several sub-problem solutions and the AO based algorithm is proposed;
In Section 4, we take a discussion of this paper; In Section 5, we take the simulation results and
Section 6 concludes this paper.
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2 System Model and Problem Formulation

As shown in Fig. 1, the system consists of a UAV, and IRS and several users. All transmission
nodes are equipped with multi-antennas.

Figure 1: System model

If we consider a UAV as a mobile cloud server, its movement is limited by its hardware perfor-
mance. We first obtain the flight speed of the UAV as

v [n] = Q [n] − Q [n − 1]
�T

, (1)

Following the general assumption, we set the channel between the UAV and the ground user as
the LOS link, that is, the channel gain is only related to the distance between the UAV and the ground
user. Specifically, the air-ground channel is modeled as

hk [n] = g0

‖Q [n] − qk‖2
2 + H2

, (2)

where g0 represents the empirical gain of the line-of-sight link at the specified distance (set to 1 m for
simplicity). Let qk represent the physical position of user k, and H represents the fixed flight altitude
of the UAV [29].

We consider that all users are transmitting in the same frequency band. At this time, the data
between different users is not interconnected, and some interference will occur, which is expressed as
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Rk [n] = B�T log

⎛⎜⎝1 + pkhk [n]∑
j �=k

pjhj [n] + σ 2

⎞⎟⎠ , (3)

where pj represents the transmission power of the user j, and j represents the background Gaussian
white noise.

Consider the scenario of partial unloading. We define all tasks of the user k as Dk, and the
local computing part is m, so the available offload part is 1 − m. As in [30], the user’s uninstall task
constraint is∑

n

Rk [n] ≥ (1 − mk) Dk. (4)

In addition, considering the delay between the transmission task and the calculation task, we
define the task amount to be calculated by each timeslot server as W [n], and then we need to define
the following constraints:

n0∑
n=1

Rk [n] ≥
n0∑

n=1

Wk [n]. (5)

When the UAV flight ends, all tasks are processed, namely
N∑

n=1

Rk [n] =
N∑

n=1

Wk [n]. (6)

Since all computing tasks are divided into two parts, the above constraints only restrict the
transmission and computing tasks. For local computing tasks, the following constraints need to be met:

fmaxT ≥ Wk. (7)

In addition, both UAVs and users are subject to power limitations. The user’s power consumption
is divided into two parts. One part is the energy consumption generated in the communication process
when the user sends a task. It can be expressed as

Ek,1 [n] = Pk,1 [n] T , (8)

where Pk,1 is the communication energy consumption of the user k in unit time. It is worth noting
that the communication energy consumption of users is mainly determined by channel gain. When
the distance between the UAV and the user is longer, the user needs to consume more energy and
vice versa. Therefore, air-ground channel gain can not only improve the communication rate but also
reduce the energy consumption of users.

In addition, because some tasks are calculated locally by users, the calculation of tasks will
consume additional energy at this time, expressed as

Ek,2 = Pk,2mk. (9)

Unlike the communication energy consumption of users, the calculation energy consumption of
users is independent of the channel state information but only depends on the local calculation task. In
order to simplify the process, we assume that the energy consumption is linear with the local computing
task share, which has been described in detail in [4].

Further, we consider the energy consumption of UAVs. Similar to the energy consumption of users,
the energy consumption of UAVs consists of the following two parts: (1) the flight energy consumption
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of UAVs; (2) the calculated energy consumption of UAVs. The flight energy consumption of UAV is
expressed by the following formula:

Eu,1 [n] = α1‖v [n]‖2 + α2

‖v [n]‖2

(
1 + ‖a [n]‖2

g2

)
. (10)

Symbol α1, α2, g are all fixed parameters, determined by the UAV structure, and represent the
acceleration of the UAV, expressed by the following expression:
a [n] = v [n] − v [n − 1]

T
. (11)

The calculated energy consumption of the UAV is as follows:

Eu,1=2 [n] = Pu,2mk. (12)

Based on the above energy consumption expression, we can get the energy constraints for users
and UAVs as follows:∑

n

Ek,1 [n] + Ek,2 ≤ Ek,sum, (13)

∑
n

Eu,1 [n] + Eu,2 ≤ Eu,sum. (14)

In this paper, our goal is to maximize the system’s computing power by assigning tasks to mobile
edge computing, UAV flight path, and IRS dependency matrix. At this time, the problem is established
as follows:

max
m,Q,W ,G

∑
n

∑
k

Rk [n]

s.t. 0 ≤ m ≤ 1,∑
n

Ek,1 [n] + Ek,2 ≤ Ek,sum,

∑
n

Eu,1 [n] + Eu,2 ≤ Eu,sum

n0∑
n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk,

v [n] ≤ vmax,

a [n] ≤ amax,

(15)

where vmax and amax respectively represent the maximum instantaneous speed and maximum instan-
taneous acceleration allowed by UAVs. Since the variables of the problem are highly non-convex, we
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use the method of iteratively finding the local optimal solution to solve the original problem in the
subsequent solving process.

3 Proposed Solution

In this section, due to the highly non-convex nature of the original problem, we first introduce
auxiliary variables according to the definition of R as follows:

Rk [n] ≥ BT
N

log
(
1 + κk,n

)
, (16)

we convert rate maximization to rate lower bound maximization, and introduce the following equation:

κk,n = Psk,n

qk,n

, (17)

qk,n = 1
gk,n

. (18)

Note that non-convex variables in the target are converted into a linear format. Then, we deal
with the non-convex form in the condition, mainly including the energy consumption form of UAV.
We introduce new variables as follows [31]:

α1‖v [n]‖2 + α2

‖v [n]‖2

(
1 + ‖a [n]‖2

g2

)
≤ α1‖v [n]‖2 + α2A [n] . (19)

Further, we relax the upper bound of energy consumption into linear representation, and then the
original problem is expressed as

max
m,Q,W ,G

∑
n

∑
k

BT
N

log
(
1 + κk,n

)
s.t. 0 ≤ m ≤ 1,∑

n

Ek,1 [n] + Ek,2 ≤ Ek,sum,

∑
n

Eu,1 [n] + Eu,2 ≤ Eu,sum,

A [n] ≥
(

1 + ‖a [n]‖2

g2

)
,

n0∑
n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk,

v [n] ≤ vmax,

a [n] ≤ amax.

(20)
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It is worth noting that the problem is still non-convex at this time. For this kind of problem, we
use the first-order Taylor expansion method to solve it.

3.1 First-Order Taylor Based Method
In this subsection, we propose the local optimal solution for the beamforming vector and the

phase shift matrix of IRS.

We first introduce the following variables:

f = −∑
n

log
(∑

k

Tr
(
gkgH

k Wr
) + σ 2

n,k

)
,

g = − ∑
n

log
(∑

K\k

Tr
(
gkgH

k Wr
) + σ 2

n,k

)
.

(21)

Further, we define the first order partial derivative as

R (Wk) ≥ R
(
W (j)

k

) +
∑

k

Tr

(
∂R

(
W (j)

k

)
∂Wk

)H (
W (j)

k − Wk

)
, (22)

where

Tr

(
∂R

(
W (j)

k

)
∂Wk

)
= − 1

ln 2

∑
K\k

gkgH
k

Tr
(
gkgH

k W
) + σn,k

. (23)

The local optimal solution of the beamforming vector is thus obtained via CVX toolbox [32].

We then focus on the optimization of the phase shift matrix of IRS. We deal with the form of the
sum of two non-convex terms in the target. It is worth noting that due to the high coupling of variables,
direct derivation is very difficult. We therefore introduce the following inequality:

P

(
1 + ‖w‖2

U 2
p

)
+ m0A‖w‖3 + αv2 [n] ≤ Ev [n] , (24)

which comes from the following triangular inequality:(
a2 + b2

) 1
2 ≤ (a + b) . (25)

According to (24) and (25), we take the alternative definitions as

1
Lk [n]

+ (Lk [n] − Lk [n − 1])
(

− 1
L2

k [n]

)
≥ (fk)

2

Uk

. (26)

Then we transform the numerator and denominator of the problem into convex form. Therefore,
the problem can be transformed into a quasi-convex problem in general.
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max
Q,y,P,f

∑
k

Lk

α
∑

n

E [n] + ∑
k

Ek + χk

,

s.t. yk ≥ ‖q [n] − wk‖2 + H2,

pk ≥ ‖q [n]‖2 + ‖wk‖2,
n0∑

n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk.

(27)

Here, the user beam transmission can be completed by solving multiple second-order convex cone
constraints. However, due to the flexibility of UAV, with the passage of time, UAV needs to maintain
communication with users to exchange information. Therefore, we consider using the distributed
solution as follows.

We use the ADMM method in the following format to solve the above problems:

G =
⎡⎢⎣A1,1 · · · AN,1 B1,1 · · · BN,1

...
. . .

...
...

. . .
...

A1,N · · · AN,N B1,N · · · BN,N

⎤⎥⎦
T

, (28)

where A represents the position of the UAV in each time slot, and B represents the beam vector of
the user in different time slots. The user’s beam will change according to the different position of the
UAV. Then the UAV calculates the energy consumption required for its flight and whether it meets
the constraints of speed and acceleration according to the information in A. If the above constraints
are met, the user beam in B will be further updated. Finally, the updates of A and B will be stable and
meet the constraints of the UAV’s speed and computing ability.

The optimal G should meet the following conditions:[
IN 0
0 �

]
G = [IN, V ] , (29)

where IN refers to a identity matrix with dimension N, and V is an orthogonal matrix.

However, we gradually optimize the composition of G by iteration, and the two sides of the
equation are not fixed matrices, so we can not directly obtain the optimal solution by solving the
inverse of the matrix. We try to reduce the interval of the equation as follows:

� = −
∑

n

∑
k

Rn,k + α

(∑
n

∑
k

Ek [n] +
∑

n

Eup [n]

)

+ Tr
(
UT

(
PTG − H

)) + 1
2

∥∥PTG − H
∥∥2

+ β

2

(
en,k + σ 2

n,k

)2

(30)
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By substituting the expression of � into (27), the problem (27) is then transformed as

max
Q,y,P,f

−
∑

n

∑
k

Rn,k + α

(∑
n

∑
k

Ek [n] +
∑

n

Eup [n]

)

+ Tr
(
UT

(
PTG − H

)) + 1
2

∥∥PTG − H
∥∥2

+ β

2

(
en,k + σ 2

n,k

)2
,

s.t. yk ≥ ‖q [n] − wk‖2 + H2,

pk ≥ ‖q [n]‖2 + ‖wk‖2,
n0∑

n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk.

(31)

According to the constraints in (31), we can obtain the local optimal solution of the n+1 th
iteration according to the results of the n th iteration, so as to realize the distributed solution of the
problem. Specifically,

P(n)

1 = P(n−1)

1 + α1

(
PTG − H

)(n)

P(n)

2 = P(n−1)

2 + α2θ , (32)

where θ is the difference between the preset variable and the actual variable used in the calculation
process, which is calculated by the following:

θ = φ(n) − φ
(n)

. (33)

According to the iterative solution process, we propose an iterative algorithm. By confirming the
maximum iteration number and the minimum iteration interval, the algorithm can achieve the balance
of time complexity and algorithm performance.

Algorithm 3.1: Beamforming design algorithm
Input: Maximum Iterations M1 and M2.
Input: Number of time slot N, Channel state information G, Hk1

and Hk2
and Maximum power Pmax.

Output: Beamforming matrix Wk, covariance matrix G, and shift matrix G,
1: function Beamforming Design
2: Initial Wk = PmaxI and the shift matrix G = I, the index n = 0
3: for n ≤ N do
4: Compute the next state according to the current pk[n]
5: Calculate W(n+1)

k and Pk for given G(n)

(Continued)
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Algorithm 3.1 (continued)
6: n = n + 1
7: end for
8: end function

3.2 Offloading Allocation
For the fixed UAV flight path and user-sending strategy, we optimize the resource unloading

scheme. At this time, the problem is simplified as follows:

max
m,Q,W ,G

∑
n

∑
k

Rk [n]

s.t. 0 ≤ m ≤ 1,∑
n

Ek,1 [n] + Ek,2 ≤ Ek,sum,

∑
n

Eu,1 [n] + Eu,2 ≤ Eu,sum.

(34)

For the resource allocation problem, we first determine it as a convex problem according to its
second derivative. Specifically, the first derivative of the target is
∂Rk [n]
∂mk

= − m−2
k

B log
(

1 + PG
σ 2

) . (35)

Further, its second partial derivative is
∂2Rk [n]
∂2mk

= − 2m−3
k

B log
(

1 + PG
σ 2

) . (36)

The second order partial derivative of the objective is constantly positive, so the objective of the
problem is convex. Further, the problem constraint is linear with respect to m, that is, the problem is
convex.

In order to solve the problem, we simplified the energy constraint into a linear form as follows:

L (β1, β2, mk) =
∑

n

∑
k

⎛⎜⎜⎝ 1

B log
(

1 + PG
σ 2

)
⎞⎟⎟⎠ + β1

∑
k

(
Ek,sum − Eu,sum

) + β2 (1 − m), (37)

At this time, (37) establishes a convex problem. According to Slater condition, we can obtain a
unique optimal solution as follows.

We first calculate the partial derivative of (37) as follows:

∂L (β1, β2, mk)

∂mk

=
∑

n

⎛⎜⎜⎝ 1

B log
(

1 + PG
σ 2

)
⎞⎟⎟⎠ + β1

∑
k

(
Ek,sum − Eu,sum

) − β2. (38)
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Finally, the point where the partial derivative is 0 can be considered as the optimal solution of the
KKT condition as follows:

m∗
k =

√√√√√ 1 + P

B log
(

1 + PG
σ 2

) . (39)

3.3 Trajectory Optimization
In this subsection, we focus on the trajectory optimization for the fixed beamforming vector in

UEs, the phase shift matrix of IRS and the offloading allocation. The original problem is simplified
as follows:

max
m,Q,W ,G

∑
n

∑
k

BT
N

log
(
1 + κk,n

)
s.t.

∑
n

Ek,1 [n] + Ek,2 ≤ Ek,sum,

n0∑
n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk,

v [n] ≤ vmax,

a [n] ≤ amax.

(40)

Note that (40) is non-convex due to the non-convex of the constraints. We introduce the following
variables:
x = {xk [n] , ∀k, n} ,

p = {p [n] , ∀n} ,
(41)

where xk [n] and yk could be obtained via the following consumption:

xk [n] ≥ ‖q [n] − wk‖2 + H2,

yk = 1
N

N∑
n=1

mkBR̃k [n], ∀k.
(42)

We thus obtain the transmission rate as

R̃k [n] = log2

1
p [n] xk [n] + σk

. (43)

By introducing auxiliary variables, we transform the problem into a convex problem. Using SCA
technology, we first established the following:

Q [n] = B log

(
i∑

j=1

pj [n]
∥∥hj [n]

∥∥2

)
. (44)
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Further, we consider the reachability rate with noise and interference, expressed as

Q [n] = B log

(
i−1∑
j=1

pj [n]
∥∥hj [n]

∥∥2 + σ 2

)
. (45)

This means that in order to maximize the use efficiency of computing power at the achievable rate
at the current time, it is necessary to transmit data not less than the sum of current computing power.
This also indicates the physical distance required by the UAV at the current moment.

max
m,Q,W ,G

∑
n

∑
k

BT
N

log
(
1 + κk,n

)
s.t.

∑
n

Ek,1 [n] + Ek,2 ≤ Ek,sum,

n0∑
n=1

Rk [n] ≥
n0∑

n=1

Wk [n],

N∑
n=1

Rk [n] =
N∑

n=1

Wk [n],

∑
n

Rk [n] ≥ (1 − mk) Dk,

v [n] ≤ vmax,

a [n] ≤ amax.

(46)

We can obtain the optimal solution of the problem (46) by means of first-order Taylor expansion.

3.4 Alternate Optimization Algorithm Design
According to the local optimal solution, closed expression and iterative solution obtained in the

above section, we can carry out the local optimal design for the user’s transmitted beam, the user’s
unloading ratio and the flight path of the UAV. We finally get the overall algorithm summarized
as Algorithm 1. The convergence and superiority of the algorithm are verified in the simulation
experiment.

Due to the high coupling between variables, the convergence of the algorithm is given by
simulation experiments.

4 Complexity Analysis

We focus on the complexity of proposed schemes and two traditional schemes: MRT scheme and
OA algorithm. The specific expression is shown in Table 1.

Note that MRT scheme gets the minimum complexity since it has a closed-form solution. The
proposed sub-optimal get less complexity than the optimal scheme.
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Table 1: Complexity analysis

Parameter Complexity in each iteration Overall complexity

Algorithm 3.1 O(M(P1 + P2)) O(M(P1 + P2)P1)

Algorithm 4.1 O(M(P1 + 1)) O(M(P1 + 1)P2)

MRT scheme O(M) O(M)

OA scheme O(MP2) O(MP3)

5 Numerical Results

In this section, we first list the parameters required for the simulation environment, then simulate
the results under different settings, and analyze the advantages of the proposed algorithm.

5.1 Simulation Results
In this section, we conducted simulation experiments on the proposed scheme, mainly including

(1) the proposed scheme; (2) the full offloading scheme; (3) the maximum rate scheme; (4) the scheme
against potential eavesdroppers; (5) no IRS scheme; (6) fixed IRS scheme. The setting of transmission
if shown in Table 2 and the specific results are as follows.

Table 2: Simulation parameters

Parameter Symbol Value

Bandwidth of MEC system B 20 MHz
Total completion time T 10 s
Number of time slots N 50
Unit gain for reference distance ρ0 −30 dB
The power of noise N0 −60 dB
Altitude of the UAV H 10 m
The maximum available speed of the UAV Vmax 10 m/s
The initial and final position of the UAV qI, qF (0, 0), (0, 10)
The position of the BS qT (0, 0)
The effective switched capacitance of the UAV κ 10−28

CPU cycles Ck 1000 cycles/bit

Algorithm 3.2: Alternative optimization based algorithm
Input: Maximum Iterations M1 and M2

Input: Number of time slot N, Channel state information G, Hk1
and Hk2

and Maximum power Pmax

Output: Beamforming matrix Wk, covariance matrix G, and shift matrix G
1: function Beamforming Design

(Continued)
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Algorithm 3.2 (continued)
2: Initial Wk = PmaxI and the shift matrix G = I, the index n = 0
3: for n ≤ N do
4: Compute the next state according to the current pk[n]
5: Calculate W(n+1)

k and Pk for given G(n)

6: n = n + 1
7: end for
8: end function
9: function PROPOSED ALGORITHM

10: Substituting the initial point the the constraints
11: repeat
12: if m > M then
13: break;
14: else
15: Obtain G(H) using the bisection method;
16: for k ≤ K do
17: if

∣∣f (w(n+1)

k , G(n+1)
) − f (w(n)

k , G(n)
)
∣∣ ≤ ε then

18: continue;
19: end if
20: end for
21: Update the trajectory
22: end if
23: The maximum energy efficient η

n,opt
E is obtained

24: if m ≤ M then
25: m = m + 1
26: end if
27: until ‖Rm − Rm−1‖ ≤ e
28: end function

We first focus on the convergence of the algorithm. We have drawn three curves in Fig. 2, two
of which represent the convergence curves of iteration from different initial points. In the two initial
points, we assume that all the IRS phase-shift matrices are unit matrices, the flight path of the UAV
is a straight flight from the initial point to the endpoint, and the unloading mode is full unloading.
The difference is that the user-transmitted beam at the initial point 1 is the MRT scheme, and the
user-transmitted beam at the initial point 2 is the unit vector. It can be seen that the MRT scheme
will obtain higher initial energy efficiency than the unit vector, but with the increase in the number
of iterations, both of them converge around 10 iterations. In addition, we also simulate the individual
iteration scheme, and the results show that our proposed scheme has higher performance.

The trajectory in a UAV simulation case is shown in Fig. 3. We randomly set 4 users. It can be
found that the trajectory of the UAV will be as close as possible to each user. However, in order to
maximize fairness and overall energy efficiency, no one has the opportunity to focus on different users
in different time slots.

We also conducted simulation experiments on the impact of IRS elements. In Fig. 4, we mainly
considered the change of IRS in the [10:10:40] range. When the number of IRS is small, that is, when
the number of IRS is 10, our proposed scheme still has considerable advantages over other schemes.
As the number of IRS elements increases, the proposed scheme will also increase. It is worth noting
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that the role of the IRS is to reconstruct the channel. It cannot improve energy efficiency without
limitation. When the number of IRS is large, the gain it can bring is limited. On the other hand, when
IRS is not applicable in the scheme, the increase in the number of elements cannot bring benefits.

Figure 2: Convergence of the proposed algorithm

Figure 3: Trajectory of the UAV

In Fig. 5, we simulate the relationship between noise power and energy efficiency. The improve-
ment of noise power will inevitably reduce energy efficiency. When the noise power increases, the
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communication rate from the user to UAV decreases. This means that users need to consume more
energy to achieve the set transmission target task.

In Fig. 6, we show the curve of energy efficiency changing with the maximum power of users.
It is worth noting that with the increase in the maximum power of users, the growth rate of energy
efficiency gradually slows down. Our proposed scheme is always superior to the existing scheme. In
addition, when the maximum power of the user is increased, the energy efficiency of all unloading
schemes will not be improved, because the extra energy cannot bring additional gain.

Figure 4: Energy efficiency vs. the number of IRS elements

Figure 5: Energy efficiency vs. the maximum power of noise
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In Fig. 7, we focus on the impact of total tasks on energy efficiency. It is worth noting that the
scope of the total task is limited. When the total task is too large, the unloading and calculation of
all tasks cannot be completed within the agreed time. When the total number of tasks is small, most
of the energy consumed is used to support the UAV flight and the user’s transmission consumption.
At this time, the energy efficiency is low. When the total number of tasks increases, the proportion
of calculated energy consumption gradually increases, and the energy efficiency also increases. At
this point, our proposed scheme can effectively allocate the energy required for calculation and flight
transmission energy to improve energy efficiency.

Figure 6: Energy efficiency vs. the maximum power of users

Figure 7: Energy efficiency vs. the tasks



1882 CMES, 2024, vol.138, no.2

6 Conclusion

In this paper, we design the transmitting beam of the user, the trajectory of the UAV, and the
phase shift matrix of the IRS to maximize the user’s secrecy rate. We analyze the two working modes
of the eavesdropper and potentially control its transmitting beam. We add the influence factor of the
eavesdropper as an optimization variable into the design scheme and propose a local optimization
scheme based on the interior point method and alternative optimization. In addition, we designed a
suboptimal scheme based on the zero forcing method to reduce the computational complexity. The
simulation results show that the proposed iterative scheme is superior to the suboptimal scheme and
has a higher secrecy rate than the existing schemes.
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