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ABSTRACT

The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achieved
notable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and the
correlation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a large
number of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, this
paper proposes a novel approach for constructing the incremental HFS. During system design, the deep structure
and the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated based
on the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition among
the structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and the
parameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of the
model. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,
respectively with rule counts of rules is 8 and 12, respectively. When compared to alternative methods, the results
indicate that the proposed method offers improvements in accuracy and rule counts.
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1 Introduction

The fuzzy system was first proposed by Zadeh [1] in 1965, and it has been well applied in many
fields [2–5]. The traditional fuzzy system performs well with low-dimensional input, but with the
increase of input variables, the fuzzy system often encounters the problem of “dimension disaster”,
which makes the number of rules and the calculation cost increase sharply. Raju et al. [6] proposed the
HFS for addressing this problem. HFS comprises multiple sub-fuzzy systems with low dimensional
input, connected in the form of layering and blocking, mainly including incremental, aggregated
and cascaded structures [7], as shown in Fig. 1. Compared with the traditional fuzzy system, the
construction process of the rule base of the HFS is more complex due to the correlation between
the sub fuzzy systems. With the increase of the layers of the HFS, the expert experience is not enough
to realize the establishment of the fuzzy rule base.
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Figure 1: Common deep structures of HFS

Due to the difficulty in obtaining the fuzzy rule base, Jang [8] proposed the adaptive-network-
based fuzzy inference system (ANFIS) for known input and output data pairs. ANFIS used the hybrid
learning method of gradient descent and least square to make the system have strong self-learning
ability to rules. Zhao et al. [9] proposed the deep neural fuzzy system (DNFS) based on ANFIS, which
realized the fast learning of the HFS rule base. Talpur et al. [10] proposed a novel Bitwise Arithmetic
Optimization Algorithm, which is implemented as a feature selection approach to solve the problem
of large rule base in DNFS. Wang [11] designed a deep convolutional fuzzy system (DCFS) based on
the Wang-Mendel (WM) method, which realized the application of HFS in prediction problems. The
DNFS and DCFS methods used a bottom-up approach to design a low-dimensional fuzzy system
layer by layer and finally constructed a HFS. This construction method reduced the complexity of
the HFS, and can achieve better prediction and classification effects. However, DNFS and DCFS
were only researched based on a specific hierarchical deep structure, and cannot be combined with
different hierarchical and block methods adaptively. The prediction effect of different data sets was
contingent, and it may be difficult to achieve the target effect.

Considering the diversity and complexity of HFS, it is difficult to manually select a suitable deep
structure. In [12], Razak et al. proposed a method for constructing the HFS using a participatory
design approach to reduce the complexity of the model. Moreover, some studies [13,14] optimized
the structures of the HFS by optimizing the selection and ordering of input features according to the
characteristics of hierarchical fuzzy systems. In [15], a fuzzy autoencoder and a self-organizing fuzzy
partition method were designed to construct the HFS. Table 1 summarized the different techniques
used in modeling the HFS.

Table 1: Summary of the literature

No. Reference Year Method Objective

1 [11] 2019 Deep convolutional fuzzy
system

Optimization of system
complexity and training time

(Continued)
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Table 1 (continued)

No. Reference Year Method Objective

2 [16] 2019 Simplified
defuzzification-fuzzification
algorithm

Optimization of system
complexity

3 [17] 2020 Fuzzy-rule clustering Optimization of system
accuracy and robustness

4 [13] 2020 Genetic algorithm Optimization of system
complexity and accuracy

5 [12] 2020 Participatory design Construction of the HFS with
interpretability

6 [18] 2020 Genetic algorithm Optimization of system
complexity and accuracy

7 [14] 2020 Fuzzy c-means clustering Optimization of system
complexity and accuracy

8 [9] 2020 Deep neural fuzzy system Optimization of system
complexity and accuracy

9 [19] 2020 Nested hybrid differential
evolution algorithm

Optimization of system
complexity and accuracy

10 [20] 2020 Distributed clustering Optimization of system
complexity and accuracy

11 [21] 2021 Improved method based on
classical ridge regression

Optimization of system
complexity and accuracy

12 [22] 2021 Vehicular Ad-Hoc network Optimization of system
complexity and accuracy

13 [15] 2022 Self-organized Optimization of system
complexity

14 [10] 2023 Deep neural fuzzy system Optimization of system
complexity and accuracy

15 [23] 2023 Fuzzy c-means clustering Optimization of system
accuracy

At present, many studies have proved that it is effective to use the global search ability of heuristic
algorithms such as genetic algorithm, particle swarm optimization algorithm and differential evolution
to learn the antecedent and consequent parameters of rules when building a rule base of complex fuzzy
system [24–28]. Velliangiri et al. [4] used the Taylor series and elephant herding optimization algorithm
to optimize the fuzzy classifier. Zhao et al. [29] designed the training algorithm of a fuzzy second
curvelet neural network based on an improved firefly algorithm. Traditional fuzzy systems have ante-
hoc interpretability, and the performance of the model is bounded by its own interpretability and is
related to the parameter settings of the system [30]. All the fuzzy system can obtain is the optimal result
under the current constraints, which is consistent with the strategy principle of heuristic algorithms.
In HFS, there are many parameters that need to be determined, such as the number of layers, the
number of FLSs in each layer, the number of fuzzy sets divided by input variables, the number of input



1142 CMES, 2024, vol.138, no.2

variables in each FLS, the rule base and so on. However, these parameters cannot be verified whether
it is the optimal solution. Therefore, the heuristic algorithm is selected to optimize these parameters
automatically. Considering the convenience of real-number encodings, the DE algorithm is utilized to
realize the automatic optimization of HFS deep structure.

The main contributions of this paper can be summarized in the following aspects:

• This paper proposes a new encoding method for the automatic deep structure optimization
of HFS. The deep structure optimization strategy of HFS adopts the joint encoding of the
number of hierarchical layers and the number of input variables of each fuzzy system, which
is intuitive and easy to understand. And it is also convenient for the encoding and decoding
of deep structures. The parameters of the antecedent and consequent of the rules adopt the
traditional parameter optimization method based on the evolutionary algorithm. The two are
encoded separately, and then jointly enter the iterative process of the heuristic algorithm, which
is the encoding basis for the simultaneous optimization of the deep structures and rules.

• A new mutation method for deep structures is proposed and we optimize the architecture of
DE algorithm. The improved DE algorithm is adaptive to the dynamic environment. With
the iterative evolution of structures and rules, the algorithm can not only ensure reasonable
optimization of antecedent and consequent parameters of rules under the same deep structure,
but also ensure the reasonable competition between different deep structures.

• The usefulness of the algorithm proposed for deep structures optimization of HFS is demon-
strated. The algorithm achieves acceptable accuracy on prediction problems and greatly reduces
the number of rules of HFS, solving the problem of “rule explosion”. Moreover, the algorithm
also reduces the difficulty of HFS construction.

The rest of this paper is structured as follows. Section 2 describes the basic framework and
characteristics of the HFS. Section 3 introduces the new encoding method based on HFS deep
structure and rule base, and the improved DE algorithm architecture under the new encoding method.
In Section 4, we perform simulation verification of the algorithm designed in this paper, and finally,
Section 5 summarizes the current research.

2 The Construction of HFS

The sub fuzzy systems of the HFS adopt the Takagi-Sugeno (T-S) fuzzy system proposed by
Takagi et al. in 1985 [31]. Compared with the Mamdani fuzzy system [32], the T-S fuzzy system outputs
crisp values without defuzzifying the fuzzy set, which greatly simplifies the construction process of the
HFS. Each sub fuzzy system adopts a 0-order T-S fuzzy system. For a fuzzy system with r fuzzy rules,
n inputs and single output, the ith fuzzy rule is:

Ri : IF x1 is Ai1 and x2 is Ai2 and ... xk is Aik and xk ... and xn is Ain THEN yi is ai (1)

where Aik is the ith fuzzy set of the kth variable, ai is the crisp value of the rule consequent parameter
of the ith fuzzy rule, and each fuzzy set is described by the Gaussian membership function shown in
Eq. (2):

μik (xk) = exp

[
−

(
xk − mik

σik

)2
]

(2)

where k = 1, 2, ..., n, μik is the membership value of each input xk on the corresponding fuzzy set Aik,
mik is the center of the Gaussian membership function of the ith fuzzy set of the kth variable, σik is the
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corresponding variance, and the output of the fuzzy system is obtained as shown in Eq. (3). When the
output y1 of the first layer fuzzy system is obtained, then the first input of the sub fuzzy system of the
lth layer is given by the output yl−1 of the previous layer.

y =
∑r

i=1

∏k

j=1 μij

(
xj

)
ai∑r

i=1

∏k

j=1 μij

(
xj

) (3)

When dealing with high-dimensional problems, the number of rules in traditional fuzzy systems
increases exponentially with the number of input variables [15]. Consider a fuzzy system as shown in
Fig. 2a, in which the number of input variables is n and each variable is divided into m fuzzy sets, the
number of fuzzy rules in this fuzzy system is mn. For the HFS shown in Fig. 2b, when the number of
input variables is n, the number of sub fuzzy systems is n − 1, the total number of rules in this HFS
is (n − 1)m2. The relationship between fuzzy rules and the number of input variables changes from
an exponential relationship to a linear relationship. For example, when the number of input variables
of the fuzzy system is 6, if each input number is divided into 4 fuzzy sets, the number of rules of
the traditional fuzzy system is 46 = 4096, and the total number of rules of the HFS is (6 − 1) × 42.
Obviously, the number of rules is greatly reduced, which reduces the complexity of the fuzzy reasoning
process. In addition, Wang [33] has proved that HFS still has the universal approximation property,
so HFS has the potential to solve the problem of rule explosion with high-dimensional input.

(a) Single layer FLS (b) HFS

Figure 2: Single layer FLS and HFS

The HFS shown in Fig. 2b is an incremental structure with the simplest form and the largest
number of layers. Since each layer has only one sub fuzzy system and each sub fuzzy system has the
same number of input variables, this deep structure is more convenient in model construction for high-
dimensional input. In this structure, each sub fuzzy system has two input ports. Except that the first
layer uses two input variables, each other layer uses only one input variable, and the other port is the
output of the previous sub fuzzy system. Wang [11], Zhao et al. [9] have done great research on the
design of HFS with specific incremental structure and aggregated structure, and have applied it in
the prediction model. However, when designing the deep structure of HFS, how many input variables
should be designed for each layer of sub fuzzy system and how to construct the rule base are still
challenging problems.
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For the number of input variables n, an incremental structure with only one sub fuzzy system per
layer similar to the structure of Fig. 2b. HFS is constructed layer by layer from bottom to top, and
each layer except the first layer uses at least one input variable. Each sub fuzzy system has at least
two input ports, the input ports of the sub fuzzy system of the first layer are all used for the input of
variables, and each other layer has one port for the input of the output of the sub fuzzy system of the
previous layer. Therefore, the number of input variables used in the first layer may be 2 ∼ (n − 1),
and each subsequent layer may be 1 ∼ (n − 2). The maximum number of layers in the deep structure
is n − 1, and the sum of the number of input variables used in all layers should be n. Table 2 shows
all structures existing in the HFS based on incremental deep structure described in Fig. 2b when the
number of input variables is 6.

Table 2: Hierarchical deep structures with 6 inputs

No. Input_num Total

Layer1 Layer2 Layer3 Layer4 Layer5

1 5 1 – – – 6
2 4 1 1 – – 6
3 4 2 – – – 6
4 3 1 1 1 – 6
5 3 1 2 – – 6
6 3 2 1 – – 6
7 3 3 – – – 6
8 2 1 1 1 1 6
9 2 1 1 2 – 6
10 2 1 2 1 – 6
11 2 2 1 1 – 6
12 2 2 2 – – 6
13 2 1 3 – – 6
14 2 3 1 – – 6
15 2 4 – – – 6

Obviously, there are 15 hierarchical deep structures with 6 inputs in Table 2. The first column
is the label of each structure, and the Input_num column is the number of input variables used by
each layer of sub fuzzy system. The final number of inputs used by each structure is 6. Fig. 3 shows
the hierarchical structure of the 5th and the 6th groups in Table 2. For the 5th structure in Fig. 3a, the
order of the number of input variables used by each sub fuzzy system is 3-1-2, while the order of the
number of input ports is 3-2-3. Actually, the first sub fuzzy system of the two structures in Fig. 3 both
have three input ports, but due to the difference in the configuration of the subsequent input ports, the
performance of the fuzzy system will also be different. With the increase of dimension, it is difficult to
determine a reasonable hierarchical deep structure by manual experience, so exploring the automatic
optimization of hierarchical deep structures has important theoretical and practical application value.
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Figure 3: Hierarchical deep structures

In practical application, HFS is not only difficult to choose in the face of many hierarchical deep
structures, but also difficult to establish the rule base of fuzzy system and determine the parameters of
antecedent and consequent when the deep structure of HFS has already determined. The traditional
method of establishing the rule base manually is ineffective in complex fuzzy systems. The rule base
of DCFS is constructed by using WM method to train each sub fuzzy system from top to bottom and
then combine them. DNFS adopts ANFIS method in the training mode of each sub fuzzy system.
Constructing HFS in a hierarchical and block way reduces the training difficulty of the rule base,
but both DCFS and DNFS methods take the final target output as the target output of each sub
fuzzy system. Although each sub fuzzy system has good performance under the current constraints,
it is difficult to guarantee the performance of HFS formed by combination, and the subsequent
optimization of parameters is also difficult. Juang et al. [34–36] used evolutionary algorithms to learn
the rule base for traditional fuzzy systems, and have achieved good results in robot control. HFS is a
connection combination of multiple fuzzy systems, and considering the characteristics of fuzzy system
and the adaptability of evolutionary algorithm, it is feasible to apply evolutionary algorithms to the
learning of the rule base of HFS. The algorithm proposed in this paper can simultaneously optimize the
deep structure of HFS and the antecedent and consequent parameters, so as to achieve an acceptable
realization result.

3 An Optimal Algorithm for Deep Structures of HFS

In the classical DE algorithm, first of all, select three different individuals from the population
randomly, two of which are selected to subtract, and then add the difference to the third individual
according to the rule. Then, cross the result with the original individual. After natural selection, retain
the better one to achieve the evolution of the population [37,38]. In order to improve the ability of
global search, Juang et al. [34] proposed an adaptive group-based differential evolution (AGDE)
algorithm. AGDE dynamically divides the entire population into different groups, and the mutation
is based on individuals in different groups, which increases the global search ability of the algorithm
and accelerates the convergence speed. Based on the idea of population grouping in [34], this paper
encodes the HFS deep structure and antecedent and consequent parameters respectively, and improves
the architecture of the classical DE algorithm based on this new encoding method, which makes HFS
have both hierarchical deep structure and rule base self-learning ability.
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3.1 Description of the New Encoding Method
Degenerate the possible deep structure shown in Table 2 into a structure in which the number of

input variables used in the first layer may only be 2 or 3, and the number of input variables used in
each subsequent layer may be 1 or 2, so as to faciltate subsequent encoding descriptions. That is, the
maximum number of input ports of each sub fuzzy system is set to 3.

When the number of input ports in the first layer is 2, the maximum layer number Lmax of HFS
is n − 1, and the minimum layer number Lmin is n/2. If n is odd, Lmin is rounded down, and the list of
possible deep structures is shown in Table 3. When the number of input ports in the first layer is 3, the
maximum layer number Lmax of HFS is n − 2, and the minimum layer number Lmin is (n − 1)/2. If n is
odd, Lmin is rounded up, and the list of possible deep structures is shown in Table 4. Where Layer_num
is the number of HFS layers under Description, Stru_num is the number of deep structures existing
under the current number of layers. The total number of deep structures N of HFS is shown in Eq. (4).⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N =3 +
k−3∑
i=1

[
Ci

n−3−i + Ci
n−2−i

]
, k = (n + 2)/2, if n is even

N =2 +
k−3∑
i=1

[
Ci

n−3−i + Ci
n−2−i

]
, k = (n + 3)/2, if n is odd

(4)

where n is the dimension of the input, and N is the number of deep structures in the corresponding
dimension in HFS. There are different calculation formulas when n is odd or even. For HFS with 6
inputs, the total number of deep structures calculated by Eq. (4) is 8, which has a maximum of 5 layers
of hierarchical deep structures.

Table 3: The number of deep structures of HFS with 2 inputs in first layer

Layer_num Stru_num Description

n − 1 1 Each subsequent sub fuzzy
system has 2 input ports

n − 2 C1
n−3 There is a sub fuzzy system that

has 3 input ports
· · · · · · · · ·
n − k1 + 1 Ck1−2

n−k1
There are k1 − 2 sub fuzzy
systems that has 3 input ports

n/2 Cn/2
n/2 Each subsequent sub fuzzy

system has 3 input ports

Table 4: The number of deep structures of HFS with 3 inputs in first layer

Layer_num Stru_num Description

n − 2 1 Each subsequent sub fuzzy
system has 2 input ports

n − 3 C1
n−4 There is a sub fuzzy system that

has 3 input ports

(Continued)
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Table 4 (continued)

Layer_num Stru_num Description

· · · · · · · · ·
n − k2 + 1 Ck2−3

n−k2
There are k2 − 3 sub fuzzy
systems that has 3 input ports

(n − 1)/2 C(n−3)/2
(n−3)/2 Each subsequent sub fuzzy

system has 3 input ports

For HFS with n inputs, since it has at most n−1 layers of hierarchical deep structure, the solution
vector of deep structure s1 can be randomly initialized to NP vectors with dimension n − 1. Each
bit of the encoding is the number of input ports of the sub fuzzy system. For input ports that do not
exist, set the corresponding encoding position to 0. The deep structures of HFS and the corresponding
encoding results are shown in Table 5.

Table 5: Structure encoding when the number of input variables is 6

No. InputPort_num Stru_encoding

Layer1 Layer2 Layer3 Layer4 Layer5

1 2 2 2 2 2 22222
2 2 2 2 3 – 22230
3 2 2 3 2 – 22320
4 2 3 2 2 – 23220
5 2 3 3 – – 23300
6 3 2 2 2 – 32220
7 3 2 3 – – 32300
8 3 3 2 – – 33200

In Table 5, since the input dimension is 6, the encoding length of each hierarchical deep structure
is 5. This encoding method makes s1 only need to randomly generate a sequence containing 2 and 3
during initialization, and then according to the constraint of the number of inputs, the subsequent
elements of s1 are subtracted or set to 0. Algorithm 3.1 describes the algorithm flow of constraint
on the solution vector of initializing deep structures, where size_x is the size of input dimension. For
example, when s1 is initialized to 23233, after the constraint of Algorithm 3.1, s1_new is obtained as
23220.

Algorithm 3.1: Constraints on structure solution vectors
Input: size_x and s1

Output: s1_new
(Continued)



1148 CMES, 2024, vol.138, no.2

Algorithm 3.1 (Continued)
1: i = 0, temp = 0
2: s1_new = s1

3: while temp < size_x do
4: i = i + 1
5: temp = sum(s1(1 : i)) + 1 − i
6: end while
7: if temp = size_x then
8: s1_new(i + 1 : end) = 0
9: else
10: Decrease s1_new(i) until sum(s1(1 : i)) + 1 − i = size_x
11: s1_new(i + 1 : end) = 0
12: end if

Considering learning the antecedent and consequent parameters of the rules of HFS by evolu-
tionary algorithm, when the input dimension is n, and each input is divided into r fuzzy sets, HFS has
N −1 layers of the HFS deep structure if uses the deep structure shown in Fig. 2b. The number of rules
in each sub fuzzy system is equal to the number of fuzzy sets. Assuming that each sub fuzzy system
has only 2 inputs, so the number of parameters of each rule is 5, and the single individual description
of the parameter solution vector of the antecedent and consequent of the rule is shown in Eq. (5).

s2 = [m111, σ111, m112, σ112, a11︸ ︷︷ ︸
FLS 1, Rule 1

, · · · , m1r1, σ1r1, m1r2, σ1r2, a1r︸ ︷︷ ︸
FLS 1, Rule r

, · · · , mLr1, σLr1, mLr2, σLr2, aLr︸ ︷︷ ︸
FLS L, Rule r

]
(5)

where m, σ and a are parameters given in Eqs. (1) and (2), L is the number of the sub fuzzy systems,
and r is the number of rules. When the deep structure of HFS has already selected, the rule base of
HFS can be obtained by evolutionary algorithm to learn s2. In this case, the number of fuzzy rules is
only related to the number of fuzzy sets and the number of sub fuzzy systems, which further reduces
the number of the rules of HFS.

Considering that each sub fuzzy system has at most p inputs, and each input is divided into r fuzzy
sets, s2 can be randomly initialized as NP vectors with dimension r(2p + 1)(n − 1) to form a regular
evolutionary population of the evolutionary algorithm. For the HFS with 6 input variables shown in
Table 5, assuming that the number of rules is 4, the deep structure solution vector s1 after random
initialization contains only 2 and 3. Then, according to the relationship between the total number of
inputs and the number of inputs in each layer, s1 can be adjusted adaptively. Finally s1 is composed of
NP vectors with dimension 7, and s2 is composed of NP vectors with dimension 140.

3.2 Improved DE Algorithm Based on New Encoding Method
On the basis of the classical DE algorithm, the improved DE algorithm adds the mutation of HFS

deep structure. Algorithm 3.2 describes the mutation process of the deep structure solution vector s1.
When initializing s1, there may be same encodings of deep structure. After grouping the same deep
structures in the population, the mean fitness of each group was calculated. Then, according to the
rank order of each group, the proportion of mutation is allocated to each group. The worse the rank of
the group, the more mutation individuals within the group. And the mutation individuals were selected
from the individuals with lower fitness rank in the group. Adding the mutation of the solution vector
of deep structure s1 into DE algorithm can increase the number of population and ensure the diversity
of deep structures.
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Algorithm 3.2: Mutation of structure solution vectors
Input: s1_new
Output: best_stru and s1_mutation

1:Get the number of deep structure classes size_C contained in the population, and group the
solution vectors of the same deep structure.

2:Calculate the average fitness of each group and sort them, save the deep structure with the lowest
fitness as best_stru.

3: tmp3 = round(size_C/3): all groups are divided into three levels for proportional distribution.
4: p_group_change = zeros(1, size_C): proportion of individuals per group mutation.
5: num_mutation = zeros(1, size_C): number of individuals per group mutation.
6: for all i = 1 : tmp3 do
7: p_group_change(i) = 0.1;
8: p_group_change(size_C + 1 − i) = 0.3;
9: end for

10: for all i = 1 : (tmp3 + 1) : (size_C − tmp3) do
11: p_group_change(i) = 0.2;
12: end for
13: for all i = 1 : 1 : size_C do
14: Sort the fitness within the group, and select the lower ranked individuals to mutate according

to p_group_change, and save the number of mutation individuals to num_mutation.
15: for all j = 1 : num_mutation(i) do
16: According to a certain probability, the individual s1_new can mutate to the forward adjacent

deep structure, mutate to the backward adjacent deep structure, or mutate to the current best
deep structure.

17: end for
18: end for
19: Update the mutated deep structure solution vector and save it as s1_mutation.

In the mutation process of deep structures, each individual has three directions of mutation. The
purpose of mutating to the forward adjacent deep structure and the backward adjacent deep structure
is to increase the diversity of the population and avoid falling into a local optimum in deep structure
selection. Mutation to the best deep structure is to increase the weight of the current optimal deep
structure, so that the antecedent and consequent parameters of the rule can be better learned.

For HFS with 6 input variables, all deep structures are shown in Table 5. If the optimal deep
structure s3 is encoded as 23300, and the individual s4 of the deep structure to be mutated is encoded
as 22230, the forward adjacent deep structure s5 is encoded as 22222, and the backward adjacent
deep structure s6 is encoded as 22320. According to the initial set probability, s4 will mutate to s3 with
probability p1, mutate to s5 with probability p2, and mutate to s6 with probability p3, where p1 + p2 +
p3 = 1. The method of multi-direction mutation can ensure that the existing optimal deep structure
is stabilized, while maintaining the diversity of the population and reasonable competition between
individuals, and avoid the deep structure from falling into a local optimum to a certain extent. For
groups lacking forward or backward neighbors, the corresponding mutation probability can be set
to 0.

The improved DE algorithm flow is shown in Fig. 4. Firstly, import the dataset and initialize
the parameters of the algorithm. To eliminate the influence of dimensionality, the dataset needs to
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be normalized in advance. Min-max normalization can ensure that mutation, crossover and selection
in DE algorithm are performed reasonably. Then, calculate the fitness and start the iteration. The
iteration terminates when the maximum number of iterations N_iter is reached or the fitness reaches
the requirement of accuracy. The mutation and crossover strategy of the solution vectors of rule
parameters s2 are shown in Eqs. (6) and (7).

vi,j = xa,j + F
(
xb,j − xc,j

)
(6)

ui,j =
{

vi,j, if rand(0, 1) < Cr or j = rand(1, n)

xi,j, otherwise
(7)

where F is the scaling factor of mutation, Cr is the crossover probability, and xi,j represents the jth
dimension of the ith solution vector of the initial population. a, b, c, and i are random integers that
are different from each other. v is the population obtained after mutation, and u is the population
obtained after crossover.

Figure 4: Flowchart of the improved DE algorithm

The solution vectors of deep structures s1 mutates when the set iteration step g is reached. Mutation
of s1 is performed every g iterations of s2. For example, if N_iter is 20000 and g is 20, s1 mutates when
s2 iterates a multiple of 20. So that s1 can mutate a total of 100 times. The mutation strategy of s1 is
described in Algorithm 3.2.

4 Simulation Results

In this section, two simulations are used to verify the proposed method. We select the Laser data
set and Friedman data set from the KEEL database [39] for prediction simulation implementation.
The Laser prediction dataset is a far-infrared laser recording of continuous time series in a chaotic
state. The friedman prediction dataset is a comprehensive benchmark dataset, which is generated by
Eq. (8) and is Gaussian random noise.

y = 10 sin (πx1x2) + 20 (x3 − 0.5)
2 + 10x4 + 5x5 + σ(0, 1) (8)
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The evaluation index of the fitness function used in the simulation is root mean square error
(RMSE). In Eq. (9), n is the number of samples, y is the real output, and ŷ is the predicted output.
According to the basic information of the data set, the population number NP of DE algorithm was set
as 50, the maximum input number p of each sub fuzzy system is 3, the number of fuzzy sets r divided by
each input is 4, the iteration step g of deep structure mutation is 20, and the total number of iterations
N_iter is 20000. Moreover, the scaling factor of mutation F is 0.4 and the crossover probability V is
0.7. Table 6 briefly describes the basic information of the data set used for simulation, where Stru_num
is the number of deep structures calculated by Eq. (5). And 70% of the samples are used for training
the HFS and 30% for testing [40,41]. Considering the randomness of the results obtained by a single
simulation, each data set is repeated 5 times. Table 7 shows the implementation results of predictions
on the laser dataset and the friedman dataset.

RMSE =
√√√√1

n

n∑
i=1

(
ŷi − yi

)
(9)

Table 6: Basic information of the data sets

Dataset Dimension Stru_num Samp_num Tr_num Ts_num

Laser 4 3 993 685 298
Friedman 5 5 1200 840 360

Table 7: Simulation results of the data sets

Dataset No. Tr_RMSE Ts_RMSE Stru_sel Rule_num

1 0.0403 0.0424 230 8
2 0.0440 0.0365 230 8

Laser 3 0.0377 0.0384 230 8
4 0.0415 0.0382 230 8
5 0.0437 0.0384 230 8
avg 0.0411 0.0395 – –
1 0.0705 0.0682 3220 12
2 0.0678 0.0658 3220 12

Friedman 3 0.0774 0.0807 3220 12
4 0.0692 0.0699 3220 12
5 0.0750 0.0777 3220 12
avg 0.0720 0.0725 – –

Figs. 5 and 6 show the prediction results and error curves of the laser dataset and the friedman
dataset respectively, where the data in Figs. 5 and 6 are the first group of each data set in the simulation
results in Table 7. The results show that the algorithm proposed in this paper can obtain better
prediction accuracy and fewer fuzzy rules. Compared with the Laser data set, the Friedman data set
has higher input dimensions, resulting in a larger number of possible deep structure for HFS. And the
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resulting precision reduction can be improved by increasing the number of population or iteration.
Moreover, the use of 1-order or higher-order T-S fuzzy systems can also improve the prediction ability
of HFS for complex models, but it will increase the complexity of the system and the amount of
calculation. And this paper mainly analyzes and verifies the feasibility of the proposed algorithm.
Although there are differences in the prediction accuracy obtained by the five repeated experiments,
they all obtain the same hierarchical deep structure in the end. However, because the number of fuzzy
rules is only linear with the number of fuzzy sets and the number of sub fuzzy systems, the number of
fuzzy rules is less than that of the traditional HFS construction method. Figs. 7 and 8 show the deep
structure change curves of the two data sets, respectively. Where Label represents the label of possible
deep structures, Struc_iter_num represents the number of deep structure iterations, and Class_num
represents the number of current deep structure in the population.

Figure 5: Laser dataset prediction results

Figure 6: Friedman dataset prediction results

Figure 7: Iterative process of deep structure of Laser dataset (No. 1) (label_1: 222, label_2: 230, label_3:
320)



CMES, 2024, vol.138, no.2 1153

Figure 8: Iterative process of deep structure of Friedman dataset (No. 1) (label_1: 2222, label_2: 2230,
label_3: 3220, label_4: 3300)

For the Laser dataset, the optimal deep structure finally obtained is shown in Fig. 9a. In the
iterative process, three optimal structures with encoding 222, 230, and 320 appeared. The initial
optimal deep structure of HFS is 222. In the subsequent evolution, the number of this deep structure
first increases and then decreases in the population. Then at about the 3000th iteration, it oscillates
with the final optimal deep structure 230. Finally, the optimal deep structure converges and stabilizes
in the deep structure with encoding 230, and 36 of the 50 solution vectors are the current optimal deep
structure.

For the Friedman dataset, the optimal deep structure finally obtained is shown in Fig. 9b.
Compared with the laser dataset, the deep structure transformation process of the Friedman dataset
is more complex due to the larger number of possible topological structures. In the iterative process,
four optimal deep structures with encoding 2222, 2230, 3220, and 3300 appeared, and it achieves stable
convergence in the 3220 encoding deep structure in the end. Moreover, 30 of the 50 solution vectors
are the current optimal deep structure.

Figure 9: Structures of the HFS

The optimal deep structures finally obtained in Figs. 7 and 8 are neither the optimal deep
structures at the beginning of iteration nor the deep structures with the largest number, but is obtained
through continuous evolutionary learning of the improved DE algorithm. Figs. 7 and 10 compare
the deep structure iteration process of No. 1 and No. 2 of the Friedman dataset simulation results in
Table 7. The results show that the initial optimal deep structure of the two groups is 2230. Although
there are differences in the iterative process of the deep structures, due to the characteristics of the data
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set, they eventually converge and stabilize in the same deep structure. The simulation results verify
that the algorithm proposed in this paper has good reasonable competition among deep structure
populations and can maintain species diversity during the evolution of deep structures.

Figure 10: Iterative process of deep structure of Friedman dataset (No. 2) (label_1: 2222, label_2: 2230,
label_3: 3220, label_4: 3300)

For further evaluation of the proposed algorithm, Table 8 shows the simulation results of Laser
dataset and Friedman dataset in DCFS [11] and DNFS [9]. Each sub fuzzy system in DCFS is
constructed by WM method. In DCFS, the fuzzy set is generated by meshing each variable, so the
number of rules for each sub fuzzy system is large, which makes the total number of the rules of HFS
not significantly reduced. And each sub fuzzy system in DNFS is constructed by ANFIS method. In
DNFS, the rule base of each sub fuzzy system is trial-calculated through grid division, subtraction
clustering and fuzzy c-means clustering, and then the rule base with better performance is selected as
the final rule base, which may have fewer rules than DCFS. Compared with DCFS and DNFS, the
algorithm proposed in this paper has fewer rules and greatly simplifies the complexity of HFS.

Table 8: Comparison results with DCFS and DNFS

Dataset Method Tr_RMSE Ts_RMSE Rule_num

DCFS 0.0623 0.0624 144

Laser DNFS1 0.0277 0.0287 83

DNFS2 0.0494 0.0347 80

Proposed
(avg)

0.0411 0.0395 8

DCFS 0.0571 0.0868 256

Friedman DNFS1 0.0579 0.0672 144

DNFS2 0.0477 0.0557 78

Proposed
(avg)

0.0720 0.0725 12

Because the hierarchical deep structures of DCFS and DNFS are both fixed, there are great
differences in accuracy results for different data sets. The results with DCFS is not very good in the
two datasets. Although increasing the number of rules can improve the accuracy to a certain extent, it
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is also related to the construction method of the rule base and the characteristics of the dataset itself.
In addition, overfitting appeared in Friedman data set, resulting in a large difference between the test
set and the training set. As for DNFS, the accuracy is slightly better than the algorithm proposed in
this paper, but there are a large number of rules in HFS and the implementation effect is not stable for
different data sets. In the Laser dataset, DNFS1 performed better than DNFS2, while in the Friedman
dataset, DNFS2 performed better than DNFS21. It also shows that different topologies have a great
impact on the accuracy of HFS, and manual selection is difficult.

The algorithm proposed in this paper can make the system automatically optimization and select
the hierarchical deep structure, and get the optimal deep structure and its matching rule base based on
the characteristics of the data set. This greatly reduces the number of rules while achieving precision
similar to that of fixed deep structure. As increase the number of rules or enrich the architecture
of the improved DE algorithm, the accuracy can be further improved. In terms of the number of
rules, the algorithm proposed in this paper strikes a balance between interpretability and accuracy
to a certain extent. In the iterative process, the algorithm maintains reasonable competition among
different deep structures and ensures the diversity of deep structure types. Finally, realize the automatic
deep structure optimization of HFS.

5 Conclusion and Future Work

In this paper, an improved DE algorithm based on the new encoding method is proposed to
optimize the deep structure of HFS. The new encoding method combines architecture encoding
and rule encoding, so that the application of HFS is no longer limited to a fixed hierarchical deep
structure, but automatically finds and selects the appropriate hierarchical deep structure according to
the characteristics of the data set itself. At the same time, the use of evolutionary algorithm to learn the
deep structures and rule base can further reduce the number of rules in HFS compared with traditional
manual design. Finally, the proposed method is verified on the prediction data set, and the simulation
results illustrate the effectiveness of the proposed method. The establishment of the deep structure of
HFS can also show the relationship between the variables of the dataset from the side to a certain
extent. In the future, we will optimize the coding mode of the hierarchical fuzzy system to make the
combination of input features and sub-fuzzy systems more diversified, and reduce the complexity of
the fuzzy system while ensuring the accuracy of the model.
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