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ABSTRACT

In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis of
structure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectric
coupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulations
are used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely
(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weakly
coupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially strongly
coupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation for
the two types of coupling, respectively. Numerical examples using a piezoelectric energy harvester, which is a typical
structure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most cost-
effective algorithm.
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1 Introduction

Partitioned analysis has attracted attention for application to coupled problems because of
its software modularity [1,2]. One focus in this approach is the development of strongly coupled
algorithms [3–9]. For coupled problems with a single coupling of phenomena such as fluid-structure
interaction, coupling strength, such as the added mass [2,10,11], can be used to select strongly or
weakly coupled algorithms [12–14] for the partitioned analysis. In contrast, for coupled multiphysics
problems with k types of coupling, k-tuples of a set S that has n elements of coupling formulations
can represent possible partitioned algorithms, where the number of k-tuples (maximum number of
partitioned algorithms) is nk. The present study proposes a selection method for partitioned algorithms
in the coupled multiphysics problem.
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Some miniaturized electromechanical systems use energy harvesting based on electromagnetic,
electrostatic, or piezoelectric transduction as their electric power supply. Piezoelectric energy har-
vesting has received the most interest [15]. In a piezoelectric energy harvester, strong structure-
piezoelectric-circuit coupling, which determines the frequency response characteristics, can occur.
Hence, accurate prediction of the electromechanical behavior is important for the design of such
devices. The electromechanical behavior of typical piezoelectric energy harvester models, such as a
uniformly laminated thin straight cantilevered composite, has been extensively studied [16]. However,
in some cases direct numerical modeling is required for accurate prediction, even for such simple
models [17–19]. Here, the term direct means that, prior to the finite element discretization, the
governing equations are not transformed into a different form [20]. Direct numerical modeling is
required to predict the electromechanical behavior of most advanced energy harvesting systems in
terms of geometry complexity, materials, and electrode configuration. Hence, this study focuses on
direct numerical modeling.

Previous studies on direct numerical modeling [21] have proposed a monolithic method for
structure-piezoelectric-circuit coupling. This method has been recently extended to fluid-structure-
piezoelectric-circuit coupling [22]. A partitioned method has been proposed for the direct numerical
modeling of structure-piezoelectric-circuit coupling [9]. In these studies, the solution algorithms
use fully implicit coupling formulations. That is, in [21,22], the coupling conditions were directly
incorporated into the whole coupled equation system, and in [9], the governing equation system for
each domain is solved iteratively in the coupling iteration such that the coupling conditions among this
domain and other domains are satisfied. Structure-piezoelectric-circuit coupling includes two types
of coupling or inverse and direct piezoelectric coupling and direct piezoelectric and circuit coupling.
Explicit and implicit formulations are available for these types of coupling. Mixing these formulations
leads to variations in partitioned algorithms. A semi-implicit coupling concept for fluid-structure
interaction [23] can give further variations. However, only algorithms that use fully implicit coupling
formulations are available for the direct numerical modeling of structure-piezoelectric-circuit coupling.

In this study, we propose a coupling-strength-based selection method for the partitioned analysis
of structure-piezoelectric-circuit coupling, where an algorithm that uses an implicit and explicit
formulation for strong and weak coupling, respectively, is selected to achieve computationally efficient
analysis. Based on this selection, three feasible partitioned algorithms are generated from the tuples
of the implicit and explicit formulations for the two types of coupling, namely (1) a fully strongly
coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a fully weakly
coupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially
strongly coupled and partially weakly coupled algorithm that uses an implicit formulation and an
explicit formulation for the two types of coupling, respectively. Numerical examples using a circuit-
connected piezoelectric oscillator, which is a typical structure-piezoelectric-circuit coupling problem,
are used to demonstrate that the proposed method selects a computationally efficient algorithm.

2 Coupling-Strength-Based Selection of Partitioned Algorithms for Structure-Piezoelectric-Circuit
Coupling
2.1 Governing Equations

We consider a circuit-connected piezoelectric oscillator as a general model for piezoelectric elec-
tromechanical devices. The piezoelectric oscillator and the electric circuit are connected to each other
via electrodes. This oscillator can include metal substructures. The electrodes and metal substructures
are considered to be a pseudo-piezoelectric material [18], such that the electromechanical behavior of
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the circuit-connected piezoelectric oscillator is governed by the same equations as those for structure-
piezoelectric-circuit coupling.

The piezoelectricity of the material can be described as

σij,j + fi = ρüi (1)

Di,i = 0 (2)

where σ ij is the ij-th component of the mechanical stress tensor; f i, üi, and Di are the i-th components
of the body force, mechanical acceleration, and electric displacement vectors, respectively; and ρ is the
mass density. The constitutive equations for the linear piezoelectricity are

σij = CE
ijklSkl − ekijEk (3)

Di = eiklSkl + εS
ikEk (4)

where Cijkl is the ijkl-th component of the elastic tensor; eijk is the ijk-th component of the piezoelectric
constant tensor; Sij and εij are the ij-th components of the mechanical strain and dielectric constant
tensors, respectively; and Ei is the i-th component of the electric field vector. The superscripts E and
S denote that the quantities are determined under constant electric and strain fields, respectively. Sij

is given as (ui,j + uj,i)/2, and Ei is given as −ϕ ,i, where ui is the i-th component of the mechanical
displacement vector, and ϕ is the electric potential. The elementary boundary conditions are the
prescribed displacement and electric potential, and the natural boundary conditions are the prescribed
surface force and charge.

Eqs. (1)–(4) are spatially discretized using the standard finite element procedure [20]. The matrix-
vector form equations of motion for linear piezoelectricity are derived in the global coordinate
system as

Muuü + Kuuu + Kuϕϕ = fe (5)

KT
uϕ

u + Kϕϕϕ = qe + qc (6)

where Muu is the global matrix of the structural mass; Kuu, Kuϕ, and Kϕϕ are the global matrices of
the mechanical, piezoelectric, and dielectric stiffness, respectively; u and ϕ are the nodal global state
variable vectors for the mechanical displacement and electric potential; f and q are the nodal global
equivalent vectors for the mechanical external force and charge, respectively; and the subscript e and
c denote “external” and “circuit”, respectively.

The electrical resistive load is considered to be the circuit. The electrical behavior can be described
using Kirchhoff’s law as

RQ̇ + Vp = Ve (7)

where R is the electric resistance, Q is the charge of the electricity, V p is the electric potential gap
between the electrodes given by the piezoelectric material, and V e is the electric voltage given by the
external supply.

Under the assumption of an instantaneous distribution of the circuit charge throughout each
electrode, the continuities of the electric potential and charge between the piezoelectric continuum
and the electric circuit can be formulated as

qc =
∫

Sc+
Nϕ

(
Q/Sc

+
)

dS −
∫

Sc−
Nϕ

(
Q/Sc

−
)

dS (8)
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Vp = ϕ+
∗ − ϕ−

∗ (9)

where ϕx
∗ denotes the electric potential at a point where the circuit is connected in the area of the

electrode Sx
c (x is +, which corresponds to the positive pole, or −, which corresponds to the negative

pole); and Nϕ is the global assemblage of the shape functions of the electric potential.

2.2 Algorithm Selection Based on Coupling Strength
In the proposed coupling-strength-based selection of partitioned algorithms for structure-

piezoelectric-circuit coupling, an algorithm that uses an implicit formulation for strong coupling and
an explicit formulation for weak coupling is selected to achieve computationally efficient analysis.
Based on this selection, feasible partitioned algorithms are generated from the tuples of the implicit
and explicit formulations for the two types of coupling. The coupling condition that corresponds
to inverse and direct piezoelectric coupling is satisfied if the following coupling terms in governing
Eqs. (5) and (6) are accurately evaluated:

Kuϕϕ and KT
uϕ

u (10)

while the coupling condition that corresponds to direct piezoelectric and circuit coupling is satisfied if
the following coupling terms in governing Eqs. (6) and (7) are accurately evaluated:

qc and Vp (11)

First, we present the fully strongly coupled algorithm that uses a fully implicit formulation for both
types of coupling. In the proposed coupling-strength-based selection method, this algorithm is selected
in the case where both the inverse and direct piezoelectric coupling, and the direct piezoelectric and
circuit coupling are strong. Note that this algorithm was proposed in a previous study [9], where the
in-house code was developed and verified using the benchmark problems. In this study, this code was
used to implement the following new algorithms. Second, we propose the partially strongly coupled
and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation
for the two types of coupling, respectively. In the proposed coupling-strength-based selection method,
this algorithm is selected in the case where the inverse and direct piezoelectric coupling is strong and the
direct piezoelectric and circuit coupling is weak. Finally, we propose the fully explicit algorithm that
uses a fully explicit formulation for both types of coupling. In the proposed coupling-strength-based
selection method, this algorithm is selected in the case where both the inverse and direct piezoelectric
coupling and the direct piezoelectric and circuit coupling are weak.

2.3 Partitioned Algorithms for Structure-Piezoelectric-Circuit Coupling
2.3.1 Algorithm 1: Fully Strongly Coupled Algorithm Using Fully Implicit Formulation for Both Types
of Coupling

The governing equations for structure-piezoelectric-circuit coupling (5)–(7) are temporally dis-
cretized at current time t+�t such that all the coupling conditions are satisfied; that is, all the coupling
terms in Eqs. (10) and (11) are evaluated at current time t+�t as follows:

Muu
t+�tü + Kuu

t+�tu + Kuϕ
t+�tϕ = t+�tfe (12)

KT
uϕ

t+�tu + Kϕϕ
t+�tϕ = t+�tqe + t+�tqc (13)

Rt+�tQ̇ + t+�tV p = t+�tV e (14)
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The relationships among the mechanical state variables can be given as
t+�tu̇ = tu̇ + �t

[
γ t+�tü + (1 − γ ) tü

]
(15)

t+�tu = tu + �ttu̇ + �t2
[
β t+�tü + (1/2 − β) tü

]
(16)

where β and γ are the control parameters of Newmark’s method. Eq. (12) can be rewritten, using these
relationships, as

K̂uu
t+�tu + Kuϕ

t+�tϕ = t+�tf̂ (17)

where

K̂uu ≡ Kuu + (
1/β�t2

)
Muu (18)

t+�tf̂ ≡ t+�tfe + (
1/β�t2

)
Muu

[
tu + �ttu̇ + (1/2 − β) �t2tü

]
(19)

The relationship between the electrical state variables is given as
t+�tQ = tQ + �t

[
(1 − γ ) tQ̇ + γ t+�tQ̇

]
(20)

where γ is the control parameter of the generalized trapezoidal rule. Eq. (14) can be rewritten using
this relationship as
t+�tQ = tQ + �t

[
(1 − γ ) tQ̇ + γ

(
t+�tV e − t+�tV p

)
/R

]
(21)

The block Gauss–Seidel (BGS) method is used to solve Eqs. (13), (17), and (21) as follows [9]:

K̂uu
t+�tu(b) = t+�tf̂ − Kuϕ

t+�tϕ(b−1) (22)

Kϕϕ
t+�tϕ(b) = t+�tqe + t+�tqc

(b) − KT
uϕ

t+�tu(b) (23)

t+�tQ(b) = tQ + �t
{
(1 − γ ) tQ̇ + γ (t+�tV e − t+�tV (b−1)

p )/R
}

(24)

where the right-hand superscript b in parentheses denotes the b-th iteration of the BGS loop. Note
that t+�tqc

(b) in Eq. (23) and t+�tV p
(b−1) in Eq. (24) are respectively given by the continuity Eqs. (8) and

(9) as

t+�tqc
(b) =

∫
Sc+

Nϕ(
t+�tQ(b)/Sc

+)dS −
∫

Sc−
Nϕ(

t+�tQ(b)/Sc
−)dS (25)

t+�tV (b−1)

p = t+�tϕ+
∗(b−1) − t+�tϕ−

∗(b−1) (26)

The analysis flow of this partitioned algorithm is shown in Fig. 1. As shown, in the BGS loop,
the inverse piezoelectric Eq. (22) and the circuit Eq. (24) are solved in parallel, and then the direct
piezoelectric Eq. (23) is solved. The BGS loop is then repeated. This algorithm is referred to as
Algorithm 1 in Section 3.

The time constant of the corresponding RC circuit is imposed on the time increment for the
convergence of the coupled iteration in the fully strongly coupled algorithm (see Section 2.4 for
details). From this observation, the forward Euler method can be used for the temporal discretization
of the circuit Eq. (7), since it imposes the same constraint on the time increment. Hence, the fully
strongly coupled algorithm is changed to the following algorithm, where the coupling condition that
corresponds to the direct piezoelectric and circuit coupling is formulated explicitly, or the coupling
term V p in Eq. (11) is predicted using the known value at the previous time step.
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Figure 1: Analysis flow of fully strongly coupled algorithm that uses fully implicit formulation for both
types of coupling

2.3.2 Algorithm 2: Partially Strongly Coupled and Partially Weakly Coupled Algorithm that Uses an
Implicit Formulation and an Explicit Formulation for the Two Types of Coupling, Respectively

The governing equations for structure-piezoelectric-circuit coupling (5)–(7) are temporally dis-
cretized such that all the coupling terms in Eqs. (10) and (11) except V p are evaluated at current time
t+�t, and V p is evaluated at previous time t. Then, we obtain Eqs. (12) and (13) and the following
equation:

Rt+�tQ̇ + tV p = t+�tV e (27)

By applying the forward Euler method to Eq. (27), this equation is discretized temporally and
rearranged as
t+�tQ = tQ + �t

(
t+�tV e − tV p

)
/R (28)

where tV p is given by the continuity Eq. (9) as
tV p = tϕ+

∗ − tϕ−
∗ (29)
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In order to solve Eqs. (12) and (13), the BGS algorithm is used. Eq. (22) is obtained again
and Eq. (23) is changed following the explicit formulation for the coupling condition of the direct
piezoelectric and circuit coupling as

Kϕϕ
t+�tϕ(b) = t+�tqe + t+�tqc − KT

uϕ

t+�tu(b) (30)

where t+�tqc is given by the continuity Eq. (8) as

t+�tqc =
∫

Sc+
Nϕ

(
t+�tQ/Sc

+
)

dS −
∫

Sc−
Nϕ

(
t+�tQ/Sc

−
)

dS (31)

in which t+�tQ is evaluated using Eq. (28).

The analysis flow of this partitioned algorithm is shown in Fig. 2. As shown, in the time loop, the
circuit Eq. (28) is solved, and then in the BGS loop, the inverse piezoelectric Eq. (22) is first solved
and then the direct piezoelectric Eq. (30) is solved. The BGS loop is then repeated. This algorithm is
referred to as Algorithm 2 in Section 3.

Figure 2: Analysis flow of partially strongly coupled and partially weakly coupled algorithm that uses
an implicit formulation and an explicit formulation for the two types of coupling, respectively
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2.3.3 Algorithm 3: Fully Weakly Coupled Algorithm that Uses Fully Explicit Formulation for Both Types
of Coupling

Kuϕϕ in the coupling terms in Eq. (10) and V p in the coupling terms in Eq. (11) are approximated
using the known variables at previous time t. Then, Eq. (12) is changed as

Muu
t+�tü + Kuu

t+�tu + Kuϕ
tϕ = t+�tfe (32)

and Eqs. (13) and (27) are obtained, where t+�tqc in Eq. (13) and tV p in Eq. (27) are respectively given
by the continuity Eqs. (8) and (9) as Eqs. (31) and (29). Newmark’s method and the forward Euler
method are applied to Eqs. (32) and (27), respectively. These equations reduce to

K̂uu
t+�tu = t+�tf̂ − Kuϕ

tϕ (33)

and Eq. (28), respectively. Eq. (13) is rearranged as

Kϕϕ
t+�tϕ = t+�tqe + t+�tqc − KT

uϕ

t+�tu (34)

The analysis flow of this partitioned algorithm is shown in Fig. 3. As shown, in the time loop,
the inverse piezoelectric Eq. (33) and the circuit Eq. (28) are solved in parallel, and then, the direct
piezoelectric Eq. (34) is solved. This algorithm is referred to as Algorithm 3 in Section 3.

Figure 3: Analysis flow of fully weakly coupled algorithm that uses fully explicit formulation for both
types of coupling



CMES, 2024, vol.138, no.2 1245

2.4 Convergence and Stability
2.4.1 Convergence of Coupling Iteration

When the BGS method is used, the conditions for the convergence of the coupling iteration are
required. The coupling iteration for the inverse and direct piezoelectric coupling is considered using
the following equations, which are respectively obtained from Eqs. (22) and (23):

K̂uu
t+�tu(b) + Kuϕ

t+�tϕ(b−1) = 0 (35)

Kϕϕ
t+�tϕ(b) + KT

uϕ

t+�tu(b) = 0 (36)

After t+�tu(b) in Eq. (36) is eliminated using Eq. (35), the following recurrence relation is obtained:
t+�tϕ(b) = �t+�tϕ(b−1) (37)

where the matrix � is defined as

� ≡ Kϕϕ
−1KT

uϕ
K̂uu

−1Kuϕ (38)

Hence, the necessary condition for convergence is that the maximum modulus of the eigenvalue
of the matrix (38) is smaller than 1.

Then, the coupling iteration for the direct piezoelectric and circuit coupling is considered using
the following equation, which is obtained from Eqs. (23) and (24):

Ct+�t
p V (b)

p = t+�tQ(b) (39)

t+�tQ(b) = tQ + �t{(1 − γ )tQ̇ − γ t+�tV (b−1)

p /R} (40)

where the piezoelectric structure is reduced to an electrical capacitor element, whose effective capac-
itance is represented by Cp. Eq. (39) is substituted into Eq. (40) and the resulting equation is
rearranged as
t+�tQ(b) = tQ + �t (1 − γ ) tQ̇ − �tγ /

(
RCp

)
t+�tQ(b−1) (41)

Hence, the necessary condition for convergence from this equation is given as∣∣�tγ /
(
RCp

)∣∣ < 1 or 0 < �t < �tc (42)

where the upper limit RCp/γ is referred to as the critical time increment �tc.

2.4.2 Stability of Time Marching

First, we consider the stability condition for the time marching that corresponds to the explicit
formulation for the direct piezoelectric and circuit coupling. The derived condition is imposed on the
time increment used in the partially strongly coupled and partially weakly coupled algorithm and the
fully weakly coupled algorithm. The present explicit formulation leads to Eq. (28). In order to consider
the stability condition associated with this formulation, Eqs. (30) or (34) is reduced to

Cp
t+�tV p = t+�tQ (43)

where the piezoelectric structure is reduced to an electrical capacitor element with equivalent capaci-
tance Cp. Substituting this equation into Eq. (28) and suitably rearranging the resulting equation gives
t+�tQ = (

1 − �t/(RCp)
)

tQ (44)
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where no external electric power supply is assumed. Hence, the stability condition of the time marching
obtained from this equation is given as∣∣1 − �t/

(
RCp

)∣∣ < 1 or 0 < �t < �tc (45)

where the upper limit 2RCp is referred to as the critical time increment �tc. Note that the stability
condition of the time marching (45) is equivalent to the convergence condition of the coupling iteration
(42) if γ = 2 or the Crank-Nicholson method is used in the fully strongly coupled algorithm.

Second, we consider the stability condition of the time marching that corresponds to the fully
explicit formulation for both types of coupling or the direct piezoelectric and circuit coupling, and
the inverse and direct piezoelectric coupling. Hence, the derived condition is imposed on the fully
weakly coupled algorithm. In order to consider the stability condition associated with this formulation,
Eqs. (32), (13), and (28) are respectively reduced to

mt+�ta + kt+�tu − θ tV p = 0 (46)

θ t+�tu + Cp
t+�tV p = t+�tQ (47)

t+�tQ = tQ − �ttV p/R (48)

where the piezoelectric structure is reduced to a SDOF model and the effective system parameters m, k,
θ , and Cp are the effective mass, stiffness, electromechanical coupling, and capacitance of the system,
respectively. The mechanical external force and the external surface charge are ignored. Eqs. (46) and
(48) are respectively reduced using Eq. (47) as[

m 0 k 0
]

t+�tX = [
0 0 −θ 2/Cp θ/Cp

]
tX (49)

[
0 0 0 1

]
t+�tX = [

0 0 θ�t/
(
RCp

)
1 − �t/

(
RCp

)]
tX (50)

where X = T[a v u Q]. Similarly, the following relationships are obtained using Newmark’s method:[−γ�t 1 0 0
]

t+�tX = [
(1 − γ )�t 1 0 0

]
t+�tX (51)

[−β�t2 0 1 0
]

t+�tX = [
(1/2 − β)�t2 �t 1 0

]
t+�tX (52)

Eqs. (49)–(52) can be summarized as follows:

At+�tX = BtX or t+�tX = CtX (53)

where the matrices A, B, and C are respectively defined as

A ≡

⎡
⎢⎢⎣

m 0 k 0
−γ�t 1 0 0
−β�t2 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (54)

B ≡

⎡
⎢⎢⎣

0 0 −θ 2/Cp θ/Cp

(1 − γ )�t 1 0 0
(1/2 − β)�t2 �t 1 0
0 0 θ�t/

(
RCp

)
1 − �t/

(
RCp

)

⎤
⎥⎥⎦ (55)

C ≡ A−1B (56)
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The matrix C (56) is the amplification matrix. The spectral radius of the amplification matrix can
be used to evaluate the stability of the damping vibration analysis. That is, the necessary condition for
the stability of the damping vibration analysis is

max
i

|λi| ≤ 1 (57)

where λi is the i-th eigenvalue of the matrix (56), and |λi| is the modulus of λi.

3 Performance Evaluation and Selection of Partitioned Algorithms Based on Coupling Strength in Shant
Damping

Shunt damping is a typical problem of circuit-connected piezoelectric oscillators. When the circuit
is an electric resistive load, free mechanical vibrations of the piezoelectric oscillator are damped due
to energy consumption as Joule heat in the electric resistive load.

To present the basic capability of the proposed coupling-strength-based selection method, a SDOF
model is considered. Then, to demonstrate the generality of the proposed method, a finite element
model is considered.

3.1 Single-Degree-of-Freedom Model of Circuit-Connected Piezoelectric Oscillator
3.1.1 Problem Setup

As shown in Fig. 4, a straight rod with a uniform square section is considered. The rod, made of a
piezoelectric material, is connected to the electrical resistance via the electrodes that cover the top and
bottom surfaces. The inertia and stiffness of the electrodes are negligible, and thus ignored, compared
to those of the rod. The rod is fixed at one end and vibrated by a step load applied to the other end.

Figure 4: Straight rod with uniform square section made of piezoelectric material

Under the assumption of uniform electromechanical properties in the rod, SDOF modeling
respectively reduces the governing Eqs. (5) and (6) to

mü + ku − θV = F (58)

θu + CpV = qe + Q (59)

where m, k, θ , and Cp are the mass, spring constant, and coefficients for piezoelectricity and
permittivity, respectively, and u, V , F , qe, and Q are the mechanical displacement, electric potential
difference, mechanical step load, external charge, and charge from the electric circuit, respectively. The
piezoelectric material is PZT-5H. The geometric and material properties of the rod are summarized
in Table 1. F is set to 1 N. The electrical resistance R is varied from 10 � to 100 M�. The case of R
= 10 � corresponds to a short circuit, and the case of R = 100 M� corresponds to an open circuit.
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Table 1: Geometric and material properties of PZT-5H rod

Material properties Piezoceramic (PZT-5H)

Length L (mm) 1000
Width w (mm) 10
Thickness t (m) 10
Young’s modulus E (GPa) 60.6
Mass density ρ (kg/m3) 7500
Piezoelectric stress constant e31 (C/m2) 16.6
Permittivity ε33 (F/m) 25.55 × 10−9

The base time increment �tbase is set to 0.1 μs, which is about 20% of the critical time increment
�tc = 2RCp in Eqs. (42) or (45) for R = 10 �. The relative difference between the solutions obtained
using �tbase and 0.1 × �tbase is less than 1%. Hence, we can consider the numerical solution obtained
using �tbase to be the convergent solution.

3.1.2 Results and Discussion

First, the numerical solution accuracy is discussed. Fig. 5 shows the relationship between the
resistive load and the damping ratio in the mechanical displacement time histories for Algorithms 1, 2,
and 3 using �tbase. As shown, these algorithms produce the same relationship. Note that Algorithm 1
was validated in the previous study [9], and the comparison between Algorithm 1 and the others using
the frequency response function can give the typical demonstration of the analysis accuracy. From
this figure, the matching impedance was numerically determined to be R = 12 k�. That is, R = 12 k�

maximizes the damping ratio in both Algorithms 1 and 2. This numerical result is very close to the
theoretical solution R = 13.1 k�, which was given by the following equation [24]:(
ωCpR

)
opt

= 1/
√

1 + k2 (60)

Figure 5: Relationship between resistance and damping ratio for shunt damping problem (SDOF
model of circuit-connected piezoelectric oscillator)
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where the natural frequency for impedance matching ω, Cp, and the effective electromechanical
coupling coefficient k2 are 2.957 × 103 rad/s, 2.555 × 10−8 F, and 1.2 × 10−1, respectively. Hence, the
numerical results obtained using Algorithms 1, 2, and 3 are sufficiently accurate.

Second, the numerical stability is discussed. We used the impedance matching case of R = 12 k�

here. Table 2 shows the relationship between the time increment �t and the maximum |λi| in Eq. (57).
As shown, the critical time increment for Algorithm 3 is 6.0 × 10−4 to 7.0 × 10−4 s. Fig. 6 shows
the mechanical displacement time histories for Algorithm 3 obtained using these time increments. As
shown in Fig. 6a, damped free vibration due to shunt damping was obtained for �t = 6.0 × 10−4 s,
and as shown in Fig. 6b, numerical instability was obtained for �t = 7.0 × 10−4 s. Hence, the stability
condition for Algorithm 3 using Eq. (57) is valid. Note that the critical time increment �tc given by
Eq. (46) is 6.1 × 10−4 s, which is consistent with the result obtained using Eq. (57).

Table 2: Relationship between time increment �t and maximum |λi| for impedance matching case of
R = 12 k�

�t (sec) Maximum |λi| in Eq. (57)

1.0 × 10−3 2.32
9.0 × 10−4 1.98
8.0 × 10−4 1.63
7.0 × 10−4 1.29
6.0 × 10−4 0.995
5.0 × 10−4 0.993
1.0 × 10−4 0.990
1.0 × 10−5 0.999

Figure 6: Time histories of mechanical displacement using Algorithm 3 with �t = (a) 6.0 × 10−4 s,
which is smaller than �tbase, and (b) 7.0 × 10−4 s, which is larger than �tbase
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Finally, the computational cost is discussed. Here, the computational cost Nc is defined as

Nc = Nb × Nt, (61)

where Nb is the number of iterations of the BGS loop, and N t is the inverse of the time increment �t∗,
which can minimize Nc while maintaining sufficient accuracy. Note that Nb for Algorithm 3 is defined
as 1. In this study, �t∗ is determined using the following algorithm:

• Increase �t from �tbase = 0.1 μs in increments of 0.01 μs (�t = 0.11, 0.12, 0.13 μs, . . . ) and
obtain the mechanical displacement time history for each �t.

• Find �t to minimize Nc while maintaining the relative error of the damping ratio between the
results obtained using �t and �tbase at less than 1%.

Figs. 7a–7c respectively show the relationship between R and Nb, that between R and �t∗ (= 1/N t),
and that between R and Nc (= Nb × N t).

Figure 7: Relationship between electric resistance and number of iterations of (a) BGS loop, (b) time
increment �t∗, and (c) computational cost

The strength of the inverse and direct piezoelectric coupling changes with R as follows. For
R → 0 (short circuit), there is no coupling because the top and bottom electrodes have the same
electric potential. For R → +∞ (open circuit), the coupling strength is maximum because there is no
voltage drop at the electric resistance. The coupling strength increases monotonically as R increases
between these two extremes. The strength of the direct piezoelectric and circuit coupling changes with
R as follows. There is no coupling at the two extremes of R→0 and ∞ because there is no electric
current in the circuit. The coupling strength is maximum in the impedance matching case because of
the maximum shunt damping. Hence, the proposed coupling-strength-based selection method selects
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Algorithm 1 in the vicinity of the impedance matching case, Algorithm 2 for large R, and Algorithm
3 for small R. These selections are consistent with the relationship between R and the computational
cost shown in Fig. 7c.

As shown in Fig. 7a, Nb for Algorithm 1 is larger than those for the other algorithms for any
electrical resistance. This is because Algorithm 1 satisfies two coupling conditions, whereas the other
algorithms satisfy only one or no coupling condition in the BGS iteration. However, as shown in this
figure, Nb values for all algorithms are comparable. In contrast, as shown in Figs. 7b and 7c, �t∗ and
Nc are strongly correlated with each other. Hence, the algorithm selection is discussed based on the
relationship between R and �t∗ as follows.

In the small-resistance region, Algorithm 3 is selected since the computational cost is minimum,
as shown in Fig. 7c. As shown in Fig. 7b, �t∗ for all algorithms monotonically increases as R increases
in this region, since the critical time increment �tc imposed on �t∗ is proportional to R. Hence, Nc
monotonically decreases in this region. After this region, �t∗ for Algorithm 2 decreases drastically as R
increases. �t∗ for Algorithm 2 is minimum in the impedance matching case of R = 12 k�, and increases
again after this R value until it reaches �t∗ for Algorithm 1. The strength of the direct piezoelectric and
circuit coupling is maximum in the impedance matching case because of the shunt damping. Hence, the
decrease of �t∗ for Algorithm 2 is due to the direct piezoelectric and circuit coupling, which is explicitly
formulated in Algorithm 2. The behavior of �t∗ for Algorithm 3 is similar to that for Algorithm 2,
since the direct piezoelectric and circuit coupling is also explicitly formulated in Algorithm 3. However,
different from Algorithm 2, �t∗ for Algorithm 3 decreases continuously as R increases beyond the
impedance matching case. This is because the strength of the inverse and direct piezoelectric coupling
increases as R increases, and, different from Algorithm 2, this coupling is explicitly formulated in
Algorithm 3.

In the vicinity of the impedance matching case, Algorithm 1 is selected, since the computational
cost is minimum as shown in Fig. 7c. In this region, the inverse and direct piezoelectric coupling and
the direct piezoelectric and circuit coupling are strong. Both types of coupling are formulated implicitly
in Algorithm 1. Hence, Algorithm 1 is most computationally efficient in this region.

In the large-resistance region, as shown in Fig. 7c, the computational efficiencies of Algorithms
1 and 2 are almost equivalent, and that of Algorithm 3 degrades as R increases. In this region, the
inverse and direct piezoelectric coupling is strong and the piezoelectric and circuit coupling is weak.
Hence, Algorithm 2 is selected.

3.2 Finite Element Model of Circuit-Connected Piezoelectric Oscillator
3.2.1 Problem Setup

As shown in Fig. 8, an energy harvester that uses a piezoelectric material is typically modeled
as a symmetric bimorph cantilevered beam with three layers. The outer two piezoelectric layers are
oppositely poled in the out-of-plane direction. The metal substructure, which is the intermediate
layer between the piezoelectric layers, is made of brass. The electrodes on the opposite faces of the
piezoelectric layers are set to be much thinner than the overall thickness and are connected to the
resistive load. The cantilever is initially subjected to bending deformation, whose magnitude at the tip
is set to utip = 2.0 μm. The substructure and electrodes are modeled as a pseudo-piezoelectric material,
whose piezoelectric constant matrix e is set to 0 and dielectric constant matrix ε is set to 1, such that
the whole system can be analyzed using a single numerical procedure [18]. The geometric and material
properties of the piezoelectric, substructure, and electrode layers are summarized in Table 3. Mixed
interpolation of tensorial components shell elements [25,26] and hexahedral quadratic 20-node solid
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elements are used for the inverse and direct piezoelectric analyses, respectively, using the degrees of
freedom transformation between solid and shell elements [27]. The reason why these elements are used
is the shell element is efficient and accurate for the thin plate bending analysis, while the solid element is
necessary for describing the three-dimensional distribution of the electric quantity in the piezoelectric
continuum. The numbers of in-plane mesh divisions of the cantilever are 10 and 1, respectively, along
the longitudinal and width directions. The numbers of divisions of the solid mesh along the thickness
direction are 3 for each piezoceramic layer, 2 for the intermediate layer, and 1 for each electrode layer.
γ = 0.5 is used in the time integration method, which corresponds to the Crank–Nicholson method.
�tbase is set to 1.0 × 10−6 s, which is about 25% of �tc in Eqs. (42) and (45) using R = 470 �.

Figure 8: Bimorph cantilever energy harvester

Table 3: Geometric and material properties of bimorph cantilever

Piezoceramic Intermediate Electrodes

Length L (mm) 24.53
Width b (mm) 6.4
Thickness t (mm) 0.265 0.140 0.0100
Mass density ρ (kg/m3) 7500 9000 1.0∗1

Young’s modulus E (GPa) 60.6 105 1.0 × 10−9∗1

Poisson’s ratio ν 0.3 0.3 0.3
Piezoelectric constant e31 (C/m2) 16.6 0∗2 0∗2

Permittivity ε33 (F/m) 25.55 × 10−9 1.0∗2 1.0∗2

Note: ∗1 These values were determined such that the contribution of the electrodes to the stiffness and inertia in the
dynamics was negligible. ∗2 These values were determined using the pseudo piezoelectric material method [18].

3.2.2 Results and Discussion

Fig. 9 shows the time histories of the tip bending displacement of the bimorph obtained using
Algorithms 1 and 2. As shown, shut damping appears for all cases of R. This energy consumption
is most significant in the impedance matching case (Fig. 9b). Fig. 10 shows the relationships between
the resistive load and the damping ratio in the time histories of the tip bending displacement obtained
using Algorithms 1 and 2 with �tbase. As shown, these algorithms produce the same relationship. Note
that Algorithm 1 was validated in the previous study [9], and the comparison between Algorithm 1 and
the others using the frequency response function can give the typical demonstration of the analysis
accuracy. From this figure, the matching impedance was determined to be 34 k�. That is, R = 34 k�

maximizes the damping ratio in both Algorithms 1 and 2. This numerical result is very close to the
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theoretical solution R = 37.8 k� given by Eq. (60), where ω, Cp, and k2 are 3.281 × 103 rad/s, 7.568 ×
10−9 F, and 3.716 × 10−1, respectively. Hence, the numerical results obtained using Algorithms 1 and
2 are sufficiently accurate.

� � �

Figure 9: Time histories of tip bending displacement of bimorph for electric resistance values of (a) R
= 470 �, (b) 34 k�, and (c) 995 k�

Figure 10: Relationship between resistance and damping ratio for shunt damping problem (finite
element model of circuit-connected piezoelectric oscillator)

In contrast, as shown in Fig. 11, numerical instability was observed in the results obtained using
Algorithm 3 with �t equal to or smaller than �tbase. Note that �tbase is about 25% of �tc in Eqs. (42)
and (45), which corresponds to the explicit formulation of the direct piezoelectric and circuit coupling.
We also examined �tc obtained using Eq. (57), which corresponds to the explicit formulation of both
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the inverse and direct piezoelectric coupling, and the direct piezoelectric and circuit coupling. Under
the assumption of a first bending mode, the effective system parameters in the governing Eqs. (46)–(48)
of a SDOF system can be determined as [28]

m = (
ρsts + 2ρptp

)
b (62)

k = [
1.0302Es

(
t3

s/L4
) + 2.0604Ep

(
3t2

s tp + 6tst2
p + 4t3

p

)
/L4

]
b (63)

θ = −2.753d31Epb
(
ts + tp

)
/
√

L3 (64)

Cp = 2K s
3ε0bL/tp (65)

where d31 is the piezoelectric strain constant, K3
s is the relative dielectric constant at constant

strain, and the subscripts s and p denote the substructure and piezoelectric layers, respectively. The
relationship between �t and the maximum |λi| in Eq. (57) is given in Table 4. As shown, the maximum
|λi| is not smaller than 1 for any �t. Note that this result is an evaluation of numerical stability for first-
bending-mode vibration, whereas the finite element model includes higher-mode vibration. Hence, the
numerical instability observed in Fig. 11 was caused by higher-mode vibration.

Figure 11: Time histories of mechanical displacement obtained using Algorithm 3 with (a) �t = �tbase

and R = 34 k� and (b) �t = 0.1 × �tbase and R = 34 k�

Finally, the computational cost is discussed, which is defined as Nc in Eq. (61). Following this
equation, the unit of Nc is the number of computations per unit time. Here, we consider only
Algorithms 1 and 2, since Algorithm 3 is unconditionally unstable, as discussed above. Figs. 12a and
12b show the relationship between the electric resistance R and the computational cost Nc for the
SDOF model and the finite element model, respectively. As shown, the relationships are very similar.
As shown in Fig. 12b, similar to the case for the SDOF model, Algorithm 1 is selected in the vicinity of
the impedance matching case and Algorithm 2 is selected in other regions of R. These results confirm
that the proposed coupling-strength-based selection method selects the best partitioned algorithm in
terms of computational efficiency.
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Table 4: Relationship between time increment �t and maximum |λi|

�t (sec) Maximum |λi| in Eq. (57)

R = 470 � R = 34 k� R = 995 k�

280 3.08 1.17
10−3 27.1 0.976 1.02
10−4 1.81 0.997 1.00
10−5 1.00 1.00 1.00
10−6 (=�tbase) 1.00 1.00 1.00
10−7 1.00 1.00 1.00

Figure 12: Relationship between electric resistance and computational cost for (a) SDOF model and
(b) finite element model

4 Concluding Remarks

In this study, a coupling-strength-based selection method of partitioned algorithms was proposed
for structure-piezoelectric-circuit coupling. In the proposed method, implicit and explicit formulations
are used for strong and weak coupling, respectively. A coupled multiphysics problem that includes
inverse and direct piezoelectric coupling and direct piezoelectric and circuit coupling was considered.
In a circuit-connected piezoelectric oscillator, which is a typical structure-piezoelectric-circuit coupling
problem, the strength of these two types of coupling changes with the electric resistive load. Hence,
we generate three feasible partitioned algorithms based on the proposed coupling-strength-based
selection, namely (1) the fully implicit partitioned algorithm (proposed in our previous study), (2)
the partially implicit and partially explicit partitioned algorithm (proposed here), and (3) the fully
explicit partitioned algorithm (proposed here). In numerical experiments using circuit-connected
piezoelectric oscillator models, we evaluated these algorithms in terms of computational efficiency,
which was measured using the computational cost. In the small-electric-resistance region, the fully
explicit partitioned algorithm or the partially implicit and partially explicit partitioned algorithm is
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selected since they both explicitly formulate the inverse and direct piezoelectric coupling, which is weak
in this region. In the vicinity of the impedance matching case, the fully implicit partitioned algorithm
is selected since it implicitly formulates both types of coupling, which are strong in this region. In
the large-electric-resistance region, the partially implicit and partially explicit partitioned algorithm is
selected since it implicitly formulates the inverse and direct piezoelectric coupling, which is strong, and
explicitly formulates the direct piezoelectric and circuit coupling, which is weak. The numerical results
clearly demonstrate a consistency between the computational cost and the coupling-strength-based
selection. Hence, it can be concluded that the proposed coupling-strength-based selection method
effectively selects partitioned algorithms in the coupled multiphysics problem. The proposed method
can be used as a framework for designing partitioned algorithms in coupled multiphysics problems. In
future work, we will apply this framework to more complicated coupled multiphysics problems such
as fluid-structure-piezoelectric-circuit coupling, which should be considered in the design process of
flapping-wing nano air vehicles [29–31]. In this multiphysics problem with three types of coupling, 3-
tuples of the set S with elements of two or more coupling formulations represent possible partitioned
algorithms, where the maximum number of partitioned algorithms is 23 or more. Hence, an algorithm
design framework that uses the proposed coupling-strength-based selection method will be important
for complicated coupled multiphysics problems.
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