
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computer Modeling in
Engineering & Sciences echT PressScience

DOI: 10.32604/cmes.2023.031103

ARTICLE

Strategic Contracting for Software Upgrade Outsourcing in Industry 4.0

Cheng Wang1,2,* and Zhuowei Zheng1

1College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
2Taizhou Research Institute, Zhejiang University of Technology, Taizhou, 318001, China

*Corresponding Author: Cheng Wang. Email: cwang@zjut.edu.cn

Received: 14 May 2023 Accepted: 06 July 2023 Published: 17 November 2023

ABSTRACT

The advent of Industry 4.0 has compelled businesses to adopt digital approaches that combine software to
enhance production efficiency. In this rapidly evolving market, software development is an ongoing process that
must be tailored to meet the dynamic needs of enterprises. However, internal research and development can be
prohibitively expensive, driving many enterprises to outsource software development and upgrades to external
service providers. This paper presents a software upgrade outsourcing model for enterprises and service providers
that accounts for the impact of market fluctuations on software adaptability. To mitigate the risk of adverse
selection due to asymmetric information about the service provider’s cost and asymmetric information about
the enterprise’s revenues, we propose pay-per-time and revenue-sharing contracts in two distinct information
asymmetry scenarios. These two contracts specify the time and transfer payments for software upgrades. Through
a comparative analysis of the optimal solutions under the two contracts and centralized decision-making with
full-information, we examine the characteristics of the solutions under two information asymmetry scenarios and
analyze the incentive effects of the two contracts on the various stakeholders. Overall, our study offers valuable
insights for firms seeking to optimize their outsourcing strategies and maximize their returns on investment in
software upgrades.

KEYWORDS
Software upgrade outsourcing; the principal-agent; information asymmetry; reverse selection; contract design

1 Introduction

To lead the new industrial revolution, countries are reviving their manufacturing industry [1,2].
Germany, an old manufacturing powerhouse, stands out by proposing Industry 4.0. Industry 4.0 aims
to transform machine-led manufacturing into digital manufacturing by utilizing advanced information
technology [3].

In the battle for the digitalization of manufacturing, software as an intermediary link between
virtual and real interaction, has injected new energy into R&D, simulation verification, manufacturing,
management, sales, and service in the manufacturing industry [4]. With government support, some
large manufacturing enterprises have taken the lead in becoming trial sites and integrating software
into their manufacturing processes. Siemens, a world-class industrial giant with a presence in home

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2023.031103
https://www.techscience.com/doi/10.32604/cmes.2023.031103
mailto:cwang@zjut.edu.cn


1564 CMES, 2024, vol.138, no.2

appliances, communications, medical, industrial, and other fields, has been a major beneficiary of
software applications in its products and projects. Nowadays, more and more enterprise managers are
increasingly aware of the benefits of software in improving efficiency. Moreover, the scope of software
applications is no longer limited to internal enterprise operations. Instead, there is a growing interest in
using software in the supply chain to achieve cooperation with upstream and downstream enterprises
and overcome barriers across all links.

Software development is an ongoing process for enterprises. As market fluctuations occur and
enterprise scales expand, software must be upgraded to meet the evolving needs of the business.
Software upgrading involves updating the software from a lower version to a higher version. Market
trends, industry transformations, or institutional replacements often require enterprises to upgrade or
adjust their software. For instance, policies that promote “Internet + E-commerce” marketing models
prompt enterprises to successively upgrade software to improve operating efficiency by focusing
on procurement and distribution. Moreover, the complexity within the enterprise affects the scale
of the enterprises, which is a dynamic process. As the number of employees increases, changes in
management methods, technological progress, and adjustments to business chains make it difficult for
closed software with single functions and outdated technology to respond quickly to enterprise needs.
Upgrading the software to develop more functional services can help enterprises carry out various
tasks smoothly and overcome inertia tendencies, thereby increasing enterprise profits [5].

Enterprises have two options for upgrading their software: self-upgrading and outsourcing.
When enterprises opt to upgrade their software independently, they typically possess some in-house
development capacity, and their internal IT department provides the software upgrade service.
In this way, enterprise decision-makers can readily comprehend the software upgrade’s direction,
monitor development progress, and enjoy the convenience of the ensuing maintenance, upgrade, and
optimization processes. Alternatively, outsourcing involves hiring professional service providers like
IBM, Oracle, and Microsoft, who have emerged as software service providers with their professional
technology and development capabilities and can provide one-stop software upgrade services to the
enterprise.

The distinguishing factor in the context of Industry 4.0 is the emphasis on integration and digi-
tization. Industry 4.0 implementation involves three key dimensions: vertical integration, horizontal
integration, and end-to-end integration [6]. Vertical integration focuses on achieving intelligent inter-
connection and digitization within the production system, primarily through production networking.
Horizontal integration aims to achieve intelligent interconnection and digitization between organi-
zations across the entire value network [7]. Lastly, end-to-end integration seeks to achieve intelligent
interconnection and digitization throughout all stages of the lifecycle. In short, vertical integration
primarily addresses digital integration within an organization. On the other hand, horizontal and
end-to-end integration focus on establishing cross-organizational digital networks involving various
entities. The method of enterprise software upgrade plays a crucial role in this context. When an
enterprise chooses to independently upgrade its software, the upgrade service is typically provided
by the enterprise’s IT department, falling under the category of vertical integration. Conversely, when
an enterprise outsources the software upgrade to an external service provider, it involves both the
enterprise and the service provider, constituting horizontal integration.

The rise of software outsourcing has brought attention to the principal-agent relationship between
enterprises and service providers. The principal-agent theory highlights the risk of reverse selection
when there is ex-ante information asymmetry and inconsistent interests between parties [8,9]. In the
context of software outsourcing, the service provider typically possesses more information about



CMES, 2024, vol.138, no.2 1565

the software upgrade’s capabilities, qualifications, quality, and cost, while the enterprise has greater
knowledge of the software’s business value, industry characteristics, and business process. Such
information asymmetry can lead to conflicts and damaged interests of one party over the other.

An effective mechanism or contract can address the reverse selection problem that arises due to
inconsistent interests and asymmetric information of both parties [10]. In the context of Industry 4.0,
the traditional contracts used in software outsourcing may need to be adapted to accommodate the
specific characteristics and requirements of digital manufacturing. Unlike traditional manufacturing
processes, Industry 4.0 involves a higher level of automation, connectivity, and data exchange, requir-
ing software to be adaptable, scalable, and capable of integrating with various digital technologies
and devices. Therefore, the contracts for software upgrade outsourcing in the context of Industry
4.0 should consider these unique aspects and ensure the software’s compatibility and interoperability
within the digital manufacturing ecosystem.

The motivating context for this problem is the design of contracts for customized software upgrade
supply chain in the Industry 4.0 era, consisting of an enterprise and a service provider. The service
provider offers tailored software upgrade services to the enterprise, which faces a diminishing utility of
its current software version due to market fluctuations. Given the existence of asymmetric information
in software upgrade outsourcing, we adopt a principal-agent model. Within this framework, the
agent possesses superior information, while the principal lacks crucial knowledge and assumes
the responsibility of contract design. In order to motivate agents to engage in software upgrades,
the principal must devise a contract menu that offers multiple options, tailored to each agent type.
During the contract design phase, agents reveal their information type by selecting the contract aligned
with their characteristics. In the contract execution phase, the service provider delivers the upgrade
service to the enterprise at the appropriate time, and in return, the enterprise compensates the provider
with the corresponding fee. By solving the equilibrium solutions for different scenarios, we derive
software upgrade time and generalize the characteristics of the solutions. Ultimately, this research
provides managerial implications for enhancing the efficiency and effectiveness of software upgrade
outsourcing contract.

Our paper makes the following contributions: Firstly, we investigate the optimal software upgrade
timing decision in response to market fluctuations when a centralized decision is made with full-
information. Secondly, we use contracts to address the information asymmetry between the service
provider and the enterprise in two scenarios where the former has cost information and the latter
has revenue information. Thirdly, we explore the impact of different performance-based contracts on
software upgrade timing decisions and profits under information asymmetry. Finally, we compare
the equilibrium solutions of using a pay-per-time contract and a revenue-sharing contract under cost
and revenue information asymmetry scenarios, respectively, to determine their incentive effects on the
parties involved.

This research holds significant importance for both enterprises and service providers operating
in the software outsourcing market. By introducing a novel software upgrade outsourcing model
that incorporates the influence of market fluctuations on software adaptability, this study presents a
valuable decision framework that differs from traditional research perspectives. The proposed pay-per-
time and revenue-sharing contracts address the challenges of adverse selection caused by asymmetric
information. Through a comparative analysis, the research highlights the characteristics and incentive
effects of these contracts on various stakeholders. The findings not only provide a theoretical basis
for future research and further exploration of optimal contract design in software outsourcing but
also offer practical insights for firms in making informed outsourcing decisions and maximizing their



1566 CMES, 2024, vol.138, no.2

returns on investment. The innovative nature of this research lies in its ability to merge the principles of
Industry 4.0 with software upgrade outsourcing, effectively empowering enterprises to optimize their
software systems and adapt to the demands of the digital era.

The framework of this paper is as follows: The literature review in Section 2 provides an overview
of relevant research. Section 3 outlines the software upgrade outsourcing model between the enterprise
and the service provider. In Section 4, we solve for the optimal software upgrade timing strategy
under complete information centralized decision-making. Section 5 investigates the impact of two
performance-based contracts on optimal software upgrade timing decision-making under incomplete
information decentralized decision-making. Finally, Section 6 summarizes our work and findings. The
proof process for the Propositions in this paper is detailed in Appendixes A and B.

2 Literature Review
2.1 Software Outsourcing

This section will elaborate on the characteristics of software outsourcing from three perspectives:
enterprise software development strategy, software outsourcing objects, and asymmetric information.

Software development strategy in an enterprise can be classified into two categories based on the
mode of development: internal development and outsourcing [11]. Enterprises that opt for in-house
development typically have a certain level of R&D capability, which enables them to maintain strict
control over the direction and progress of software development. In contrast, software outsourcing
involves subcontracting part or all of an enterprise’s software project to an external service provider.
Software outsourcing can be further divided into full outsourcing and partial outsourcing based on
the degree of outsourcing [12,13]. Most enterprises choose software outsourcing to reduce costs, access
advanced resources, and focus on their core business. However, software outsourcing also comes with
risks, such as loss of control over information systems, hidden costs, and loss of innovation [14].

Research on the economic aspects of enterprise software development strategies dates back to
Richmond et al. [15], who explored the impact of different revenue rules on enterprises’ decisions to
choose between in-house development or outsourcing, based on a two-stage software development
model. Another study by Wang et al. [16] compared the value brought to the company by in-
house development and software outsourcing, and determined that in-house R&D would generate
more net profit. Early literature analyzed the software development strategies of enterprises, internal
development or software outsourcing, mainly from an economic perspective. In contrast, this paper
focuses solely on enterprise software outsourcing and aims to achieve the same level of results as in-
house R&D through effective contract design.

When enterprises choose to outsource their software, outsourcing can be classified into two
types: software development outsourcing and software upgrade outsourcing, based on the specific
outsourcing object. Software development outsourcing involves the outsourcing of software develop-
ment processes to external service providers, who help the enterprise to create software from scratch.
Casado-Lumbreras et al. [17] have identified various challenges and opportunities associated with
enterprise software development. To address the potential conflicts between the host firm and the
outsourcing firm, Bandyopadhyay et al. [18] developed a knowledge-sharing model for software
outsourcing teams.

A software upgrade is a newer version of the software that has been developed. Enterprise software
upgrades are usually pursued for various reasons, such as reducing operational costs, pursuing
new business opportunities, or breaking free from inertia tendencies. When an enterprise decides



CMES, 2024, vol.138, no.2 1567

to outsource software upgrades, the service provider is often the same one that provides software
development services. Despite the widespread practice of outsourcing software upgrades, there is
relatively little literature on this topic. Pricing is one of the major concerns of enterprises. To price their
products, software providers need to consider the attractiveness of both current and future versions.
Kornish [19] developed a two-stage game model that demonstrates the existence of an equilibrium
pricing strategy if special pricing is applied to consumers who purchase earlier versions. Meanwhile,
Bala et al. [20] studied the optimal pricing of new versions by examining the relationship between
the magnitude of software product improvements and the structure of equilibrium pricing. Instead of
focusing on pricing strategies for new software versions, we explore the adaptability of software and
the optimal software upgrade timing strategy.

When enterprises outsource software development, they often face information asymmetry with
the external service provider. Existing research categorizes information asymmetry into three types:
(1) ex-ante and ex-post information asymmetry based on when it occurs, (2) information type
and behavioral information asymmetry based on the content of information, and (3) information
asymmetry of the service provider and the outsourcer based on the subject of the information. These
three categories of information asymmetry are common in studies related to outsourcing. In the
software outsourcing literature, studies typically focus on software value, cost, quality, capability,
effort, and other types of information [21–23].

2.2 Adverse Selection Problem and Its Solution
The software upgrade outsourcing relationship between the service provider and the enterprise can

be seen as a principal-agent relationship. However, this relationship is characterized by inconsistent
interests and information asymmetry, leading to adverse selection [24,25]. Adverse selection occurs
when one party in the market uses more information than the other party (such as software value,
cost, and agent ability information) to benefit themselves and harm the other party’s interests before
the contract is signed [26]. In different fields, research has provided insights to address the adverse
selection problem for ex-ante information asymmetry in various contexts.

In their study of carbon capture and storage systems, Cai et al. [27] developed a principal-
agent model that addresses the adverse selection problem caused by asymmetric ex-ante information
between contracting parties. An interesting aspect of their work is the consideration of a heterogeneous
distribution of agent demand with varying levels under each distribution. Many studies focus on the
asymmetric information in only one scenario, our paper investigates the adverse selection problem
in two scenarios: the service provider’s cost information asymmetry and the enterprise’s revenue
information asymmetry.

An effective contract design can solve the adverse selection problem between the contracting par-
ties. Considering that outsourcing investments are irreversible and costs are uncertain, Yao et al. [28]
analyzed the issues of when to outsource, how to choose a contract, and how to negotiate an
outsourcing contract by building a model.

In the software outsourcing domain, contracts are often incomplete due to unpredictable events in
an incomplete contract environment [29]. Time-and-materials (T&M) contracts and fixed-price (FP)
contracts are two common types used [30]. T&M contracts have some risk protection and consist of
two components: the project development cost and the service provider’s profit. In contrast, fixed-
price (FP) contracts have a price cap and are not adjusted once set within the agreed risk range. FP
contracts are less efficient for software projects with high uncertainty in software development costs,
and are suitable for software projects with low development difficulty and short development time.



1568 CMES, 2024, vol.138, no.2

T&M contracts can be used for relatively difficult software projects, but need to be coupled with project
supervision and require enterprises to have relevant software development knowledge. According to
Gopal et al. [31], FP contracts make providers more efficient in the software development process and
develop higher-quality software.

As software development becomes more complex, contract designers are increasingly considering
performance-based contracts (PB) to align the interests of both parties. PB contracts tie the service
provider’s revenue to the quality and performance of the software. Revenue-sharing (RS) contracts
are the most common type of PB contract, where the revenue generated by the software is shared
between the service provider and the enterprise. Contract designers need to select and design contracts
based on the specific requirements of software outsourcing projects and incentive goals to achieve the
optimal outcome. To address the challenge of monitoring service provider efforts during software
development, Huang et al. [32] explored the effect of monitoring on the choice between a time-and-
material contract and a revenue-sharing contract. In this paper, we investigate the impact of two
performance-based contracts, pay-per-time and revenue-sharing contracts on the optimal software
upgrade time.

3 The Model

This section presents the software upgrade outsourcing model between an enterprise and a
service provider. The enterprise relies on customized software to generate revenue, but over time, the
adaptability of the software decreases due to market fluctuations. The service provider offers software
upgrades to the enterprise, aiming to enhance its software’s adaptability. Both parties must make
strategic decisions regarding the optimal timing of software upgrades. This section outlines the key
elements of the software upgrade outsourcing model.

Software Adaptability Deterioration: The software’s adaptability gradually diminishes as it oper-
ates in a changing market environment. Initially, when the software is fully adapted to the current
environment, it generates significant revenue per unit time denoted as R, which varies based on the
scale of the enterprise. The larger the enterprise, the higher the revenue per unit time that can be
generated for the enterprise when the software is fully adapted to the current environment.

However, due to market fluctuations represented by σ , a gap emerges between the existing software
version and the version that is adaptable to the current environment. This gap is quantified as the
degree of software deviation D(t), which increases with the length of time t the software is in use and is
influenced by market fluctuations σ , as shown in Fig. 1. For convenience, we normalize D(t) to a range
between 0 and 1. The parameter σ determines the speed at which the software deviates from its fully
adaptable state. We assume that the degree of software deviation follows the functional relationship
[33]:

D(t) = 1 − e−σ t (1)

where D(t) ranges from 0 to 1. In the context of our study, t has two interpretations: (1) the time of
software upgrade and (2) the running time of existing software version.

Enterprise Perspective: The existence of a gap between the existing software version and the version
adapted to the current environment hinders enterprises from fully realizing their value, which can result
in substantial costs. For instance, in the “Internet + E-commerce” marketing mode, many enterprises
have upgraded their software to remain competitive. Failure to take action may lead to the erosion
of the enterprise’s original market share by competitors that have adopted “Internet + E-commerce”



CMES, 2024, vol.138, no.2 1569

models, resulting in financial losses. Therefore, the actual revenue P of the enterprise comprises two
components: revenue received when the software is fully adapted to the current environment and lost
due to the gap between the existing software version and the software version adapted to the current
environment. Mathematically, this can be expressed as:

P(t) = R
∫ t

0

[1 − D(x)] dx (2)

The service provider offers software upgrades to the enterprise, and in return, the enterprise pays
the service provider a fee, denoted by T . We assume that the software upgrade provided by the service
provider will be successful.

Figure 1: The relationship between the degree of software deviation and upgrade practices and market
volatility

The Service Provider Perspective: The service provider incurs costs associated with software
upgrades, comprising fixed costs and variable costs. The fixed costs K represent the resources invested
by the service provider, including human resources, for each software upgrade. The variable costs C(D)

depend on the degree of software deviation at the time of upgrade. As the deviation increases, the
service provider incurs higher variable costs, exhibiting a marginal increasing trend. Previous literature
has provided insights into the variable cost functions, and we adopt the following form [27]:

C(D) = 1
2

kD2 (3)

where k denotes the variable cost coefficient for the service provider to upgrade the software.

Performance-Based Contracts: In the realm of service contracts, performance-based (PB) con-
tracts are commonly employed to align the agent’s interests with those of the principal. These contracts
establish a direct link between the agent’s profits and their performance, thereby incentivizing actions
that benefit the principal. Our study focuses on two specific types of PB contracts: pay-per-time
contracts and revenue-sharing contracts.

The pay-per-time contract encompasses two key elements: the timing of software upgrades and
transfer payments. This contract structure outlines when the software upgrades should take place
and determines the corresponding transfer payments to the service provider. On the other hand,
the revenue-sharing contract entails a collaborative approach between the enterprise and the service
provider, where they jointly partake in the revenue generated by the software. Similar to the pay-per-
time contract, this arrangement incorporates considerations regarding the optimal timing of software



1570 CMES, 2024, vol.138, no.2

upgrades. Additionally, it outlines the proportion of revenue that the service provider will receive as
part of the transfer.

The existence of unobservable information (the service provider’s cost information/the enterprise’s
revenue information) gives rise to the challenge of adverse selection in software upgrade outsourcing
contracts. This information asymmetry poses a significant hurdle prior to contract signing. However,
despite the inability to directly observe the asymmetric information between the service provider and
the enterprise, the party at the information disadvantage in our model can strategically design the
contract to gain insights into the information advantage held by the other party.

Assumptions: To simplify the calculation process, our model does not consider the time required
for the service provider to develop the new version, the time needed for the enterprise to install the
new version, and the impact of market fluctuations on the existing software version during the service
provider’s research and development phase.

For a comprehensive understanding of the model, we provide a list of parameters involved and
their descriptions in Table 1.

Table 1: Model parameters and their descriptions

Symbols Descriptions

D(t) The degree of software deviation
t The time of software upgrade
σ Market fluctuations
P(t) The actuall revenue of the enterprise
R Revenue generated for the enterprise when the software is fully adapted to the current

environment for a defined enterprise scale
T Fees paid by the enterprise to the service provider for upgrading the software
K Fixed costs for the service provider to upgrade software
C(D) Variable costs for the service provider to upgrade software
k Variable cost coefficient for software upgrades by the service provider

Next, we explore the properties of optimal software upgrade time for outsourcing in two different
settings: one with full-information and the other with incomplete information.

4 Benchmark: Centralized Decision with Full-Information

To establish a benchmark, we first analyze the optimal software upgrade timing decision in a
centralized decision-making case with full-information. In this scenario, the service provider is treated
as a department of the enterprise, and the payment from the enterprise to the service provider is purely
monetary. Hence, the problem is to determine the optimal software upgrade time t to maximize the
system’s expected profits. The optimal expected profits of the system are expressed below:



CMES, 2024, vol.138, no.2 1571

max
t

W(t) = P(t) − C[D(t)] − K = R
∫ t

0

[1 − D(x)]dx − 1
2

kD2(t) − K (4)

subject to

t ≥ 0 (5)

Proposition 4.1 characterizes the optimal software decision for centralized decision-making with
full-information, which is proved in Appendix A.

Proposition 4.1. For centralized decision with full-information, when R ≥ kσ , t∗ takes infinity,
indicating that the software does not need to be upgraded during its use. When 0 ≤ R < kσ , the
optimal software upgrade time and the optimal expected profits of the system are

t∗ =
ln

(
1 − R

kσ

)

−σ
, W(t∗) = R2

2kσ 2
− K (6)

Moreover, t∗ and W(t∗) are increasing in R and decreasing in σ .

The optimal software upgrade timing decision for centralized decision with full-information can
be divided into two cases. In the first case, where R ≥ kσ , t∗ is infinite, indicating that the enterprise
need not consider software upgrades after obtaining the existing software version. Moreover, the
expected profits of the system will continue to increase as long as the software is in use. This is because
any losses resulting from software deviations caused by market fluctuations are insignificant when
compared to the value that the existing software provides to the enterprise. As a result, the enterprise
is not compelled to upgrade the software.

In the second case, where 0 ≤ R < kσ , the optimal software upgrade time t∗ exists. The expected
profits of the system increase initially, then decrease over time, and reach their maximum value at
t∗. This indicates that prior to t∗, the utility derived from the existing software version is positive.
However, after t∗, enterprises are forced to enhance the value of their software through upgrades due
to the reduced overall profits.

Furthermore, for centralized decision-making with full-information, the optimal software
upgrade time is delayed as the enterprise scale expands and advanced as market fluctuations increase.
Moreover, the expected profits of the system increase with the expansion of the enterprise scale, but
decrease with the increase of market fluctuations.

5 Contract Design in the Case of Decentralized Decision with Incomplete Information

In a software upgrade outsourcing relationship, the service provider and enterprise often keep
their cost and revenue information private. This lack of transparency can result in adverse selection
if the enterprise does not have accurate access to the service provider’s cost information. The service
provider may inflate the cost of the software upgrade to secure a higher profit margin before signing
the contract. Conversely, if the service provider does not know the true revenue information of the
enterprise, the enterprise may under-report its software revenue to gain excess revenue, leading to
further adverse selection problems. To address these issues, this section proposes the use of incentive
contracts that screen the true information of service providers and enterprises in situations where they
have private information. The goal is to achieve the optimal solution in a centralized decision-making
environment with full-information.



1572 CMES, 2024, vol.138, no.2

In this section, we establish the software upgrade outsourcing relationship between the enterprise
and the service provider as a principal-agent model, based on the widely-used principal-agent theory.
In principal-agent theory, the party possessing private information is referred to as the agent, while
the party lacking information is known as the principal.

5.1 Contract Design for the Service Provider with Private Cost Information
As mentioned earlier, the service provider’s costs consist of fixed and variable costs. Fixed costs

refer to the human resource costs invested by the service provider, which can be estimated by the
enterprise based on the average salary of software developers in the market. Hence, we consider fixed
costs as common knowledge between the parties to the contract. On the other hand, variable costs
are influenced by the software deviation degree D and the cost coefficient k, which is determined
by the service provider’s business capability. A stronger business capability results in a smaller
cost coefficient, while a weaker business capability leads to a greater cost coefficient. Therefore,
information asymmetry between the parties mainly exists in the cost coefficient k.

Assuming that service providers in the market can be categorized into high-cost and low-cost types
based on their cost coefficient, denoted by kh and kl, respectively, where kh > kl. The enterprise has
no prior knowledge of the cost coefficient type of the service provider but holds prior beliefs about
its distribution. Let π1h be the probability that the service provider is of the high-cost type, π1l be the
probability that it is a low-cost type, and π1h + π1l = 1.

5.1.1 Pay-Per-Time Contract Offered by the Enterprise

We consider a scenario where the service provider possesses private cost information. In this case,
the enterprise offers a pay-per-time contract (t, T), where the service provider upgrades the software
for the enterprise at time t, and in return, the enterprise compensates the service provider with payment
T for the software upgrade. The time line between two parties can be divided into two stages: contract
design and contract execution, as illustrated in Fig. 2.

Figure 2: The time line using pay-per-time contracts where the service provider has privare cost
information

In the contract design stage, the service provider knows its cost type, but the enterprise only has
prior beliefs about the likelihood of the service provider’s variable cost coefficient type. The service
provider is presented with a contract menu,

{
(tpe

l , Tpe
l ), (tpe

h , Tpe
h )

}
, from which to choose. The superscript

pe indicates that the pay-per-time contract is provided by the enterprise. Under this contract, the
low-cost type service provider provides software upgrade services at moment tpe

l and receives the
corresponding remuneration Tpe

l , while the high-cost type service provider provides software upgrade
services at moment tpe

h and receives the corresponding payment Tpe
h . The service provider can choose

to accept or refuse the contract menu provided by the enterprise. If accepted, the service provider will
select the contract that best suits it based on its profits and cost type.

In the contract execution stage, the enterprise identifies the cost type of the service provider based
on the chosen contract. Once the contract is signed, the service provider delivers the software upgrade



CMES, 2024, vol.138, no.2 1573

service at the agreed-upon time, and the enterprise makes the corresponding payment based on the
upgrade time.

In outsourcing agreements, the enterprise’s contract aims to maximize its profits while also
satisfying the service provider’s individual rational (IR) and incentive compatibility (IC) constraints.
To achieve this, an optimal contract can be formulated as follows:

max{t
pe
n ,T

pe
n }n=l,h

Upe = π1l[P(tpe
l ) − Tpe

l ] + π1h[P(tpe
h ) − Tpe

h ]

subject to

Tpe
l − 1

2
kl[D(tpe

l )]2 − K ≥ 0 (IRpe
l )

Tpe
h − 1

2
kh[D(tpe

h )]2 − K ≥ 0 (IRpe
h )

Tpe
l − 1

2
kl[D(tpe

l )]2 − K ≥ Tpe
h − 1

2
kl[D(tpe

h )]2 − K (ICpe
lh )

Tpe
h − 1

2
kh[D(tpe

h )]2 − K ≥ Tpe
l − 1

2
kh[D(tpe

l )]2 − K (ICpe
hl )

tpe
n , Tpe

n ≥ 0 ∀n ∈ {l, h} (NNpe
n )

(7)

The individual rationality (IR) constraints, denoted by IRpe
l and IRpe

h set a minimum level of
acceptance for the service provider. Additionally, incentive compatibility (IC) constraints, denoted by
ICpe

lh and ICpe
hl , encourage the service provider to disclose its true costs by allowing it to select a contract

that aligns with its actual cost type, resulting in profits equal to or greater than it would receive with a
contract that aligns with a different cost type.

Proposition 5.1 describes the optimal menu of a pay-per-time contract provided by the enterprise
in the context of asymmetric cost information, as proved in Appendix B.

Proposition 5.1. Under the condition 0 ≤ R < klσ , using pay-per-time contract in the case where
the service provider has private cost information, the optimal contract menu designed by the enterprise
is

{
(tpe

l , Tpe
l ), (tpe

h , Tpe
h )

}
, where

tpe
l = t∗

l =
ln

(
1 − R

klσ

)

−σ
(8)

Tpe
l = R2(kh − kl)(1 − π1l)

2

2σ 2(kh − π1lkl)2
+ R2

2klσ 2
+ K (9)

tpe
h =

ln
[

1 − R(1 − π1l)

σ (kh − π1lkl)

]

−σ
< t∗

h (10)

Tpe
h = khR2(1 − π1l)

2

2σ 2(kh − π1lkl)2
+ K (11)



1574 CMES, 2024, vol.138, no.2

In Proposition 5.1, t∗
l denotes the time to upgrade the software of the low-cost type service provider

in the case of a centralized decision with full-information, t∗
h denotes the time to upgrade the software

of the high-cost type service provider in the case of a centralized decision with full-information.

In the context of pay-per-time contracts with asymmetric cost information, the optimal software
upgrade time for low-cost service providers remains the same as in the case of the centralized decision
with full-information, while the optimal software upgrade time for high-cost service providers is
distorted downward. Specifically, tpe

l = t∗
l and tpe

h < t∗
h. This indicates that the optimal solutions

obtained through pay-per-time contracts have the characteristics of “no distortion at the high end (the
low-cost type service provider) and downward distortion at the low end (the high-cost type service
provider)” when the service provider has private cost information.

This is because, in a centralized decision with full-information, the enterprise can offer contracts
that correspond to the cost type of the service provider, and maximize profits by ensuring that both
types of service providers receive zero utility. However, when the service provider has private cost
information, the enterprise needs to design the contract in a way that allows the high-cost type service
provider to receive zero utility, while preventing the low-cost type provider from masquerading as
the high-cost type to gain positive utility. In other words, to achieve a separation equilibrium, the
enterprise may choose to transfer some information rent to the low-cost type service provider with a
cost advantage, so that their profits are equal to those obtained by selecting the high-cost type service
provider. In essence, enterprises must carefully craft contracts to effectively differentiate between the
two cost types of service providers and maximize their profits accordingly.

5.1.2 Revenue-Sharing Contract Offered by the Enterprise

Next, we consider that when the service provider has private cost information, the enterprise offers
a revenue-sharing contract that includes a term (t, α). In this contract, the service provider provides
software upgrade services to the enterprise at time t, and both parties agree that after the upgrade, the
enterprise will transfer a certain share α of the revenue to the service provider as a reward for services.
The timing order between the parties can be divided into two stages: contract design and contract
execution, as shown in Fig. 3.

Figure 3: The time line using revenue-sharing contracts where the service provider has privare cost
information

The enterprise design a contract menu
{
(tre

l , αre
l ), (tre

h , αre
h )

}
when the service provider has private

cost information. The re notation in the contract menu indicates that the revenue-sharing contract is
provided by the enterprise. The contract menu is tailored to the cost type of the service provider, where
(tre

l , αre
l ) represents the moment of software upgrade and revenue share transferred for the low-cost type

service provider, and (tre
h , αre

h ) represents the same for the high-cost type service provider.



CMES, 2024, vol.138, no.2 1575

Therefore, under the asymmetric cost information of the service provider, the problem of the
enterprise is to design the contract menu

{
(tre

l , αre
l ), (tre

h , αre
h )

}
so that

max{tren ,αre
n }n=l,h

Ure = π1lP(tre
l )(1 − αre

l ) + π1hP(tre
h )(1 − αre

h )

subject to

αre
l P(tre

l ) − 1
2

kl[D(tre
l )]2 − K ≥ 0 (IRre

l )

αre
h P(tre

h ) − 1
2

kh[D(tre
h )]2 − K ≥ 0 (IRre

h )

αre
l P(tre

l ) − 1
2

kl[D(tre
l )]2 − K ≥ αre

h P(tre
h ) − 1

2
kl[D(tre

h )]2 − K (ICre
lh)

αre
h P(tre

h ) − 1
2

kh[D(tre
h )]2 − K ≥ αre

l P(tre
l ) − 1

2
kh[D(tre

l )]2 − K (ICre
hl)

tre
n , αre

n ≥ 0 ∀n ∈ {l, h} (NNre
n )

(12)

Proposition 5.2 characterizes the optimal contract menu and its proof is given in Appendix B.

Proposition 5.2. Under the condition that 0 ≤ R < klσ , using revenue-sharing contract in the case
where the service provider has private cost information, the optimal contract menu designed by the
enterprise is

{
(tre

l , αre
l ), (tre

h , αre
h )

}
, where

tre
l = t∗

l =
ln

(
1 − R

klσ

)

−σ
(13)

αre
l = (kh − kl)(1 − π1l)

2

2(kh − π1lkl)2
+ Kklσ

2

R2
+ 1

2
(14)

tre
h =

ln
[

1 − R(1 − π1l)

σ (kh − π1lkl)

]

−σ
< t∗

h (15)

αre
h = kh(1 − π1l)

2(kh − π1lkl)
+ Kσ 2

R2(1 − π1l)
(16)

By comparing the optimal solutions achieved using the pay-per-time contract, revenue-sharing
contract, and centralized decision-making with full-information, we can obtain

tre
l = tpe

l = t∗
l =

ln
(

1 − R
klσ

)

−σ
(17)

tre
h = tpe

h =
ln

[
1 − R(1 − π1l)

σ (kh − π1lkl)

]

−σ
< t∗

h (18)



1576 CMES, 2024, vol.138, no.2

αre
l P(tre

l ) = Tpe
l = 1

2
kh[D(tre

h )]2 + 1
2

kl[D(tre
l )]2 − 1

2
kl[D(tre

h )]2 + K (19)

αre
h P(tre

h ) = Tpe
h = 1

2
kh[D(tre

h )]2 + K (20)

where αre
l P(tre

l ) denotes the fee paid by the enterprise to the low-cost type service provider, αre
h P(tre

h )

denotes the fee paid by the enterprise to the high-cost type service provider.

Eqs. (17)–(18) demonstrate that the optimal software upgrade time for both high and low-cost
service providers is the same under both the revenue-sharing and pay-per-time contracts. Likewise,
Eqs. (19)–(20) show that the payouts paid to high and low-cost service providers under the revenue-
sharing contract are equivalent to the payouts paid under the pay-per-time contract. Therefore, our
findings suggest that these two contracts are equivalent in cases where there is asymmetric information
about the service providers’ costs.

Fig. 4 compares the profits of the enterprise under centralized decision-making with full-
information, pay-per-time contract, and revenue-sharing contract when the service provider has
private cost information. The profit curves for pay-per-time and revenue-sharing contracts overlap
exactly, indicating their equivalence in the presence of asymmetric information about the service
provider’s costs. However, due to the need to transfer some information rent to low-cost type service
providers, the enterprise’s profits under these contracts are always lower than those under centralized
decision-making with full-information, as shown in Fig. 4.

Figure 4: Profits comparison for the enterprise, σ = 0.2, kl = 100, kh = 110, K = 10, π1l = 0.5

5.2 Contract Design for the Enterprise with Private Revenue Information
As previously noted, the revenue generated by the software fully adapting to the current environ-

ment is denoted as R, and it is proportional to the scale of the enterprise. However, enterprises of the
same scale may have different revenues due to their unique characteristics and industry conditions.
We assume that enterprises of the same scale in the market can be classified as either high-revenue or
low-revenue types. Let Rh represent the revenue of the high-revenue type enterprise when the software



CMES, 2024, vol.138, no.2 1577

is fully adapted to the current environment, and Rl represents the revenue of the low-revenue type
enterprise under the same condition, where Rh > Rl. The average revenue of both types of enterprises
is denoted as R. The service provider does not know in advance which type of the enterprise but has a
prior belief about its distribution. Assuming that the probability that the enterprise is a high-revenue
type is denoted as π2h, the probability that it is a low-revenue type is π2l, and π2h + π2l = 1.

5.2.1 Pay-Per-Time Contract Offered by the Service Provider

We now explore the use of a pay-per-time contract when the enterprise possesses private revenue
information. In contrast to the scenario where the service provider has private cost information, when
the enterprise has private revenue information, the service provider designs the contract. This contract
has a term (t, T), where the service provider performs software upgrades for the enterprise at time t,
and the enterprise pays T to the service provider in return. The time line between two parties is altered
and divided into two stages, as depicted in Fig. 5.

Figure 5: The time line using pay-per-time contracts where the enterprise has privare revenue
information

In the contract design stage, before signing the contract, the enterprise is aware of its revenue type,
and the revenue generated by the software remains confidential to the enterprise. The service provider
designs a contract menu

{
(tps

h , Tps
h ), (tps

l , Tps
l )

}
for the enterprise. Here, the superscript ps denotes that

the pay-per-time contract is offered by the service provider. (tps
h , Tps

h ) specifies the moment of software
upgrade and the corresponding software upgrade fee for the high-revenue type enterprise, while
(tps

l , Tps
l ) denotes the moment of software upgrade and the corresponding software upgrade fee for

the low-revenue type enterprise. The enterprise selects a contract based on its expected profits and
revenue type.

In the contract execution stage, the service provider determines the revenue information type based
on the contract selected by the enterprise. Once the contract is signed, the service provider offers
software upgrade services at the agreed-upon time. The enterprise then pays for the upgrade based
on the upgrade time.



1578 CMES, 2024, vol.138, no.2

In this case, we can express the optimal contract menu between the parties as follows:

max{t
ps
n ,T

ps
n }n=l,h

V ps = π1l[T
ps
l − C[D(Tps

l )] − K] + π1h[T
ps
h − C[D(Tps

h )] − K ]

subject to

Rl

∫ t
ps
l

0

[1 − D(x)]dx − Tps
l ≥ 0 (IRps

l )

Rh

∫ t
ps
h

0

[1 − D(x)]dx − Tps
h ≥ 0 (IRps

h )

Rl

∫ t
ps
l

0

[1 − D(x)]dx − Tps
l ≥ Rl

∫ t
ps
h

0

[1 − D(x)]dx − Tps
h (ICps

lh )

Rh

∫ t
ps
h

0

[1 − D(x)]dx − Tps
h ≥ Rh

∫ t
ps
l

0

[1 − D(x)]dx − Tps
l (ICps

hl )

tps
n , Tps

n ≥ 0 ∀n ∈ {l, h} (NNps
n )

(21)

Proposition 5.3 describes the optimal menu of the pay-per-time contract offered by the service
provider when the enterprise has private revenue information, which is proved in Appendix B.

Proposition 5.3. Under the conditions that 0 < Rh < kσ , π2hRh < Rl < Rh, using pay-per-
time contract in the case where the enterprise has private revenue information, the optimal contract
designed by the service provider is

{
(tps

l , Tps
l ), (tps

h , Tps
h )

}
, where

tps
l =

ln
[

1 − Rl − Rhπ2h

(1 − π2h)kσ

]

−σ
< t∗

l (22)

Tps
l = R2 − RlRhπ2h

(1 − π2h)kσ 2
(23)

tps
h = t∗

h =
ln

(
1 − Rh

kσ

)

−σ
(24)

Tps
h = R2

kσ 2
− (Rl − Rh)(Rl − Rhπ2h)

(1 − π2h)kσ 2
(25)

Compared with the optimal contract in the case of centralized decision with full-information, the
optimal software upgrade time of the high-revenue type enterprise remains unchanged, while the opti-
mal software upgrade time of the low-revenue type enterprise is distorted downward, t∗

h = tps
h , t∗

l > tps
l ,

when offering the pay-per-time contract with asymmetric information about the enterprise’s revenue.
This finding suggests that the optimal software upgrade time is characterized by “no distortion at the
high end (the high-revenue type enterprise) and downward distortion at the low end (the low-revenue
type enterprise)” when the enterprise has private revenue information and the pay-per-time contract
is used.

The above phenomenon can be attributed to the following reasons: when the enterprise has private
revenue information, the service provider can still design the contract such that the low-revenue type



CMES, 2024, vol.138, no.2 1579

enterprise obtains zero utility. However, to prevent the high-revenue type enterprise from gaining
positive utility by pretending to be the low-revenue type enterprise, the service provider must eliminate
the incentive to imitate. This is achieved by ensuring that high-revenue type enterprises earn the same
profit by selecting a contract that matches their type as they would if they imitated low-revenue type
enterprises. In other words, the service provider chooses to pay a portion of the information rent to
the revenue-advantaged enterprise in order to achieve a separation equilibrium.

5.2.2 Revenue-Sharing Contract Offered by the Service Provider

In the following, we turn to the scenario where the service provider proposes a revenue-sharing
contract in the presence of private revenue information held by the enterprise. The terms of the
contract are denoted as (t, α), where t represents the moment when the software upgrade is provided,
and α represents the share of revenue that the enterprise agrees to transfer to the service provider
as compensation for the software upgrade. The contracting parties engage in two phases, namely
contract design and contract execution, which are depicted in Fig. 6. During the contract design
stage, the service provider offers a contract menu

{
(trs

l , αrs
l ), (trs

h , αrs
h )

}
to the enterprise, where the

subscript rs denotes the revenue-sharing contract is offered by the service provider. Here, (trs
l , αrs

l )

and (trs
h , αrs

h ) respectively represent the moment of software upgrade and the corresponding share of
revenue transferred from the enterprise to the service provider for low-revenue and high-revenue types
of enterprises.

Figure 6: The time line using revenue-sharing contracts where the enterprise has privare revenue
information

Thus, in the case where the enterprise has private revenue information, the service provider’s
problem is to design the optimal contract menu

{
(trs

l , αrs
l ), (trs

h , αrs
h )

}
that satisfies the following:

max{trsn ,αrs
n }n=l,h

V rs = π2l[αrs
l P(trs

l ) − C[D(trs
l )] − K ] + π2h[αrs

h P(trs
h ) − C[D(trs

h )] − K]

subject to

(1 − αrs
l )Rl

∫ trsl

0

[1 − D(x)]dx ≥ 0 (IRrs
l )

(1 − αrs
h )Rh

∫ trsh

0

[1 − D(x)]dx ≥ 0 (IRrs
h )

(1 − αrs
l )Rl

∫ trsl

0

[1 − D(x)]dx ≥ (1 − αrs
h )Rl

∫ trsh

0

[1 − D(x)]dx (ICrs
lh)

(1 − αrs
h )Rh

∫ trsh

0

[1 − D(x)]dx ≥ (1 − αrs
l )Rh

∫ trsl

0

[1 − D(x)]dx (ICrs
hl)

trs
n , αrs

n ≥ 0 ∀n ∈ {l, h} (NNrs
n )

(26)

Proposition 5.4, proved in Appendix B, characterizes the optimal revenue-sharing contract menu
offered by the service provider when there is asymmetric revenue information from the enterprise.



1580 CMES, 2024, vol.138, no.2

Proposition 5.4. Under the condition that 0 < Rl < Rh < kσ , using a revenue-sharing contract
in the case where the enterprise has private revenue information, the optimal contract designed by the
service provider is

{
(trs

l , αrs
l ), (trs

h , αrs
h )

}
, where

trs
l = t∗

l =
ln

(
1 − Rl

kσ

)

−σ
(27)

trs
h = t∗

h =
ln

(
1 − Rh

kσ

)

−σ
(28)

αrs
l = αrs

h = 1 (29)

Proposition 5.4 shows that when using a revenue-sharing contract with private revenue informa-
tion from the enterprise, the optimal software upgrade times for high and low-revenue enterprises are
the same as those in the centralized decision case, with “no distortion at either the high or low end (the
high-revenue or low-revenue type enterprise)”. Additionally, both high and low-revenue enterprises are
required to transfer all revenues to the service provider. These findings suggest that a revenue-sharing
contract can achieve the optimal solution in the case of a centralized decision with full-information
when there is asymmetric information about the enterprise’s revenues.

The pay-per-time contract and the revenue-sharing contract yield quite different results when
the enterprise has private revenue information. The reason is that in a revenue-sharing contract, the
service provider treats both high and low-revenue enterprises equally, requiring both types to transfer
all revenues. This prevents the high-revenue enterprise from imitating the low-revenue enterprise and
obtaining positive profits, leading both types to obtain zero utility. Thus, the enterprise selects the
contract that matches its true type regardless of revenue. Therefore, using a revenue-sharing contract
under private revenue information achieves the optimal solution in the case of a centralized decision
with full-information.

However, under a pay-per-time contract, the service provider values high-revenue enterprises more
than low-revenue enterprises. As a result, the service provider takes all the revenue from the low-
revenue enterprise and offers information rent to the high-revenue enterprise as an incentive to choose
the contract that matches its true type. This leads to a phenomenon known as “no distortion at the
high end and downward distortion at the low end,” where the contract is accurate for high-revenue
enterprises but distorted for low-revenue enterprises.

Fig. 7 plots the profits of the service provider offering a pay-per-time contract and a revenue-
sharing contract when the enterprise has private revenue information. The two curved surfaces in
Fig. 7 illustrate that, under the same enterprise scale and market distribution, the blue curved surface
is consistently higher than the red curved surface. This indicates that the service provider can generate
greater profits by providing a revenue-sharing contract than by providing a pay-per-time contract
when the enterprise has private revenue information. The reason for this is that under a pay-per-
time contract, the service provider must transfer part of the information rent to the high-revenue
enterprise. However, by offering a revenue-sharing contract, the service provider not only avoids the
need to transfer information rent but can also achieve the optimal solution similar to the centralized
decision with full-information. Thus, when the enterprise has private revenue information, the service
provider prefers to choose the revenue-sharing contract.



CMES, 2024, vol.138, no.2 1581

Figure 7: Profits for the service provider under the pay-per-time contracts and revenue-sharing
contracts, σ = 0.2, k = 100, K = 10, π2l = 0.5, π2h = 0.5 (The blue surface is under the revenue-
sharing contract, the red surface is under the pay-per-time contract)

5.3 Comparision of Optimal Solutions and Incentive Effect
Table 2 presents the optimal solutions obtained through the pay-per-time and revenue-sharing

contracts. These contracts address the adverse selection problem in two scenarios where the service
provider has private cost information and the enterprise has private revenue information. Next, we
compared the results with those obtained from centralized decision-making with full-information to
assess the incentive effects of the contracts.

Table 2: Comparison of the optimal software upgrade time

Contracts The service provider has private cost
information

The enterprise has private revenue
information

Low-cost High-cost Low-revenue High-revenue

Pay-per-time tpe
l = tre

l = t∗
l tpe

h = tre
h < t∗

h tps
l < t∗

l tps
h = t∗

h

Revenue-sharing tre
l = tpe

l = t∗
l tre

h = tpe
h < t∗

h trs
l = t∗

l trs
h = t∗

h

Notes: pe: The pay-per-time contracts provided by the enterprise. re: The revenue-sharing contracts provided by the enterprise. ps: The pay-
per-time contracts provided by the service provider. rs: The revenue-sharing contracts provided by the service provider.∗: Centralized decision
with full-information.

Section 5.1 investigates the impact of contracts on software upgrade decisions when service
providers hold private cost information. We found that the pay-per-time and revenue-sharing contracts
yield the same optimal solutions under this scenario. That is, both contracts fail to achieve optimal
incentives when the service provider is a high-cost type, leading to suboptimal solutions. Only when
the service provider is a low-cost type do the pay-per-time and revenue-sharing contracts produce
outcomes consistent with the centralized decision-making approach. These findings suggest that both
contracts have similar incentive effects on service providers when cost information is asymmetric, but
neither can fully achieve optimal incentives.



1582 CMES, 2024, vol.138, no.2

Section 5.2 examines the impact of contracts on software upgrade decisions when the enterprise
has private revenue information. The results show that when the enterprise is a high-revenue type, the
optimal solutions for both the pay-per-time and revenue-sharing contracts align with the centralized
decision case. However, when the enterprise is a low-revenue type, the pay-per-time contract yields
suboptimal solutions, while the revenue-sharing contract maintains optimal incentives. These findings
suggest that the revenue-sharing contract provides superior incentives compared to the pay-per-time
contract and can achieve optimal results in the presence of asymmetric revenue information about the
enterprise.

The comparison of the optimal solutions and incentive effects in different information scenarios
provides several managerial insights for software upgrade outsourcing:

Managing Information Asymmetry: Asymmetric information about costs and revenues can sig-
nificantly impact the outcomes of software upgrade outsourcing. Service providers should strive to
improve transparency regarding their cost structure, allowing enterprises to make more informed
decisions. Similarly, enterprises should share relevant revenue information with service providers to
align incentives and achieve better outcomes.

Contract Design: The choice of contract plays a crucial role in managing information asymmetry
and aligning incentives. The revenue-sharing contract proves to be more effective in providing optimal
incentives for both low-revenue and high-revenue enterprises. Enterprises should consider adopting
revenue-sharing contracts to ensure service providers are motivated to deliver the best outcomes.

Risk Mitigation: Software upgrade outsourcing involves inherent risks associated with market
fluctuations and potential losses due to outdated software. Enterprises should carefully assess these
risks and develop risk mitigation strategies such as timely upgrades and collaborations with service
providers. Effective risk management can help enterprises maintain their market position and com-
petitiveness.

Collaborative Decision-Making: While centralized decision-making with full-information yields
optimal solutions, achieving such an ideal scenario may be challenging in practice. However, enter-
prises and service providers can adopt collaborative decision-making approaches, sharing relevant
information and working together to maximize joint profits. Regular communication and collabora-
tion can lead to better outcomes and stronger partnerships.

6 Conclusions

With the rapid advancement of technology and automation, Industry 4.0 represents the integra-
tion of digital technologies and industrial processes, leading to increased efficiency, productivity, and
competitiveness. Our research on software upgrade outsourcing aligns with the principles of Industry
4.0 by enabling enterprises to leverage external expertise and resources to optimize their software
systems, thereby enhancing their ability to adapt and thrive in the digital era. This paper takes the
impact of market fluctuations on software adaptability as an entry point and establishes a software
upgrade outsourcing model between the enterprise and the service provider.

In the centralized decision with full-information, the service provider functions as the enterprise’s
information technology department, collaborating with the enterprise to optimize the expected profit
of the system through joint decision-making. This approach yields the most favorable outcomes for
software upgrades. There are two cases to consider when determining the optimal software upgrade
time. In the first case, the optimal software upgrade time and expected system profits are contingent
upon the scale of the enterprise within a specific range. As the enterprise expands, the optimal upgrade



CMES, 2024, vol.138, no.2 1583

time is delayed, and the system’s expected profits increase. Additionally, the optimal software upgrade
time is also affected by market fluctuations. When substantial market fluctuations occur, resulting
in decreased revenue and increased software upgrade costs, the system’s expected profits decline,
prompting enterprises to opt for earlier software upgrades. In the second case, if the enterprise scale
exceeds the aforementioned range, the enterprise will have a continuous increase in profits without
software upgrades.

In decentralized decision-making with incomplete information, the enterprise and the service
provider operate as two independent entities with inconsistent interests and asymmetric information.
To avoid the adverse selection problem arising from the ex-ante asymmetric information about the
service provider’s cost and the enterprise’s revenue, this paper proposes a software upgrade outsourcing
model based on the principal-agent and uses well-designed contracts to screen the true type of the
information superior party. Furthermore, we investigate the impact of pay-per-time and revenue-
sharing contracts on the software upgrade timing decision and the profits of both parties. Our
findings reveal that, in cases where the service provider has private cost information, the pay-per-
time and revenue-sharing contracts are equivalent, and the optimal software upgrade time exhibits
characteristics of “no distortion at the high end and downward distortion at the low end” compared
to the optimal solution under centralized decision-making with full-information. In the cases where the
enterprise has private revenue information, the optimal software upgrade time under the pay-per-time
contract demonstrates characteristics of “no distortion at the high end and downward distortion at the
low end,” while the optimal software upgrade time under the revenue-sharing contract can achieve the
optimal solution under centralized decision-making with full-information, showing “no distortion at
either the high or low end.”At this point, the incentive effect of the revenue-sharing contract is superior
to that of the pay-per-time contract.

In summary, our proposed framework empowers all parties involved in software upgrade out-
sourcing contracts to make informed decisions, resulting in improved return on investment and
increased operational efficiency. By considering the impact of information asymmetry and market
fluctuations, enterprises can strategically determine the optimal software upgrade time and maximize
their expected profits. This research contributes to the growing body of knowledge in the field of
software upgrade outsourcing contract design and provides certain insights for practitioners and
scholars.

Acknowledgement: Authors are very much thankful to the reviewers and Journal Authorities.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm contribution to the paper as follows: supervision: C. W.;
draft manuscript preparation: Z. W. Z. All authors reviewed the results and approved the final version
of the manuscript.

Availability of Data and Materials: Not applicable.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



1584 CMES, 2024, vol.138, no.2

References
1. Liu, C., Zheng, P., Xu, X. (2023). Digitalisation and servitisation of machine tools in the era of Industry

4.0: A review. International Journal of Production Research, 61(12), 4069–4101.
2. Hussain, M., Memon, T. D., Hussain, I., Memon, Z. A., Kumar, D. (2022). Fault detection and identifi-

cation using deep learning algorithms in induction motors. Computer Modeling in Engineering & Sciences,
133(2), 435–470. https://doi.org/10.32604/cmes.2022.020583

3. Oztemel, E., Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of
Intelligent Manufacturing, 31, 127–182.

4. Rafferty, C., Smith, R. (2000). Making a prophet. Computer Modeling in Engineering & Sciences, 1(1),
151–159. https://doi.org/10.3970/cmes.2000.001.151

5. Furneaux, B., Mannina, S., Rieser, L. (2022). Responding to information system obsolescence: Should we
upgrade or replace? Journal of Computer Information Systems, 62(2), 372–383.

6. Liu, Y., Xu, X. (2017). Industry 4.0 and cloud manufacturing: A comparative analysis. Journal of Manufac-
turing Science and Engineering, 139(3), 034701.

7. Stock, T., Seliger, G. (2016). Opportunities of sustainable manufacturing in Industry 4.0. Procedia CIRP,
40, 536–541.

8. Baron, D. P. (1979). The incentive problem and the design of investment banking contracts. Journal of
Banking & Finance, 3(2), 157–175.

9. Baron, D. P., Holmström, B. (1980). The investment banking contract for new issues under asymmetric
information: Delegation and the incentive problem. The Journal of Finance, 35(5), 1115–1138.

10. Sappington, D. E. M. (1991). Incentives in principal-agent relationships. Journal of Economic Perspectives,
5(2), 45–66.

11. Prikladnicki, R., Audy, J. L. N. (2012). Managing global software engineering: A comparative analysis of
offshore outsourcing and the internal offshoring of software development. Information Systems Manage-
ment, 29(3), 216–232.

12. Rajaeian, M. M., Cater-Steel, A., Lane, M. (2017). A systematic literature review and critical assessment of
model-driven decision support for it outsourcing. Decision Support Systems, 102, 42–56.

13. Lacity, M. C., Khan, S. A., Willcocks, L. P. (2009). A review of the it outsourcing literature: Insights for
practice. The Journal of Strategic Information Systems, 18(3), 130–146.

14. Kern, T., Willcocks, L. P., Lacity, M. (2002). Application service provision: Risk assessment and mitigation.
MIS Quarterly Executive, 1(2), 113–126.

15. Richmond, W. B., Seidmann, A., Whinston, A. B. (1992). Incomplete contracting issues in information
systems development outsourcing. Decision Support Systems, 8(5), 459–477.

16. Wang, E. T., Barron, T., Seidmann, A. (1997). Contracting structures for custom software development:
The impacts of informational rents and uncertainty on internal development and outsourcing. Management
Science, 43(12), 1726–1744.

17. Casado-Lumbreras, C., Colomo-Palacios, R., Ogwueleka, F. N., Misra, S. (2014). Software development
outsourcing: Challenges and opportunities in Nigeria. Journal of Global Information Technology Manage-
ment, 17(4), 267–282.

18. Bandyopadhyay, S., Pathak, P. (2007). Knowledge sharing and cooperation in outsourcing projects–A game
theoretic analysis. Decision Support Systems, 43(2), 349–358.

19. Kornish, L. J. (2001). Pricing for a durable-goods monopolist under rapid sequential innovation. Manage-
ment Science, 47(11), 1552–1561.

20. Bala, R., Carr, S. (2009). Pricing software upgrades: The role of product improvement and user costs.
Production and Operations Management, 18(5), 560–580.

21. Whang, S. (1992). Contracting for software development. Management Science, 38(3), 307–324.

https://doi.org/10.32604/cmes.2022.020583
https://doi.org/10.3970/cmes.2000.001.151


CMES, 2024, vol.138, no.2 1585

22. Elitzur, R., Gavious, A., Wensley, A. K. (2012). Information systems outsourcing projects as a double moral
hazard problem. Omega, 40(3), 379–389.

23. Zhang, Z., Xu, X. (2017). Principal agent model based design and outsourcing of information value. Cluster
Computing, 20, 67–79.

24. Pavlou, P. A., Liang, H., Xue, Y. (2007). Understanding and mitigating uncertainty in online exchange
relationships: A principal-agent perspective. MIS Quarterly, 31(1), 105–136.

25. Grossman, S. J., Hart, O. D. (1992). An analysis of the principal-agent problem. In: Foundations of insurance
economics, pp. 302–340. Dordrecht: Springer Netherlands.

26. Ciliberti, F., de Haan, J., de Groot, G., Pontrandolfo, P. (2011). CSR codes and the principal-agent problem
in supply chains: Four case studies. Journal of Cleaner Production, 19(8), 885–894.

27. Cai, W., Singham, D. I. (2018). A principal–agent problem with heterogeneous demand distributions for a
carbon capture and storage system. European Journal of Operational Research, 264(1), 239–256.

28. Yao, T., Jiang, B., Young, S. T., Talluri, S. (2010). Outsourcing timing, contract selection, and negotiation.
International Journal of Production Research, 48(2), 305–326.

29. Banerjee, A. V., Duflo, E. (2000). Reputation effects and the limits of contracting: A study of the indian
software industry. The Quarterly Journal of Economics, 115(3), 989–1017.

30. Benaroch, M., Lichtenstein, Y., Fink, L. (2016). Contract design choices and the balance of ex ante and ex
post transaction costs in software development outsourcing. MIS Quarterly, 40(1), 57–82.

31. Gopal, A., Koka, B. R. (2010). The role of contracts on quality and returns to quality in offshore software
development outsourcing. Decision Sciences, 41(3), 491–516.

32. Huang, H., Hu, M., Xu, H. (2023). Time-and-materials or revenue-sharing? Implications of monitoring for
software outsourcing contract. Information & Management, 60(3), 103776.

33. Wang, C., Deng, L., Zhou, W. (2022). “We missed you!”: A joint optimization strategy of appointment
window and reminder sending. Computers & Industrial Engineering, 169, 108198.

Appendix A.

Proof of Proposition 4.1. Firstly, the actual revenue function of the enterprise is deformed:

P(t) = R
∫ t

0

[1 − D(x)]dx = R
∫ t

0

e−σxdx = R
∫ t

0

− 1
σ

de−σx = R
σ

(1 − e−σ t) = R
σ

D(t) (30)

Secondly, convert W(t) into a function of D, denoted as W(D)

W(D) = P(t) − C(D) − K = R
σ

D(t) − 1
2

kD2(t) − K (31)

Thirdly, the first and second derivatives of W(D) with respect to D are calculated, respectively:

dW(D)

dD
= R

σ
− kD(t) (32)

d2W(D)

dD2
= −k (33)



1586 CMES, 2024, vol.138, no.2

Since k > 0, the second derivative
d2W(D)

dD2
is negative, indicating that W(D) is strictly concave

with respect to D. By setting the first derivative dW(D)/dD = 0, we obtain the optimal software
deviation degree:

D∗(t) = R
kσ

(34)

Since D is a monotonically increasing function of t, we can solve for the optimal software upgrade
time t∗ using the optimal deviation degree, which can be divided into two cases:

(1) If
R
kσ

≥ 1, then D(t∗) = 1 − e−σ t∗ ≥ 1, which implies that t∗ must be infinity.

(2) If
R
kσ

< 1, then D(t∗) = 1 − e−σ t∗ = R
kσ

, and t∗ can be calculated as t∗ =
ln

(
1 − R

kσ

)

−σ
.

When t∗ =
ln

(
1 − R

kσ

)

−σ
, the discussion can be divided into three cases:

(1) If 1 − R
kσ

> 1, then
ln

(
1 − R

kσ

)

−σ
< 0, and the constraint t ≥ 0 is not satisfied, so it is not

considered.

(2) If 0 < 1 − R
kσ

≤ 1, then t∗ =
ln

(
1 − R

kσ

)

−σ
> 0, which satisfies the conditions.

(3) If 1 − R
kσ

≤ 0, it does not meet the basic conditions of the logarithmic function and is not

considered.

It can be observed that for the centralized decision-making with full-information, the optimal
software upgrade time exists and is positive only when the value of R satisfies 0 ≤ R < kσ .

Finally, we can substitute t∗ into the objective function to obtain the optimal expected profits of
the system:

W(t∗) = P(t∗) − C[D(t∗)] − K = R
σ

D∗(t) − 1
2

k[D∗(t)]2 − K = R2

2kσ 2
− K (35)

The optimal expected profits of the system are
R2

2kσ 2
− K.

Calculate the first derivatives of t∗ and W(t∗) to R, respectively:

∂t∗

∂R
> 0,

∂W(t∗)

∂R
> 0 (36)

The first derivatives of t∗ and W(t∗) with respect to R are positive, indicating that the optimal
software upgrade time and expected profits of the system increase with R.



CMES, 2024, vol.138, no.2 1587

We can observe the molecule ln
(

1 − R
kσ

)
in t∗. As σ increases, kσ and

(
1 − R

kσ

)
also increase.

Since the logarithmic function is monotonically increasing, and 0 ≤ R < kσ , ln
(

1 − R
kσ

)
becomes

larger as
(

1 − R
kσ

)
becomes larger and is a negative number. The denominator −σ becomes smaller

as σ increases. Therefore, the greater the market fluctuations, the smaller the optimal software upgrade
time t∗ and the earlier the software upgrade.

Appendix B.

Proof of Proposition 5.1. Suppose the information rent �pe
n = Tpe

n − 1
2

kn[D(tpe
n )]2 − K , then the

information rent of the low-cost type service provider is

�
pe
l = Tpe

l − 1
2

kl[D(tpe
l )]2 − K (37)

The information rent of high-cost type service providers is

�
pe
h = Tpe

h − 1
2

kh[D(tpe
h )]2 − K (38)

In cases where the service provider has private cost information, it is common for the low-cost type
service provider to imitate the high-cost type service provider. Consequently, it can be deduced that

Tpe
h − 1

2
kl[D(tpe

h )]2 − K = Tpe
h − 1

2
kh[D(tpe

h )]2 + 1
2
(kh − kl)[D(tpe

h )]2 − K

= �
pe
h + 1

2
(kh − kl)[D(tpe

h )]2 (39)

Although an effective contract can reduce the information rent �
pe
h of the high-cost service

provider to zero, the low-cost provider can still gain an additional utility
1
2
(kh − kl)[D(tpe

h )]2 > 0 by

imitating their high-cost counterparts, which can be translated to the information rent �
pe
l of the low-

cost providers under information asymmetry.

The expressions for information rent, �
pe
l and �

pe
h , allow us to reformulate the individual rational

constraints (IR) and incentive compatibility constraints (IC) as follows:

�
pe
l ≥ 0 (40)

�
pe
h ≥ 0 (41)

�
pe
l ≥ �

pe
h + 1

2
kh[D(tpe

h )]2 − 1
2

kl[D(tpe
h )]2 (42)

�
pe
h ≥ �

pe
l + 1

2
kl[D(tpe

l )]2 − 1
2

kh[D(tpe
l )]2 (43)



1588 CMES, 2024, vol.138, no.2

The enterprise aims to design a contract that meets the incentive constraints and minimizes the
information rent paid. Thus, it is essential that the constraint �

pe
h is tight, that is, �

pe
h = 0. Substituting

�
pe
h = 0 into Eq. (38), we obtain

Tpe
h = 1

2
kh[D(tpe

h )]2 + K (44)

Substitute �
pe
h = 0 into constraint (42), we obtain

�
pe
l = 1

2
kh[D(tpe

h )]2 − 1
2

kl[D(tpe
h )]2 (45)

According to Eq. (37), it can be solved

Tpe
l = 1

2
kh[D(tpe

h )]2 − 1
2

kl[D(tpe
h )]2 + 1

2
kl[D(tpe

l )]2 + K (46)

Finally, substitute Tpe
h and Tpe

l into the enterprise’s objective function and solve for
∂Upe

∂tpe
l

= 0 and

∂Upe

∂tpe
h

= 0 to obtain

tpe
l =

ln
(

1 − R
kσ

)

−σ
(47)

tpe
h =

ln
[

1 − R (1 − π1l)

σ (kh − π1lkl)

]

−σ
(48)

The value of tpe
l can be divided into three cases:

(1) If 1 − R
klσ

> 1, then tpe
l is negative and violates the constraint (40), so it is not a valid solution.

(2) If 0 < 1 − R
klσ

≤ 1, then 0 ≤ R < klσ and tpe
l ≥ 0 meet the necessary constraints.

(3) If 1 − R
klσ

< 0, then the logarithmic function’s basic conditions are not met, and this situation

is also not considered.

The value of tpe
h is also discussed in three cases:

(1) If 1 − R(1 − π1l)

σ (kh − π1lkl)
> 1, tpe

h is negative and does not meet the constraint (41), so it is not

considered.

(2) If 0 < 1 − R(1 − π1l)

σ (kh − π1lkl)
≤ 1, then 0 ≤ R <

σ(kh − π1lkl)

1 − π1l

and tpe
h ≥ 0 meets the constraint (41).

(3) If 1 − R(1 − π1l)

σ (kh − π1lkl)
< 0, it does not meet the basic conditions of the logarithmic function, and

this case is not considered.



CMES, 2024, vol.138, no.2 1589

To determine the range of R further, we can compare
σ(kh − π1lkl)

1 − π1l

and klσ , which gives us the

inequality
σ(kh − π1lkl)

1 − π1l

> klσ . Therefore, we can conclude that R should satisfy the condition 0 ≤
R < klσ .

By substituting tpe
h and tpe

l into Eqs. (44) and (46), we can obtain Tpe
h and Tpe

l , respectively.

Take the first derivative of t∗ with respect to k

∂t∗

∂k
= − R

σ 2k2

(
1 − R

kσ

) < 0 (49)

As a result, the variable cost coefficient has an inverse proportionality relationship with the
optimal software upgrade time, which leads to the deduction that t∗

h < t∗
l .

Comparing tpe
l with t∗

l , we can get

tpe
l = t∗

l =
ln

(
1 − R

klσ

)

−σ
(50)

Consider using a pay-per-time contract when there is asymmetry in the service provider’s cost
information

tpe
h =

ln
[

1 − R(1 − π1l)

σ (kh − π1lkl)

]

−σ
=

ln
[

1 − R(1 − π1l)

σ [kh − kl + kl(1 − π1l)]

]

−σ
<

ln
(

1 − R
khσ

)

−σ
= t∗

h (51)

Proof of Proposition 5.2. Suppose the information rent �re
n = αre

n P(tre
n ) − 1

2
kn[D(tre

n )]2 − K , then the

information rent of the low-cost type service provider is

�re
l = αre

l P(tre
l ) − 1

2
kl[D(tre

l )]2 − K (52)

The information rent of the high-cost type service provider is

�re
h = αre

h P(tre
h ) − 1

2
kh[D(tre

h )]2 − K (53)

Based on the expressions of information rent �re
l and �re

h , we can reformulate the individual
rational constraints (IR) and incentive compatibility constraints (IC) as follows:

�re
l ≥ 0 (54)

�re
h ≥ 0 (55)

�re
l ≥ �re

h + 1
2

kh[D(tre
h )]2 − 1

2
kl[D(tre

h )]2 (56)

�re
h ≥ �re

l + 1
2

kl[D(tre
l )]2 − 1

2
kh[D(tre

l )]2 (57)



1590 CMES, 2024, vol.138, no.2

Constraint (55) is tight, meaning that �re
h = 0. Reducing �re

h = 0 to 0 does not affect the constraint,
but it would lower the enterprise’s objective function, which conflicts with the maximization of the
objective function. Thus, by substituting �re

h = 0 into Eq. (53), we obtain

αre
h P(tre

h ) = 1
2

kh[D(tre
h )]2 + K (58)

αre
h P(tre

h ) represents the fee paid by the enterprise to the high-cost type service provider. Substituting
the expression for �re

h into constraint (56) and combining it with Eq. (52) yields

αre
l P(tre

l ) = 1
2

kh[D(tre
h )]2 + 1

2
kl[D(tre

l )]2 − 1
2

kl[D(tre
h )]2 + K (59)

αre
l P(tre

l ) represents the fee paid by the enterprise to the low-cost type service provider. Bringing

Eqs. (58)–(59) into the objective function and solving for
∂Ure

∂tre
l

= 0 and
∂Ure

∂tre
h

= 0, we obtain

tre
l =

ln
(

1 − R
klσ

)

−σ
(60)

tre
h =

ln
[

1 − R(1 − π1l)

σ (kh − π1lkl)

]

−σ
(61)

Similar to the proof of Proposition 5.1, we discuss the three cases of tre
l and tre

h respectively to
deduce that R satisfies the condition 0 ≤ R < klσ . Finally, we can find αre

h and αre
l by plugging in tre

l

and tre
h into Eqs. (58)–(59).

Proof of Proposition 5.3. Suppose the information rent �ps
n = P(tps

n ) − Tps
n , then the information

rent of the low-revenue type enterprise is

�
ps
l = P(tps

l ) − Tps
l (62)

The information rent of the high-revenue type enterprise is

�
ps
h = P(tps

h ) − Tps
h (63)

According to the expressions of information rent �
ps
l and �

ps
h , individual rational constraints (IR)

and incentive compatibility constraints (IC) can be reformulated as

�
ps
l ≥ 0 (64)

�
ps
h ≥ 0 (65)

�
ps
l ≥ �

ps
h + Rl

∫ t
ps
h

0

[1 − D(x)]dx − Rh

∫ t
ps
h

0

[1 − D(x)]dx (66)

�
ps
h ≥ �

ps
l + Rh

∫ t
ps
l

0

[1 − D(x)]dx − Rl

∫ t
ps
l

0

[1 − D(x)]dx (67)



CMES, 2024, vol.138, no.2 1591

As mentioned previously, the service provider in a design contract seeks to minimize the payment
of information rent in order to maximize its own interests. Hence, constraint (64) is tight, which means
that �

ps
l = 0. Substituting this value into Eq. (62), we obtain

Tps
l = P(tps

l ) (68)

Then, substituting �
ps
l = 0 into constraint (67), we obtain

�
ps
h = Rh

∫ t
ps
l

0

[1 − D(x)]dx − Rl

∫ t
ps
l

0

[1 − D(x)]dx (69)

Substitute the expression for �
ps
h into Eq. (63), and we can figure out

Tps
h = P(tps

h ) − Rh

∫ t
ps
l

0

[1 − D(x)]dx − Rl

∫ t
ps
l

0

[1 − D(x)]dx (70)

Bringing Tps
l and Tps

h into the objective function, by solving for
∂V ps

∂tps
l

= 0,
∂V ps

∂tps
h

= 0, can be

calculated

tps
l =

ln
[

1 − Rl − Rhπ2h

(1 − π2h)kσ

]

−σ
(71)

tps
h =

ln
(

1 − Rh

kσ

)

−σ
(72)

Similarly, the results of tps
l and tps

h are discussed in three cases respectively. We conclude that if the
optimal upgrade time exists, then Rh and Rl satisfy the requirements of 0 ≤ Rh < kσ , π2hRh ≤ Rl < Rh,
respectively. Finally, we substitute tps

l and tps
h into Eqs. (68) and (70) to obtain Tps

l and Tps
h , respectively.

tps
l =

ln
[

1 − Rl − Rhπ2h

(1 − π2h) kσ

]

−σ
=

ln
[

1 − Rl (1 − π2h) + (Rl − Rh)π2h

(1 − π2h)kσ

]

−σ
<

ln
(

1 − Rl

kσ

)

−σ
= t∗

l (73)

Proof of Proposition 5.4. Define the information rent �rs
n = (1 − αrs

n )Rn

∫ trsn
0

[1 − D(x)]dx, and then
the information rent of the low-revenue type enterprise is

�rs
l = (1 − αrs

l )Rl

∫ trsl

0

[1 − D(x)]dx (74)

The information rent of the high-revenue type enterprise is

�rs
h = (1 − αrs

h )Rh

∫ trsh

0

[1 − D(x)]dx (75)

According to the expressions of information rent �rs
l and �rs

h , individual rational constraints (IR)
and incentive compatibility constraints (IC) can be reformulated as

�rs
l ≥ 0 (76)



1592 CMES, 2024, vol.138, no.2

�rs
h ≥ 0 (77)

�rs
l ≥ �rs

h + (1 − αrs
l )(Rl − Rh)

∫ trsh

0

[1 − D(x)]dx (78)

�rs
h ≥ �rs

l + (1 − αrs
l )(Rh − Rl)

∫ trsl

0

[1 − D(x)]dx (79)

To minimize information rent and maximize profits, the service provider aims to design a contract
that pays as little information rent as possible. Thus, the constrain (76) is tight. Substituting �rs

l = 0
into Eq. (74), we can get

αrs
l = 1 (80)

Bringing �rs
l = 0, αrs

l = 1 into constraint (79) and combining it with Eq. (75) yields

αrs
h = 1 (81)

Bringing Trs
l and Trs

h into the objective function, by solving for
∂V rs

∂trs
l

= 0,
∂V rs

∂trs
h

= 0, can be

calculated

trs
l =

ln
(

1 − Rl

kσ

)

−σ
(82)

trs
h =

ln
(

1 − Rh

kσ

)

−σ
(83)

The results for trs
l and trs

h are discussed in three cases. It is concluded that if the optimal software
upgrade time exists, Rh must satisfy the condition 0 ≤ Rh < kσ .


	Strategic Contracting for Software Upgrade Outsourcing in Industry 4.0
	1 Introduction
	2 Literature Review
	3 The Model
	4 Benchmark: Centralized Decision with Full-Information
	5 Contract Design in the Case of Decentralized Decision with Incomplete Information
	6 Conclusions
	References
	Appendix A. 
	Appendix B. 


