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ABSTRACT

Plain concrete is strong in compression but brittle in tension, having a low tensile strain capacity that can
significantly degrade the long-term performance of concrete structures, even when steel reinforcing is present.
In order to address these challenges, short polymer fibers are randomly dispersed in a cement-based matrix to
form a highly ductile engineered cementitious composite (ECC). This material exhibits high ductility under tensile
forces, with its tensile strain being several hundred times greater than conventional concrete. Since concrete is
inherently weak in tension, the tensile strain capacity (TSC) has become one of the most extensively researched
properties. As a result, developing a model to predict the TSC of the ECC and to optimize the mixture proportions
becomes challenging. Meanwhile, the effort required for laboratory trial batches to determine the TSC is reduced.
To achieve the research objectives, five distinct models, artificial neural network (ANN), nonlinear model (NLR),
linear relationship model (LR), multi-logistic model (MLR), and M5P-tree model (M5P), are investigated and
employed to predict the TSC of ECC mixtures containing fly ash. Data from 115 mixtures are gathered and analyzed
to develop a new model. The input variables include mixture proportions, fiber length and diameter, and the time
required for curing the various mixtures. The model’s effectiveness is evaluated and verified based on statistical
parameters such as R2, mean absolute error (MAE), scatter index (SI), root mean squared error (RMSE), and
objective function (OBJ) value. Consequently, the ANN model outperforms the others in predicting the TSC of
the ECC, with RMSE, MAE, OBJ, SI, and R2 values of 0.42%, 0.3%, 0.33%, 0.135%, and 0.98, respectively.
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ANN Artificial neural network
LR Linear relationship model
LR Nonlinear model
MLR Multi-logistic model
M5P M5P-tree model
R2 Coefficient of determination
MAE Mean absolute error
RMSE Root mean squared error
OBJ Objective function
SI Scatter index
FA Fly ash
PP Polypropylene
PE Polyethylene
PVA Polyvinyl alcohol
CS Compressive strength
C Cement
S Sand
F Fiber
SP Superplasticizer
w/b Water to binder ratio
MSS Maximum size of sand
FL Fiber length
FD Fiber diameter
T Curing time
SD Standard deviation

1 Introduction

As one of the most economical and durable materials, concrete is extensively used in constructing
various structures worldwide. To enhance the properties of this material and to make it more durable
and robust, the construction industry, with the aid of researchers, continuously invests in developing
its beneficial characteristics by introducing new materials and technologies. A remarkable result of this
extensive research is the engineered cementitious composite (ECC), which has gained recognition for
its high performance in the construction industry. Researchers have identified several weaknesses in
plain concrete, including low tensile strength, brittleness, and low ultimate tensile strain. Addressing
these deficiencies and introducing new materials have become significant research objectives. The
fiber-reinforced high-performance material, known as engineered cementitious composite (ECC),
developed by Li and his colleagues in 1992, is among the most effective alternatives to plain concrete
[1–4]. The ECC’s microstructure was optimized using micromechanical models to enhance ductility
properties, reduce fracture widths to as low as 100 μm, and increase tensile strain capacity by 5%
more than regular concrete [5].

ECC is preferred in various construction fields, such as retrofitting structures damaged by
earthquakes, patching concrete pavements and slabs, and restoring dams due to its high strain
capability, resistance against spalling, low micro-cracks, and high impermeability [6–10]. ECC is
known for its high ductility, allowing it to deform significantly without fracturing or losing strength.
This characteristic makes ECC well-suited for earthquake-resistant structures and other applications
where toughness and durability are crucial. FRC, while stronger than plain concrete, is generally less
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ductile than ECC. Additionally, ECC is highly crack-resistant because of its unique combination of
high tensile strength and ductility. FRC also offers good crack resistance but might not perform as
effectively as ECC in high-stress applications [11].

The ECC mixture typically consists of cement, fly ash, sand, water, and a chemical admixture
with randomly scattered fibers. As indicated by [11], the proportions of the composting materials and
their physical and chemical properties contribute to the design of the mixture. The types of fibers used
in ECC production are generally polypropylene (PP), polyethylene (PE), and polyvinyl alcohol (PVA)
composites. The rationale for using fiber in ECC is to enhance the tensile capacity of the material.
Since PVA fiber possesses higher tensile strength than PP fiber, the flexural strength and toughness
of ECC containing PVA fiber exceed that of ECC containing PP fiber [12]. The compressive strength
of ECC is comparable to both ordinary and high-strength concretes. Due to its ductile property, as
opposed to the brittleness of ordinary concrete, ECC is employed in a broad range of applications and
has a promising future in various industries [13].

The compressive strength of concrete is a critical property when evaluating the overall quality
of the material, leading other mechanical and durability parameters to be indirectly correlated with
compressive strength [14,15]. For ECC, properties such as direct tensile strength and tensile strain
capacity are more crucial to investigate. Several sets of specimens must be prepared, cured under
various conditions, and tested to determine these properties for ECC. Concrete strength is often based
on the 28-day strength capacity. Consequently, work might be halted until this point based on existing
regulations, which can hinder project completion timelines and increase testing costs [16].

Determining the TSC of concrete without trials and preparing specimens has become one of the
most challenging issues in construction material science [17], as the mixture proportion and component
properties significantly affect the properties of ECC. With ongoing research on the TSC of ECC, the
standard procedure for determining ECC characteristics may no longer be practical. Some researchers
have derived regression models from the literature to link other ECC variables to its TSC. It is crucial to
establish a simple, time-efficient procedure to predict experimental outcomes, especially since the TSC
of ECC is highly sensitive to mixture proportions and various other variables. One potential solution
could be soft computing approaches [18–20]. The primary advantage of this approach is its ability to
offer solutions to both linear and nonlinear problems when mathematical models cannot demonstrate
the relationships between central problem aspects [21,22].

Artificial intelligence systems have emerged as genuine tools for researchers studying cement-
based composites to determine these materials’ mechanical properties and provide the most effective
methodologies. Machine learning has advanced as a potent method for gauging the structural and
material performance of such materials [23]. An extensive set of actual data with features is required
to make machine learning models more robust and inclusive. Cavaleri et al. [23] proposed ensemble
algorithms for predicting the bond strength of corroded reinforced concrete. They found that the
models accurately depict the nonlinear behavior of corroded reinforced concrete. Another study used
the M5P model tree to assess the dynamic modulus of asphalt concrete [24]. Ahmed et al. [25] adapted
three standard models, linear, nonlinear, and multi-logistic regression, to predict the compressive
strength (CS) of fly ash-based geopolymer concrete, using twelve actual mixture proportions and
curing methods as model inputs. Moreover, the impact of the molarity of NaOH, nano-silica content,
the ratio of sodium hydroxide to sodium silicate, the binder content, the aggregate amount, and the age
of CS in the geopolymer concrete was investigated, and five distinct models, including the ANN and
M5P tree, were developed to predict and estimate CS in the composites. Due to the limitations of soft
computing models in predicting ECC characteristics, another effort was made by [26,27] to forecast
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the compressive and tensile strengths of ECC mixtures. This research developed an ANN model using
data from 79 experiments and 12 input parameters from existing literature. The results underscored
the ANN model’s efficacy in estimating the compressive and tensile strengths of ECC that includes
PVA fiber in its composition. Since prior research in this area was deemed insufficient, the present
study utilized five different ML models and ten input parameters to predict ECC’s TSC.

Since ECCs are commonly used in structural applications where ductility is paramount, there
are few studies on estimating the TSC of ECCs with fly ash, complicating their efficient use in
construction. Additionally, the building industry increasingly seeks novel building materials with
unique properties to extend the longevity of concrete structures. This necessitates the creation of new
models to anticipate the behavior and properties of these materials. The primary aim of this study
is to explore the effects of various mixture proportions, such as cement (C), fly ash (FA), sand (S),
fiber (F), w/b ratio, and superplasticizer (SP), on the TSC of ECC mixtures over both short (3 days)
and long (90 days) durations. Extensive experimental data from 115 specimens, combined with diverse
modeling approaches, were employed to achieve the following objectives: (i) examine the influence of
cement, fly ash, sand, fibers, and SP contents, along with curing time, w/c ratio, maximum aggregate
size, fiber length, and diameter, on the TSC of eco-friendly ECC containing fly ash, (ii) enable the
construction industry to use the model for estimating ECC’s TSC without additional laboratory tests
and analysis, (iii) confirm the model’s reliability compared to others (ANN, nonlinear, linear, and
multi-logistic relation models) in terms of TSC prediction accuracy for sustainable ECC with fly ash.
Moreover, an essential goal of this research is to develop mathematical models to predict the TSC of a
novel composite type (ECC with fly ash) and leverage the model’s benefits in the construction sector.

2 Methodology

Data from various previous studies were collected to achieve the objectives of this research,
totaling 115 datasets. These datasets were entered into an Excel sheet, after which they were arranged,
divided, and statistically analyzed. The data were then randomly distributed and separated into two
groups: the major group, which constituted 70% of the data, was used to generate the models and is
referred to as training data, while the remaining 30% of the data was used to test the generated models
[17,28].

The TSC of the ECC composites produced with different mix proportions and fly ash contents has
been collected and presented in Table 1. This table encompasses most previous studies on this topic,
particularly those that examined the effect of the composting material proportion on the properties
of the ECC. The test results, including the fundamental parameters presented in Table 1, were used
to predict the TCS of ECC using different approaches previously mentioned and compared to the
reported measured TCS%. The workflow is illustrated in Fig. 1.
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Table 1: Summary of the constitutes of ECC mixes reported in the literature

Ref. Cement Fly ash w/b Sand SP Fiber Age Tensile strain
content
(kg/m3)

content
(kg/m3)

Max.
size
(μm)

Content
(kg/m3)

content
(kg/m3)

Content
(kg/m3)

Length
(mm)

Diameter
(μm)

(day) capacity (%)
(TSC)

375 825 0.26 200 432 5.52 26 12 39 28 2.9
375 825 0.26 200 432 5.04 26 12 39 28 2.8
375 825 0.26 425 432 4.8 26 12 39 28 2.4

[29] 375 825 0.26 600 432 4.44 26 12 39 28 1.5
222 978 0.26 200 432 5.04 26 12 39 28 4.1
222 978 0.26 425 432 4.8 26 12 39 28 4.2
222 978 0.26 425 432 5.04 26 12 39 28 4.7
375 825 0.26 425 432 5.16 26 12 39 28 3.2

[30] 472 755 0.27 300 444 10.8 26 8 39 28 1.8
472 755 0.27 300 444 10.8 26 12 39 28 2

[31] 570 684 0.3 300 455 5.7 28.6 12 39 28 0.77
[32] 570 684 0.56 250 456 6.84 29 8 39 28 2.9

570 684 0.56 250 456 6.84 29 8 39 28 3.6
[33] 232 1019 0.26 250 450 4.3 26 12 39 2.68

382 890 0.25 250 462 15.3 26 8 40 28 3.2
382 763 0.25 250 462 15.3 26 8 40 28 3.76
382 636 0.25 250 462 15.3 26 8 40 28 3.56

[34] 382 509 0.25 250 462 15.3 26 8 40 28 3.36
382 890 0.25 250 462 15.3 26 8 40 90 2.79
382 763 0.25 250 462 15.3 26 8 40 90 3.28
382 636 0.25 250 462 15.3 26 8 40 90 3.3
382 509 0.25 250 462 15.3 26 8 40 90 2.51

[11] 936 201 0.32 250 601 4.2 26 8 39 56 6
[35] 393 865 0.25 250 457 5 26 12 39 28 2
[36] 393 865 0.25 250 457 5 26 12 39 28 4.2

570 684 0.27 250 454 5 16.9 12 39 3 3.22
337 912 0.27 250 454 2.5 16.9 12 39 3 3.28
570 684 0.27 250 454 5 16.9 12 39 7 3.03
337 912 0.27 250 454 2.5 16.9 12 39 7 3.1

[37] 570 684 0.27 250 454 5 16.9 12 39 28 2.7
337 912 0.27 250 454 2.5 16.9 12 39 28 3.57
570 684 0.27 250 454 5 16.9 12 39 56 2.33
337 912 0.27 250 454 2.5 16.9 12 39 56 3.27
570 684 0.27 250 454 5 16.9 12 39 90 2.2
337 912 0.27 250 454 2.5 16.9 12 39 90 3.07

[38] 578 694 0.25 200 462 7.51 26 12 39 28 3
[39,40] 570 684 0.23 150 454 5.3 26 8 40 28 2.8
[41,42] 570 684 0.27 200 455 4.9 26 8 39 7 3.48

570 684 0.27 200 455 4.9 26 8 39 28 3.16
570 684 0.27 200 455 4.9 26 8 39 7 3.48

[43,44] 386 847 0.27 200 448 3.7 26 8 39 7 4.21
570 684 0.27 200 455 4.9 26 8 39 28 3.16
386 847 0.27 200 448 3.7 26 8 39 28 3.4

(Continued)
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Table 1 (continued)

Ref. Cement Fly ash w/b Sand SP Fiber Age Tensile strain
content
(kg/m3)

content
(kg/m3)

Max.
size
(μm)

Content
(kg/m3)

content
(kg/m3)

Content
(kg/m3)

Length
(mm)

Diameter
(μm)

(day) capacity (%)
(TSC)

[45] 570 684 0.27 200 455 5.1 26 8 39 7 3.9
570 684 0.27 200 455 5.1 26 8 39 28 3.1
558 669 0.27 200 446 2.3 26 8 39 14 2.91

[46,47] 375 823 0.27 200 435 2 26 8 39 14 3.24
558 669 0.27 200 446 2.3 26 8 39 28 2.73
375 823 0.27 200 435 2 26 8 39 28 3.02
838 0 0.43 250 838 17 26 12 39 28 4.88

[48] 583 700 0.23 250 467 19 26 12 39 28 3.41
318 701 0.28 250 701 19 26 12 39 28 3.9
571 685 0.25 250 456 6.8 26 8 39 3 4.6
477 763 0.25 250 456 6.05 26 8 39 3 4.2
412 824 0.25 250 456 5.52 26 8 39 3 4.1
362 870 0.25 250 456 5.1 26 8 39 3 4.3
324 906 0.25 250 456 5.29 26 8 39 3 4.4
292 965 0.25 250 456 5.1 26 8 39 3 4.3
266 959 0.25 250 456 5.8 26 8 39 3 4
190 1063 0.25 250 456 6.45 26 8 39 3 3.8
571 685 0.25 250 456 6.8 26 8 39 28 2.7
477 763 0.25 250 456 6.05 26 8 39 28 3.7
412 824 0.25 250 456 5.52 26 8 39 28 3
362 870 0.25 250 456 5.1 26 8 39 28 2.9
324 906 0.25 250 456 5.29 26 8 39 28 3
292 965 0.25 250 456 5.1 26 8 39 28 2.7

[49] 266 959 0.25 250 456 5.8 26 8 39 28 2.5
190 1063 0.25 250 456 6.45 26 8 39 28 3.3
571 685 0.25 250 456 6.8 26 8 39 90 1.8
477 763 0.25 250 456 6.05 26 8 39 90 3
412 824 0.25 250 456 5.52 26 8 39 90 3.1
362 870 0.25 250 456 5.1 26 8 39 90 2.3
324 906 0.25 250 456 5.29 26 8 39 90 3.3
292 965 0.25 250 456 5.1 26 8 39 90 2.9
266 959 0.25 250 456 5.8 26 8 39 90 2.6
190 1063 0.25 250 456 6.45 26 8 39 90 3.4
636 636 0.25 250 462 17.4 26 8 40 28 1.8
636 636 0.25 250 462 17.4 26 8 40 28 2.22

[50] 636 636 0.25 250 462 17.4 26 8 40 28 2.46
382 890 0.25 250 462 16 26 8 40 28 2.5
382 890 0.25 250 462 16 26 8 40 28 3
382 890 0.25 250 462 16 26 8 40 28 3.12
418 836 0.19 600 456 5.7 26 8 39 28 4.5

[51] 570 684 0.25 600 456 5.7 26 8 39 28 4.25
418 836 0.22 600 456 7.41 26 8 39 28 4
404 605 0.24 4750 756 23 19 12 24 28 4.09
450 673 0.24 4750 617 17 19 12 24 28 9.07
502 753 0.24 4750 452 11 19 12 24 28 10.12
493 739 0.27 4750 437 8 19 12 24 28 8.74
484 726 0.3 4750 435 6 19 12 24 28 9.43

(Continued)
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Table 1 (continued)

Ref. Cement Fly ash w/b Sand SP Fiber Age Tensile strain
content
(kg/m3)

content
(kg/m3)

Max.
size
(μm)

Content
(kg/m3)

content
(kg/m3)

Content
(kg/m3)

Length
(mm)

Diameter
(μm)

(day) capacity (%)
(TSC)

404 605 0.24 2360 756 20 19 12 24 28 4.07
450 673 0.24 2360 617 15 19 12 24 28 7.45

[52] 502 753 0.24 2360 452 10 19 12 24 28 9.44
493 739 0.27 2360 437 8 19 12 24 28 10.39
484 726 0.3 2360 435 6 19 12 24 28 9.54
404 605 0.24 212 756 20 19 12 24 28 6.47
450 673 0.24 212 617 15 19 12 24 28 9.95
502 753 0.24 212 452 10 19 12 24 28 10.75
493 739 0.27 212 437 8 19 12 24 28 9.21
484 726 0.3 212 435 6 19 12 24 28 8.12

[31,53] 570 684 0.3 300 456 5.1 28.6 12 39 28 0.77
570 684 0.3 300 456 6.77 17 12 26 28 0.33
448 807 0.3 300 456 6.5 17 12 26 28 0.48
368 886 0.3 300 456 6.27 17 12 26 28 0.51
314 941 0.3 300 456 6 17 12 26 28 0.71
273 981 0.3 300 456 5.89 17 12 26 28 0.6
447 807 0.28 300 456 10.4 17 12 26 28 0.17
447 807 0.32 300 456 5.643 17 12 26 28 0.5
368 886 0.28 300 456 10 17 12 26 28 0.28
368 886 0.32 300 456 5.26 17 12 26 28 0.52
314 941 0.28 300 456 9.78 17 12 26 28 0.32

[10] 314 941 0.32 300 456 5 17 12 26 28 0.42
368 886 0.3 300 380 6.27 17 12 26 28 0.65
368 886 0.3 300 532 6.27 17 12 26 28 0.16
447 807 0.3 300 456 2.5 0 12 26 28 0.02
447 807 0.3 300 456 6.27 15.6 12 26 28 0.29
447 807 0.3 300 456 6.77 18.2 12 26 28 0.44
368 886 0.28 300 456 3.63 21 12 39 28 2.37
368 886 0.26 300 456 4 21 12 39 28 2.01
368 886 0.28 300 456 2.5 13 12 39 28 1.57
368 886 0.28 300 456 3.13 21 12 39 28 2.76
368 886 0.28 300 456 3.5 26 12 39 28 4.25
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Figure 1: The research methodology in terms of a flow chart diagram

3 Statistical Evaluation

At this stage of the study, the relationships between the dependent and independent variables were
investigated to determine the strength of the association between them and with the TSC of ECC.
The relationships of cement content, fly ash content, w/b ratio, maximum aggregate size (sand), sand
content, SP content, fiber (content, diameter, and length), and curing time were plotted against the
empirical direct tensile strain as depicted in Figs. 2a–2j successively. A normal distribution of TSC
from previous research was illustrated in Fig. 3. To demonstrate the distribution of each variable and
its relationship with the TSC, statistical functions such as standard deviation (SD), skewness, variance,
minimum, average, maximum, and kurtosis were calculated and summarized in Table 2. As derived
from the literature, the properties and behavior of ECC, especially TSD, are significantly influenced by
the length and diameter of the fibers used in their structure. Based on this data, fiber length, diameter,
and fiber content were all considered as input variables.



CMES, 2024, vol.138, no.3 2933

Figure 2: (Continued)
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Figure 2: (Continued)
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Figure 2: (Continued)
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Figure 2: Marginal plot for the TSC of ECC vs. (a) cement content; (b) fly ash content; (c) w/b; (d) sand
maximum size; (e) sand content; (f) superplasticizer content; (g) fiber content; (h) fiber length; (i) fiber
diameter; (j) specimens ages
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Figure 3: The TSC histogram of the gathered datasets at various curing ages

Generally, the fibers used in previous research were of the PVA type with lengths and diameters
of 6–12 mm and 12–40 μm, respectively. The contents of these fibers ranged from 4.55 to 39 kg/m3.
The type of cement used in most prior studies was OPC, adhering to the specifications of ASTM C
150 with fineness values between 300 and 400 m2/kg and a specific gravity ranging from 3.05 to 3.20.
The type of fly ash used as a cement replacement was Class-F, with contents ranging from 201 to
1150 kg/m3. Sand contents were between 380 and 756 kg/m3, with maximum sizes of 100–4750 μm.
The superplasticizer employed in the ECC mixture from previous research was polycarboxylate-based,
possessing high water-reducing capabilities to minimize water content and enhance workability.
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Table 2: A summary of the statistical analysis of the model’s input parameters

Model parameters No. of data Average Median St. Div. Min. Max. Variance Skewness Kurtosis

Cement content (Kg/m3) 115 424.71 386 119.89 190 936 14372.90 0.67 1.65
Fly ash content (Kg/m3) 115 795.55 823 139.87 201 1063 19562.78 −0.97 2.72
w/b 115 0.27 0.26 0.05 0.19 0.56 0.00 4.49 25.02
Sand max. size (μm) 115 500.45 250 899.90 150 4750 809814.21 4.06 15.99
Sand content (Kg/m3) 115 464.21 456 77.14 0.36 838 5950.38 0.47 19.11
SP content (Kg/m3) 115 7.53 5.7 4.72 2 20 22.24 1.29 0.41
Fiber content (Kg/m3) 115 23.25 26 4.14 13 29 17.12 −0.78 −1.12
Fiber length (mm) 115 9.98 8 2.01 8 12 4.03 0.02 −2.04
Fiber diameter(μm) 115 36.15 39 5.78 24 40 33.41 −1.40 0.02
Age (days) 115 32.77 28 23.48 3 90 551.27 1.57 1.84
TSC (%) 115 3.19 3.07 1.99 0.02 10.12 3.95 1.39 3.29

4 Modeling

From the literature and the results of the analysis in Section 3, it is clear that a direct relationship
between the TSC of ECC and its individual constituents is not available. Therefore, all ingredients
could be combined and incorporated into a single model to determine the influence of each parameter
on the TSC. Consequently, five distinct soft-computing techniques were proposed, as explained below.

4.1 Linear Relationship Model (LR)
As previously mentioned, this research aims to incorporate as many variables as possible that are

strongly related to the TSC of ECC into a model. The linear regression model is a common tool used
to evaluate the compressive strength of ECC [54], as represented in Eq. (1).

σc = α1 + α2(w/c) (1)

where α1 and α2 are coefficients; w/c is the significant parameter of the model that influences the
compressive strength of concrete. This model has not considered the influence of other contributing
parameters, such as curing time, on ECC behavior. The sum of squared errors and the least squares
approach, implemented using the Excel program with the solver feature, were used to compute the
value of each parameter in the current model. As a result, Eq. (2) was developed to include most
factors influencing the tensile strain capacity.

TSC = α1 + α2 (C) + α3 (FA) + α4
(w

b

)
+ α5 (SMS) + α6 (S) + α7 (SP) + α8 (F)

+ α9 (FL) + α10 (FD) + α11 (A) (2)

where TSC = Tensile Starin Capacity, C = Cement content (kg/m3), FA = Fly ash content (kg/m3),
w/b = Water to Binder ratio, MSS = The maximum size of sand (μm), S = Sand content (kg/m3),
SP = Superplasticizer dosage (kg/m3), F = Fiber content (kg/m3), FL = Fiber length (mm), FD = Fiber
diameter (μm).

where α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, and α11 are the model parameters. Since the changes in
the factors are linear, Eq. (2) can be utilized to replace Eq. (1). Many factors affect the TSC and interact
with one another, but this is not necessarily the case. Subsequently, the model should be updated
frequently for a better prediction of the compressive strength [54,55].
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4.2 NLR Model
The relationship between different variables of Eqs. (1) and (2) can be generated as stated in

Eq. (3); from this, the TSC of ordinary ECC and ECC incorporated flay ash can be predicted. Eq. (3)
can efficiently be used to design NLR [56,57].

TSC = α1 ∗ (C)α2 ∗
(w

b

)α3 ∗ (SMS)α4 ∗ (S)α5 ∗ (SP)α6 ∗ (F)α7 ∗ (FL)α8 ∗ (FD)α9 ∗ (A)α10 + α11

∗ (C)α12 ∗
(w

b

)α13 ∗ (SMS)α14 ∗ (S)α15 ∗ (SP)α16 ∗ (F)α17 ∗ (FL)α18 ∗ (FD)α19 ∗ (A)α20 ∗ (FA)α21 (3)

Similar to the LR model, the sum of error squares and the least square approach were determined
using the Excel solver. The abbreviations in the equation are identical to those for the LR model.

4.3 MLR Model
When the expected variables contain a parameter higher than two stages, the use of MLR, a

statistical method similar to a multiple linear regression model, can be used [58]. Eq. (4) is utilized
to calculate variance among predictable and independent variables.

TSC = α1 ∗ (C)
α2 ∗ (FA)

α3 ∗
(w

b

)α4

∗ (SMS)
α5 ∗ (S)

α6 ∗ (SP)
α7 ∗ (F)

α8 ∗ (FL)
α9 ∗ (FD)

α10 ∗ (A)
α11 (4)

The disadvantage of this equation is its inadequacy to predict the TSC of ECCs, not including
FA. Using this equation, the fly ash or other ingredient contents should be greater than zero.

4.4 ANN Model
The Weka software package (version 3.8.5) was used for ML predictions [59]. The ANN is the

inverse of the forward neural network [55,60,61]. The model consists of three distinct layers: input,
output, and hidden layers. The input layer receives the signal to be investigated, and the output layer
presents the results of fundamental tasks such as classification and prediction. In the computational
ANN engine, an infinite number of hidden layers exist between the input and output layers. Similarly
to a feed-forward network, data transfer occurs from the source to the target layer in the ANN engine.
Multiple hidden layers were refined over trial cycles to determine the most appropriate number of
hidden layers for error reduction and R2 [62]. To establish an optimal network topology, the derived
ANN model was evaluated for various layers using both projected TSC and actual measured TSC of
ECCs to achieve the best fit between them.

It was determined that the ANN structure composed of one hidden layer and seven neurons
(Fig. 4) was the best-performing network with the highest R2 and lowest MAE and RMSE (as shown
in Fig. 5). Eqs. (5)–(7) provide the ANN model’s general equations [63].

From linear node 0:

σc = Threshold +
(

Node 1
1 + e−B1

)
+

(
Node 2
1 + e−B2

)
+ . . . (5)

From sigmoid node 1:

B1 = Threshold +
∑

(Attribute ∗ Variable) (6)

From sigmoid node 2:

B2 = Threshold +
∑

(Attribute ∗ Variable) (7)
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Figure 4: ANN model optimal network architecture

Figure 5: Choose the best-hidden layer and neurons for an ANN model based on the model’s R2, MAE,
and RMSE performances

4.5 M5P-Tree Model (M5P)
The modified version of the Quinlan M5 technique is referred to as the M5P-tree [64,65]. The

key advantage of this model is its ability to handle a vast amount of data efficiently across countless
attributes and dimensions. The nodes in the M5P tree display both error estimates and information
on tree division criteria. The evaluation of any function linked to a specific node is determined by the
feature that significantly reduces the anticipated error. The tree-division criteria of the M5P-tree model
are derived from the error estimates at the node levels. The M5P-tree error represents the standard
deviation of a node’s class value. The division of nodes is guided by the feature that minimizes the
projected error after analyzing each attribute. Due to the model’s branching structure, the smaller
nodes (sub-trees) possess a lower standard deviation than others. Once all potential structures are
evaluated, the parent nodes (larger nodes) reflect the structure with the highest likelihood of error
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reduction. This partitioning also leads to the formation of a vast tree-like structure, which can promote
overfitting.

As shown below, the general equation of the M5P-tree model is similar to the linear regression
equation–Eq. (8).

TSC = α1 + α2 (C) + α3 (FA) + α4
(w

b

)
+ α5 (SMS) + α6 (S) + α7 (SP) + α8 (F) + α9 (FL)

+ α10 (FD) + α11 (A) (8)

4.6 Assessment Criteria for the Developed Models
With the help of several assessment tools, namely the coefficient of determination (R2), the Scatter

Index (SI), the OBJ, the RMSE, and the MAE, the efficiency of the proposed models was evaluated.
The following equations are suitable for this evaluation:

R2 =

⎛
⎜⎜⎝

∑p

p=1

(
tp − t′) (

yp − y′)√[∑p

p=1

(
tp − t′

)2
] [∑p

p=1

(
yp − y′

)2
]
⎞
⎟⎟⎠

2

(9)

RMSE =
√∑p

p=1(yp − tp)2

p
(10)

MAE =
∑p

p=1 |(yp − tp)|
p

(11)

SI = RMSE
t′ (12)

OBJ =
(

ntr

nall

∗ RMSEtr + MAEtr

R2
tr + 1

)
+

(
ntst

nall

∗ RMSEtst + MAEtst

R2
tst + 1

)
(13)

where yp = Predicted route pattern, tp = Actual route pattern, T′ = The mean of the actual value, y′ =
The mean of the projected value, tst = Tested dataset, n = No. of patterns (collected data) in the link
dataset, tr = Trained dataset.

The indications of SI parameter for the performance are as follows [66,67]:

>0.3 = Performance is Poor

0.2–0.3 = Performance is Fair

0.1–0.2 = Performance is Well

<0.1 = Performance is Excelent

5 Analysis and Output
5.1 The LR Model

The relationship between measured and predicted TSC of ECC for both training and testing
samples is depicted in Figs. 6a and 6b. By optimizing the sum of error squares and least square
methods, the value of each parameter in the existing model was calculated.
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Figure 6: Comparison of the TSC of ECC mixtures that were tested and the TSC that the LR model
predicted; (a) training datasets; (b) testing datasets

According to this model, the TSC of ECC-incorporated fly ash was significantly influenced by
the w/b ratio and the diameter of the fiber content. The LR model with different weighted parameters
is presented in Eq. (14).

TSC = −1.88 − 0.002 (C) − 0.003 (FA) − 4.214
(w

b

)
+ 0.002 (SMS) + 0.009 (S) − 0.059 (SP)

+ 0.08 (F) − 0.026 (FL) + 0.102 (FD) − 0.008 (A) (14)

From the equation above, it is evident that the w/b ratio greatly influences the TSC. This
observation aligns with empirical findings in the literature. The assessment parameters R2, RMSE,
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and MAE were 0.73, 0.96%, and 0.7%, respectively. Moreover, the OBJ and SI values for the training
datasets were 0.94% and 0.308.

5.2 NLR Model
Using data from the literature, the relationship between predicted and actual TSC of ECC

incorporating fly ash for both training and testing datasets is shown in Figs. 7a and 7b. It was
established that the maximum size of sand content, fiber concentration, and fiber diameter are the
most influential parameters on the CS of ECC mixtures, as substantiated by an extensive set of
experiments noted in Table 1. Adjusting the fiber amount and increasing the maximum sand content
size significantly impacted the CS of ECC incorporating fly ash.

Figure 7: Comparison of the TSC of ECC mixtures that were tested and the TSC that the NLR model
predicted; (a) training datasets; (b) testing datasets
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The following equation is the suggested model for the NLR model with different variable
parameters (Eq. (15)):

TSC = −4269895 ∗ (C)
0.606 ∗

(w
b

)1.57

∗ (SMS)
−4.42 ∗ (S)

0.076 ∗ (SP)
2.767 ∗ (F)

−22.26 ∗ (FL)
1.604 ∗ (FD)

1.005

∗ (A)
−0.612 + 0.00013 ∗ (C)

−0.222 ∗
(w

b

)−0.491

∗ (SMS)
0.587 ∗ (S)

1.496 ∗ (SP)
−0.109 ∗ (F)

0.878 ∗ (FL)
−0.153

∗ (FD)
0.021 ∗ (A)

−0.164 ∗ (FA)
−0.529 (15)

The R2, RMSE, and MAE measured using this model were 0.68, 1.05%, and 0.83%. The OBJ and
SI values of the training dataset were 1.19% and 0.33, respectively.

5.3 MLR Model
The comparison of actual and predicted TSC of ECC with fly ash for both training and testing

datasets, derived from earlier studies, is illustrated in Figs. 8a and 8b. Based on previous research data
presented in Table 1, content is the primary factor affecting the TCS of ECC mixtures with fly ash. The
MLR model with varying parameters can be utilized to predict the TSC of ECC containing fly ash.

TSC = 0.00012 ∗ (C)
−0.216 ∗ (FA)

−0.525 ∗ (
w
b

)−0.502 ∗ (SMS)
0.582 ∗ (S)

1.498 ∗ (SP)
−0.11 ∗ (F)

0.925

∗ (FL)
−0.145 ∗ (FD)

−0.029 ∗ (A)
−0.164 (16)

The R2, RMSE, and MAE measured using this model were 0.67, 1.07% and 0.84%. The OBJ and
SI values of the training dataset were 1.21% and 3.34, respectively.

Figure 8: (Continued)
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Figure 8: Comparison of the TSC of ECC mixtures that were tested and the TSC that the MLR model
predicted; (a) training datasets; (b) testing datasets

5.4 ANN Model
Various hidden layers, neurons, momentum, learning rate, and iterations were explored to identify

the ANN with the highest efficiency, as depicted in Fig. 5. The investigation determined that the CS
of ECC with fly ash is best predicted when the ANN includes one hidden layer, seven neurons per side
(Fig. 9), 2000 iterations, a 0.2 learning rate, and 0.1 momentum. The predicted and measured TSC of
ECC containing fly ash for training and testing datasets are shown in Figs. 9a and 9b. The training
datasets exhibited +10% and −20% error lines, while testing datasets showed +15% and −5% error
lines, indicating superior performance compared to other proposed models.

Figure 9: (Continued)



CMES, 2024, vol.138, no.3 2945

Figure 9: Comparison of the TSC of ECC mixtures that were tested and the TSC that the ANN model
predicted; (a) training datasets; (b) testing datasets

The R2, RMSE, and MAE measured using this model were 0.98, 0.42% and 0.30%. The OBJ and
SI values of the training dataset were 0.33% and 0.135, respectively.

5.5 M5P Model
The actual and predicted TSC of ECC mixtures with fly ash for both training and testing datasets

are demonstrated in Figs. 10a and 10b. The TSC of ECC mixtures containing fly ash is notably affected
by the w/b ratio, consistent with other investigated models and in line with empirical data in Table 1.
Moreover, Eq. (17) represents the model with variables chosen based on the tree regression function.

TSC = −4.9043 − 0.0015 (FA) − 4.6679
(w

b

)
+ 0.0026 (SMS) + 0.0092 (S) − 0.0573 (SP)

+ 0.1034 (F) + 0.0916 (FD)

The assessment parameters R2, RMSE, and MAE for this model were 0.85, 0.98%, and 0.73%,
respectively, and the OBJ and SI values of the training dataset were 0.78% and 0.314.

5.6 Model Comparisons
The precision of each model in predicting the tensile strain capacity of ECC was assessed using the

statistical indices listed in Section 4.5. The ANN model has a higher R2 and lower RMSE and MAE
values when compared to the LR, NLR, MLR, and M5P models, as demonstrated in Figs. 11–13 for
R2 values, RMSE, and MAE, respectively. Fig. 14 compares model TSC estimations based on testing
datasets for ECC mixes, including fly ash. Fig. 15 also displays the residual error for all models using
training and testing datasets. In both Figs. 14 and 15, the estimated and predicted results of TSC for
the ANN model are closer, demonstrating that the ANN model outperforms other models.
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Figure 10: Comparison of the TSC of ECC mixtures that were tested and the DTS that the M5P model
predicted; (a) training datasets; (b) testing datasets

Figure 11: R2 results for training and testing datasets for various proposed models

The OBJ values for all developed models are shown in Fig. 16. The LR, NLR, MLR, M5P, and
ANN models have 0.94%, 1.19%, 1.21%, 0.78%, and 0.33%, respectively. The ANN model had an OBJ
value 226% less than that of the NLR and MLR models; it is also 184% less than the LR model and
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136% lower than the M5P model. This indicates that the ANN approach is more robust in forecasting
the TSC of ECC mixes, including FA.

Figure 12: RMSE results for training and testing datasets for various proposed models

Figure 13: MAE results for training and testing datasets for various proposed models

Figure 14: Comparison of model predictions of the TSC of ECC mixtures with data from the test
datasets

The SI values for the given models are presented in Fig. 17 throughout the training and testing
processes. Fig. 17 suggests that, except for the ANN model, the SI values for all phases were higher
than 0.3, indicating poor performance. The SI training dataset values for the ANN model, however,
were between 0.1 and 0.2, indicating that the ANN model performed well. Moreover, consistent with
other performance measures, the ANN model has lower SI values than other methods. In the training



2948 CMES, 2024, vol.138, no.3

phase, the ANN model has a 128% lower SI value than the LR model and a 226% lower SI value in
the testing phase. Additionally, compared to the NLR and MLR models, the ANN model had lower
SI values in all stages, such as 152% lower in training and 344% lower in the testing stage. This further
illustrates that the ANN model is more proficient and precise in predicting the TSC of ECC mixes,
including FA, than the LR, NLR, M5P, and MLR models.

Figure 15: TSC of ECC mixes residual error diagram utilizing entire datasets for all models

Figure 16: All of the models’ OBJ values

Figure 17: SI performance parameter results of several created models
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6 Conclusions

Models for tensile strain capacity prediction that are precise and accurate can save time and money.
The following conclusions were drawn based on a study and simulation of data from prior research to
predict the TSC of ECC for 115 different mixed compositions:

1. In the production of ECC mixes, the range of some ingredients falls within a narrow range
of available input space. This phenomenon is attributed to the special mix proportion of this
concrete type. Therefore, the application of the proposed models should be verified for mix
proportions outside the ranges provided in this study.

2. The mixture proportion and quality of materials are crucial in producing ECC because the
TSC is highly sensitive to the amount and quality of materials.

3. Among various models developed to predict the TSC of ECC mixtures, the ANN model
outperformed other models in all phases based on different assessment criteria, with higher
R2 values, lower OBJ values, lower RMSE, lower SI, and lower MAE values.

4. Except for the ANN model, the SI values for all models and stages exceeded 0.3, suggesting
suboptimal performance.

5. The SI value for the ANN model in the training phase ranged between 0.1 and 0.2, indicating
good performance; for the testing phase, the value ranged from 0 to 0.1, suggesting that the
ANN model performed exceptionally well.

6. The OBJ value of the ANN model is 226% lower than those of the NLR and MLR models;
it is also 184% lower than that of the LR model and 135% lower than the M5P model. This
demonstrates that the ANN model is more accurate and adept at forecasting the TSC of ECC
mixes, including F.

7. The overall findings and analysis revealed that specific quantities of FA can be effectively
utilized in ECC production to produce sustainable, environmentally friendly, and structurally
sound ECCs. Furthermore, the models developed in this study, especially the ANN model,
can efficiently estimate the mix proportions and TSC of ECCs, thereby reducing the number
of experimental tests and trial batches in the laboratory.
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