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ABSTRACT

Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynami-
cally adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing
a novel framework for traffic control using vehicular communications and Internet of Things data. The framework
integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter
incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional
Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating
low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads. For
evaluation, the model has been simulated on a single intersection consisting of four roads: east, west, north, and
south. A comparison of the developed adaptive quantized Q-learning (AQQL) framework with state-of-the-art
and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released
number of vehicles of AQQL is 5% over the greedy approach and 340% over the state-of-the-art approach. Hence,
AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system.

KEYWORDS
Q-learning; intelligent transportation system (ITS); traffic control; vehicular communication; kalman filtering;
smart city; Internet of Things

1 Introduction

Cities are emerging quickly recently due to the massive development in various fields, such as
vehicular communications [1], Internet of Things (IoTs) [2–5], Artificial Intelligence (AI) [6], Fog
Computing (FC) [7], as well as smart data analysis and decision making [8]. Several challenges occur
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in modern cities such as vehicle emissions caused by the transportation systems in general and traffic
control [9]. Effective congestion control requires a combination of various technologies, including
fast sensor reading and processing, vehicles to vehicles (V2V) and vehicles to infrastructure (V2I)
communication, data integration, and intelligent deep learning techniques [10,11]. These technologies
can be used to improve congestion control by enabling real-time monitoring and management of traffic
flow. For example, V2V and V2I communication can facilitate the exchange of information about
traffic conditions, allowing vehicles to adjust their routes and speeds accordingly. Data integration
and intelligent deep learning can help to analyze this information and make predictions about future
traffic patterns. In addition, decision-making and training of intelligent processes can be used to adapt
and improve the performance of the congestion control system [12].

Researchers are interested in developing effective traffic control systems because such systems are
key requirements for economic competitiveness and environmental sustainability [10]. Congestion is
caused by inefficiencies in traffic regulation, resulting in high expenses and commuter delays. In 2017,
the cost of traffic congestion in the European Union (EU) was estimated to be 1% of the yearly GDP.
The cost of congestion in the United States was 88 billion dollars in 2019 (0.41% of GDP). Commuters
spend up to 200 h a year stuck in traffic, especially in dense cities. Increased emissions as a result of
congestion have negative environmental and social consequences [11].

In theory, this should allow for informed control decisions and congestion mitigation. However,
traditional traffic control paradigms are inadequate for leveraging the dense stream of state of art
to make better control decisions. To deal with the rising complexity of traffic control while taking
comprehensive state information into account, new algorithms are required.

Reinforcement learning [12,13] is an artificial learning approach that has proven outstanding
results in recent applications of controlling complex systems that have high non-linearity and dynamic
nature, such as driverless vehicles [14], unmanned aerial vehicle control [15], and other types of
systems which involves sensor reading, data analysis, decision making, and re-training or adaptation.
Intelligent traffic control is a suitable example of a highly complex and dynamic system that requires
intelligent control and adaptation to external factors [16]. Developing effective RL-based traffic
congestion control requires several matters. First, the preparation of communication and sensing
infrastructure enables feeding the controller with the state evolution of the environment. Second,
developing of estimation algorithm for the state based on the sensing information collected from the
sensors. Third, an efficient and effective definition of state that is suitable for different conditions,
i.e., an adaptive state. It is observed that the way to handle these issues has not been observed in the
existing literature. Therefore, the goal of this article is to address the problem of traffic control from
the fourth perspective: Firstly, we propose infrastructure for sensing and communication in a junction
combined with our roads. Secondly, we propose a Kalman filtering framework for multi-sensor fusion
to obtain an accurate estimate of the state before passing it to the Q-learning. Thirdly, we propose
a novel Q-learning formulation combined with state, action, and reward for traffic control over one
junction. Fourthly, a comprehensive evaluation of each of the Kalman filters and Q-learning based
on eight scenarios of the initial state in the junction and comparing them with the state-of-the-art
approaches. This article provides several contributions, as can be stated as follows:

1- It proposes VANETs infrastructure with IoT-based sensing for enabling communications of
vehicles to infrastructure V2I for two functionalities: congestion sensing and smart traffic
control. This is distinguished from other articles that ignore sensing and communication
infrastructure used to serve traffic congestion control.
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2- It provides an estimation based on multi-sensor Kalman filtering for the state of congestion on
the roads in the environment. Kalman filter includes a novel state and measurement models.
To the best of our knowledge, this is the first article that incorporates a multi-sensor Kalman
filter in the congestion control.

3- Unlike other Q-learning-based works, it presents an adaptive Q-learning-based traffic control
algorithm for roadway types of environments with multi-junction with the adaptive threshold
quantitation in order to obtain an adaptive behavior with respect to the change in the density
of vehicles.

4- It evaluates the developed sub-systems, namely, multi-sensor Kalman estimation for traffic
congestion estimation and the Q-learning for traffic control using various scenarios in order
to provide findings to literature.

The remaining of the article is presented as follows. In Section 2, we present a literature survey
about traffic control. In Section 3, an overview Q-learning algorithm is presented. Next, the method-
ology is presented in Section 3. Afterward, experimental results are presented in Section 4. Lastly, the
conclusion and future works are presented in Section 5.

2 Literature Survey

Traffic congestion has been examined widely in the literature. Some approaches have focused on
modeling traffic flow. In the work of Isaac et al. [17], the prediction and modeling of traffic flow
of human-driven vehicles at a signalized road intersection using an artificial neural network model
was proposed. The evidence from this study suggests that the ANN predictive approach proposed
could be used to predict and analyze traffic flow with a relatively high level of accuracy. Another
significant evidence from this study suggests that the ANN model is an appropriate predictive model
for modeling vehicular traffic flow at a signalized road intersection. In the work of Kang et al. [18],
the viscoelastic traffic flow model was simplified. The fractional viscoelastic traffic flow model is
established in combination with modeling principle of the Bass model and the successful application
of fractional calculus in viscoelastic fluid. Conformable fractional derivative and the fractional grey
model are then introduced to establish a fractional grey viscoelastic traffic flow model that can
reflect time-varying characteristics. Finally, the new model is compared with traditional statistical
models in terms of model efficiency and stability and is applied to the modeling of traffic flow and
traffic congestion levels in multiple scenarios. Other researchers have leveraged deep learning models
including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), Restricted Boltzmann Machines (RBM), and Stacked Auto Encoder (SAE)
[19]. In the work of Olayode et al. [20], traffic flow variables, such as the speed of vehicles on the road,
the number of different categories of vehicles, traffic density, time, and traffic volumes, were considered
input and output variables for modeling traffic flow of non-autonomous vehicles at a signalized road
intersection using the artificial neural network by particle swarm optimization (ANN-PSO). Other
works have concentrated on traffic congestion prediction [21].

Various approaches have focused on various aspects, such as delay estimation proposed by
Afrin et al. [22]. Rani et al. [23] proposed an approach for traffic delay estimation considering
technical and non-technical factors. The approach was based on a fuzzy inference system, which
is criticized by the need for an exhausting tuning process. Another aspect is traffic detection and
estimation. Zhang et al. [24] proposed a road traffic detection system that uses RFID-based active
vehicle positioning and vehicular ad-hoc networks (VANETs) to detect traffic congestion dynamically
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was proposed. The estimation is based on various variables, namely, vehicle density, weighted average
speed and congestion level. Chaurasia et al. [25] used a combination of data mining historical trajectory
data to detect and predict traffic congestion and VANET in reducing the detected congestion events.
The trajectories are firstly pre-processed before they are clustered. Congestion detection is then done
for each cluster based on a certain speed threshold and the time duration of that particular event. The
problem of traffic control was tackled recently and several models were developed for addressing it
under several categories.

The category of reinforcement learning-based traffic control was the most effective one proposed
by Wu et al. [26]. Joo et al. [27] used a traffic signal control (TSC) system to maximize the number of
vehicles crossing an intersection and balances the signals between roads by using Q-learning (QL).
States are determined by the number of directions on the road. There are only three action sets
available. When an action set is selected, only the direction of the road corresponding to that action
will have a green light. To minimize the delay in an intersection, the reward function is configured with
two parameters, i.e., the standard deviation of the queue lengths of the directions and throughput.
Busch et al. [11] proposed representative Deep Reinforcement Learning (DRL) agents that learn the
control of multiple traffic lights without and with current traffic state information. The agnostic
agent considers the current phase of all traffic lights and the expired times since the last change.
In addition, the holistic agent considers the positions and velocities of the vehicles approaching the
intersections. In [28], Q-learning was applied to reduce the congestion based on traffic control. In
their formulation of Q-learning, four types of actions were defined with preserving one of the traffic
lights at the junction fixed and enabling the other one to increase or decrease by ∓5. The reward
function used an average vehicle delay time. In [29], a semi-cooperative Nash Q-learning and an
extended Stackelberg equilibrium Q-learning were proposed. Instead of adjusting the plan of green
light timing, they determined the best multi-routes plan for passing most vehicles in a single traffic
intersection, combining game theory and RL in decision-making in the multi-agent framework. In
[30], an RL-based cooperative traffic signal control scheme considering the data transmission delay
issue in a traffic road network was proposed. four traffic features to describe the traffic states of an
arbitrary intersection. Four features are used to describe the state, namely, local current traffic signal,
phase, vehicle volumes, average speed, and average acceleration. The action space uses two actions
for left turn permitted and four actions for left turn protected. The reward is calculated using the
pressure on the intersection. In [31], Reinforcement Learning (RL)-based variable speed limits (VSL)
control algorithm was proposed to reduce crash risks associated with oscillations. The state, action and
reward, which are the critical components in the RL, were designed carefully for safety improvement.
The RL was trained to learn the optimal speed limit for various traffic states to achieve the goal of
safety optimization. A rear-end crash risk model was applied to assess crash risks associated with
oscillations near freeway bottlenecks. The cell transmission model was modified as the simulation
platform for evaluating the control effects. density within the three sections is used to be the state set.
The action was used to set the speed limit. The reward was described based on the total crash risk
(TCR) over a time horizon.

The usage of the Kalman filter for smart city applications has been observed in the literature. In
[32], the Kalman filter is used for anomaly detection based on a fisheye camera and image processing.
In [33], the Unscented Kalman filter has been applied in traffic control benchmarking for comparison
with the observer framework for performing the traffic density estimation. In [34], the cubature
Kalman filter algorithm is used as part of an algorithm for estimating estimate vehicle information and
real-time road conditions, whilst fuzzy logic is used to correct the measurement noise of the Kalman
filter. The ant colony algorithm is used to optimize the input and output membership functions. In
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[35], a 15-state Kalman Filter was developed for a navigation system based on two smart phones’
IMU sensors, “Xiaomi 8” and “Honor Play”. Their results have shown that the navigation solutions
of both smartphones are quite close to that of the reference IMUs. We present a summary of the
existing algorithms for traffic prediction and control with their limitation in Table 1. Two aspects are
mentioned in the table, namely, traffic prediction and traffic control. As is shown, none of the existing
algorithms have combined the two aspects jointly in the table.

Table 1: Overview of existing literature in traffic

Reference Traffic prediction Traffic control Limitation

Chaurasia et al. [25] � � No feedback from environment
Joo et al. [27] × � Static quantization
Chu et al. [28] × � Static quantization
Xiong et al. [34] � × Not handling traffic control
Yan et al. [35] � × Not handling traffic control
Ours � � Adaptive quantization

Overall, the two problems of traffic estimation and traffic control were addressed separately in
the literature, despite the relationship between them. The literature did not jointly address them. The
benefit of integrated traffic estimation and traffic control is exploiting the inter-effect to increase the
performance of each of them. Developing such a solution requires defining a sufficient state to link
traffic estimation and traffic control on one side and an effective reward to create feedback from the
traffic control into the estimation.

In this article, we presented a unified framework for handling the two problems together. Firstly,
an infrastructure based on IoT sensing and two types of communication, namely, V2V and V2I, are
presented. Secondly, an estimation based on multi-sensor Kalman filtering for the state of congestion
on the roads in the environment is provided. Thirdly, a learning-based traffic control algorithm
for roadway types of environments with multi-junction is proposed. Lastly, the article evaluates the
developed sub-systems, namely, the multi-Kalman estimation for traffic congestion estimation and
the Q-learning for traffic control using various scenarios with a comparison with the state-of-the-art
approaches.

3 Methodology

This section presents the developed methodology of this article. It starts with formulation of the
traffic control. Next, we present an overview of Q-learning. Afterward, we present the communication
infrastructure and system architecture. Next, a mathematical model and reinforcement learning are
presented. Next, we present a vehicle generation model, driving behavior model, mobility variables,
and lane change model. Lastly, we present the evaluation metrics.

3.1 Formulation of the Traffic Control Problem
The problem we are solving is traffic congestion control. It is handled in MATLAB simulation.

The problem is formulated mathematically as follows. Given an urban environment combined with
multiple junctions where each junction indicates an intersection between horizontal and vertical lines.
Each line is a combination of set roads with two directions and each direction has multiple lanes. The
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vehicle generation is appled to all roads at their intersection with the border of the environment for
the IN direction and the vehicles leaving is applied to all roads at their intersection with the border
of the environment in the OUT direction. Each junction has two modes, namely, road centered and
junction centered.

In the former, the action enables at one time east and west (EW) or north and south (NS). In
the latter, the action enables opening one of the four roads (E, W, N, and S) to three directions
corresponding to the enabled road: forward, right, and left. The state transition diagram of each of
the two modes is depicted in Fig. 1. It is observed that the system follows a Markov decision process
(MDP). In any current state, the transition to the next state depends only on the current state and it
does not have a relation with the previous states. We assume that each road is occupied with load cells
at its two ends for measuring the flows of vehicles and cameras to measure the count of the vehicles.
Furthermore, the vehicles are occupied with IEEE 802.11p for communicating with other vehicles and
with roadside units available at each junction. Assuming that the vehicles are generated using normal
distribution probability density function for several vehicles and exponential distribution probability
density function for time interval and assuming that the two types of sensors are subject to noise,
our goal is to exploit the sensing, V2V and V2I communication for enabling two functionality states
estimation using sensor fusion and traffic control using reinforcement learning.

Figure 1: Markov process of traffic control for traffic control-a-junction centered mode-b-road
centered mode

Six types of traffic opening are used:

• North–South (N–S): The traffic sign of the southern and eastern roads is open while the
remaining signs are closed

• East–West (E–W): The traffic sign of the eastern and western roads is open while the remaining
signs are closed

• S: The traffic sign on the southern road is open while the remaining is closed

• N: The traffic sign on the northern road is open while the remaining is closed

• E: The traffic sign on the eastern road is open while the remaining is closed

• W: The traffic sign on the western road is open while the remaining is closed

3.2 Overview of Q-Learning
A fundamental algorithm developed in the literature is used in building our traffic control

algorithm, namely, the Q-learning algorithm. As presented in Fig. 2, it takes the states, actions,
rewarding function R, the transition function T, the learning rate Alpha, and the discount factor
Gamma. The output of the algorithm is the Q matrix. The algorithm starts with initiating the Q matrix
based on the number of actions and the number of states. The algorithm starts with a set of episodes



CMES, 2024, vol.138, no.3 2109

until reaching convergence when the Q matrix does not change anymore. In each episode, the algorithm
determines the best action according to the Q matrix, it activates the action using the transition matrix
and it finds the next state, it also uses the reward function to find the reward, and it uses the Bellman
equation to update the Q matrix based on learning rate α and discount factor γ . Hence, the algorithm
works by learning an action-value function Q (st, at), which estimates the expected reward an agent
will receive by acting a in state st. The Q function is updated based on the agent’s experiences in the
environment using the following Eq. (1):

Q (st, at) = Q (st, at) + α (rt + γ max (Q (st+1, at+1) − Q (st, at))) (1)

where

st denotes current state

at denotes current action

st+1 denotes next state

at+1 denotes next action

α denotes the learning rate

γ denotes discount factor, the discount factor determines the importance of future rewards and
is a value between 0 and 1.

Figure 2: Flowchart of Q-learning algorithm

3.3 Flowchart of Development
It starts with sensing and communication architecture. Next, a development of sensor fusion

for state prediction using Kalman filter is provided with novel process and measurement model for
Kalman filter. Afterward, the development of Q-learning agent using state, action, and reward is
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presented. Lastly, the training of the agent and evaluation of the decision making is given. A conceptual
diagram of the four types of communications is depicted in Fig. 3.

Figure 3: Conceptual diagram of the developed methodology in the article

3.3.1 Communication Infrastructure

The communication infrastructure represents the various types of communications which exist in
the urban environment. There are four types of communication:

• Traffic light to Traffic light (T2T): it is responsible for enabling negotiation between two
junctions to mitigate the congestion which emerges at two adjacent junctions.

• Vehicles to Traffic light (V2T): it is responsible for enabling negotiation between certain vehicles
associated with the urgent condition or state with its traffic light.

• Vehicle to Base station (V2B): it is responsible for providing emergency messages from the
vehicle to the Road Side Unit (RSU) in the case of an emergency.

• Vehicle to Vehicle (V2V): it is responsible for data dissemination under multi-hop topology
when an emergency occurs at one vehicle which has no direct connectivity with the roadside
unit or traffic.

3.3.2 System Architecture

The proposed traffic control system is depicted in Fig. 4. As shown in the figure, the inputs of
the system are the IoT sensors and the vehicle information that provides data to the base station.
IoT sensors are responsible for providing information on vehicle counts on each lane while vehicle
information provides ID of vehicle. The base station contains two distinct components: the first one
is the sensor fusion using Kalman filtering and the second one is the agent of reinforcement learning
which uses the states estimated by the Kalman filter for providing the actions of traffic control.

The actions are transmitted to traffic signals for controlling the various traffic signals that have
been provided in the problem formulation. The actions are associated with the four segments of the
road, namely, east E, west W, south S, and north N. There are two types of set of actions: (1) road-
centered which activates green light for one of the four segments at one time and allows traffic to
go through, turn right, and turn left. (2) junction-centered which activates green light for two of
four segments at one time either for north and south or for east and west. It also allows for left
direction only.



CMES, 2024, vol.138, no.3 2111

Figure 4: The system architecture for traffic control using Kalman filtering and reinforcement learning

3.3.3 Mathematical Model

The role of the sensor fusion is to estimate the state of traffic at each road at the end direction
associated with the junction. Assuming that the junction is Junij where i indicates the horizontal road
of the junction and j indicate the vertical road of the junction. For the junction Junij, we have four
roads belonging to the set of R

(
Junij

) = {
Nj, Sj, Ei, Wi

}
and eight directions belonging to the set.

Dir
(
Junij

) = {
NjN, SjN, EiE, WiE, NjS, SjS, EiW , WiW

}
(2)

The state that is estimated by using the information filter is

x = [
C(NjN

)
, C(SjN), C(EiE), C(WiE), C(NjS), C(SjS), C(EiW), C(WiW)]T (3)

where

C (d) denotes the vehicles count in direction d.

The process model is described by Eq. (4).

xt = Axt−1 + But (4)

u denotes the input of the process model and it is updated from the sensors of weight cells that are
located at the inputs and outputs of the roads to the junction.

C
(
NjN

)
t
= C

(
NjN

)
t−1

+ Win

(
NjN

)
t
− Wout

(
NjN

)
t

(5)

C
(
SjN

)
t
= C

(
SjN

)
t−1

+ Win

(
SjN

)
t
− Wout

(
SjN

)
t

(6)

C (EiE)t = C (EiE)t−1 + Win (SiE)t − Wout (SiE)t (7)

C (WiE)t = C (WiE)t−1 + Win (WiE)t − Wout (WiE)t (8)
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)
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(
SjS

)
t
− Wout

(
SjS

)
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(10)

C (EiW)t = C (EiW)t−1 + Win (SiW)t − Wout (SiW)t (11)

C (WiW)t = C (WiW)t−1 + Win (WiW)t − Wout (WiW)t (12)
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ut =[WinC(NjN), WinC(SjN), WinC(EiE), WinC(WiE),

WinC(NjS), WinC(SjS), Win(EiW), Win(WiW), WoutC(NjN),

WoutC(SjN), WoutC(EiE), WoutC(WiE),

WoutC(NjS), WoutC(SjS), WoutC(EiW), WoutC(WiW)]T
t (13)

A = I8×8 (14)

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

xt = Hizt (16)

zt = x = [
CA(NjN

)
, CA(SjN), CA(EiE), CA(WiE),

CA(NjS), CA(SjS), CA(EiW), CA(WiW)]T (17)

where

CA (d) denotes the camera reading of vehicles count in direction d.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

The state is predicted by the process model, which is combined with two terms: the transition term
Ax̂ (t | t) and the input term Bu (t).

x̂ (t + 1 | t) = Ax̂ (t | t) + Bu (t) (19)

After predicting the state based on the process model, we predict the covariance matrix P based
on the Eq. (20).

P (t + 1 | t) = AP (t | t) AT + Q (20)

where

Q = σQI8×8
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σQ is an indicator to the non-confidence in the process model.

Next, we corrected the state using Eqs. (21) and (22).

x̂ (t | t) = x̂ (t | t − 1) +
∑N

i=1
ii (t) (21)

ii (t) = HT
i Ri(t)−1zi (t) (22)

where

Ri (t) = σR,iI8×8

σR,i is an indicator to the non-confidence in the measurement model.

x̂ (t | t) = &P (t | t) P (t | t − 1)
−1 x̂ (t | t − 1) +

∑N

i=1
P (t | t) HT

i Ri (t)
−1 zi (t) (23)

P (t | t) =
(

P (t | t − 1)
−1 +

∑N

i=1
HT

i Ri (t)
−1 Hi

)−1

(24)

3.3.4 Reinforcement Learning

The algorithm of reinforcement learning-based traffic control is defined based on the elements of
the RL systems, namely, agent, state, action, reward, and Q-matrix [36]. We present them as follows:

1. Agent: is a process that runs at the base station and it is responsible for relying on the
state provided by the information filter to give the needed decision according to the learned
knowledge represented by the policy function.

2. Actions: are defined based on the control signal that enables the switching of the traffic signs
between the various modes. We define for the junction two modes: junction centered (left-
protected) and road centered (left-permitted). For the former, we have two corresponding
actions: {N − S, E − W} and, for the latter, we have four corresponding actions {E, W , N, S}.
Hence, the overall set of actions is A = {N − S, E − W , E, W , N, S} .

3. States: are defined based on the quantization of the roads to two levels low L and high H.
Considering that we have four roads {E, W , N, S} and we have for each road two levels, then
the state is a vector described by the values of its roads. In total, we have 24 = 16 states.
For quantization of state to L which indicates low congestion and H which indicates high
congestion, we used an adaptive threshold. The adaptive threshold is calculated based on the
highest congestion road at the time of calculation at the junction according to Eq. (25).

AT = max (NR (Junction)) − CMR (25)

where

AT denotes the adaptive threshold

NR denotes the number of vehicles in the subject junction and it is equivalent to NR = [N1N2N3N4],
where Ni indicates to the number of vehicles on the road i.

CMR denotes the congestion minimum range

4. Reward: it represents the shaping function of the action and it is calculated based on the average
waiting time of vehicles in the network which needs to be minimized.
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5. Q-matrix is a 2D matrix combined of 16 rows and six actions. It contains a total number of 96
elements.

3.3.5 Traffic Modeling

This section presents sub-models used in our development. First, the vehicle generation model
is provided. Second, driving behavior model is presented. Third, we provide driving behavior model.
Fourth, we present the mobility variables. Lastly, the lane change model is given.

A- Vehicles generation model

We assume that the vehicles are generated in the environment from certain points we name
them as inflow points. At each inflow point, the vehicles are generated based on batches. B =
{Bt1, Bt2, . . . Bt, . . .} where each batch Bti is generated at certain point of time t (i)

t (i) − t (i − 1) = T (26)

Also∣∣Bt(i)

∣∣ = N (27)

where

T ∼ exponential pdf with parameter λ

N ∼ normal pdf with parameter μ and σ .

B- Driving behavior model

The velocity is calculated as an integration of the acceleration with limiting it with the minimum
and maximum velocity. The minimum velocity is assumed to be Vmin = 0 because we allow vehicles
to stop in the urban environment.

The maximum velocity is assumed to be Vmax, which is one of the properties of the segment of
the road where the vehicle is moving. The concept of acceleration integration is given in Eq. (28).

vi (t + �t) =
{

min (vi (t) + ai (t) �t, Vmax) if ai (t) ≥ 0
max (vi (t) + ai (t) �t, Vmin) if ai (t) < 0

(28)

However, the vehicles will not receive a fixed acceleration because drivers change their behavior in
terms of deceleration or acceleration. The model of calculating the acceleration is provided in Eqs. (29)
to (31).

ai (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R2Amax

R2 (−1) Dmax,

0,

if R1 < acci + pr

if acci + pr < R1

R1 < acci + dacci + 2pr
otherwise

(29)

acci =
⎧⎨⎩R4 (1 − 2pr) , if R3 < 3

AGG
4

0, otherwise
(30)
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dacci =
⎧⎨⎩R4 (1 − 2pr) , if 3

AGG
4

< R3 < AGG

0, otherwise
(31)

where

R1, R2, R3 and R4 represent random numbers between 0 and 1 generated uniformly

pr is a controlling parameter

AGG denotes the aggressiveness

Amax and Dmax denotes the maximum and minimum values of the acceleration and deceleration,
respectively.

C- The mobility variables

The velocity is calculated as an integration of the acceleration with limiting it with the minimum
and maximum velocity. The minimum velocity is assumed to be Vmin = 0, because we allow vehicles
to stop at the urban environment. The maximum velocity is assumed to be Vmax , which is one of the
properties of the segment of road where the vehicle is moving. The concept of acceleration integration
is given in Eq. (31).

vi (t + �t) =
{

min (vi (t) + ai (t) �t, Vmax) if ai (t) ≥ 0
max (vi (t) + ai (t) �t, Vmin) if ai (t) < 0

(32)

However, the vehicles will not receive a fixed acceleration because drivers change their behavior in
terms of deceleration or accelerating. The model of calculating the acceleration is provided in Eqs. (33)
to (35).

ai (t) =

⎧⎪⎪⎨⎪⎪⎩
R2Amax, if R1 < acci + pr

R2 (−1) Dmax, if acci + pr < R1 < acci + dacci + 2pr

0, otherwise

(33)

acci =
⎧⎨⎩R4 (1 − 2pr) , if R3 < 3

AGG
4

0, otherwise
(34)

dacci =
⎧⎨⎩R4 (1 − 2pr) , if 3

AGG
4

< R3 < AGG

0, otherwise
(35)

where

R1, R2, R3 and R4 represents random numbers between 0 and 1 generated uniformly.

pr is a controlling parameter.

AGG denotes the aggressiveness.

Amax and Dmax denotes the maximum and minimum values of the acceleration and deceleration,
respectively.
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D- Lane change model

As shown in Fig. 5, we assume that drivers tend to keep their driving in the same lane. However,
there is a probability of lane changes according to the distance between the subject vehicle and the
vehicle ahead and the relative velocity between them. Furthermore, the two ahead vehicles are in the
adjacent lanes.

Figure 5: Algorithm for simulating lane change in the mobility model used in Talib et al. [37]

The model of lane changing assumes that the vehicles do lane changing under two probabilities pn
or pu. The first one indicates a normal situation, while the second one indicates an urgent situation,
which is one the vehicle ahead is close to the subject vehicle. In both cases: the vehicle does not change
lanes until assuring that the target lane is available.

3.4 Evaluation Metrics
For evaluating our approach, we use three evaluation metrics, namely, the estimation error of has

the role of evaluating the estimation, the average waiting time, and the number of released vehicles,
which are responsible for measuring the performance of the traffic control.

The evaluation will use the following metrics:
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3.4.1 Error

The estimation error for each road R is ER and it represents the difference in the number of vehicles
between the true ones and the estimated ones by the Kalman Filtering approach. This metric needs to
be minimized.

ER = ∣∣NR − ÑR

∣∣ (36)

where

NR denotes the number of vehicles on the road R.

ÑR denotes the estimated nu

3.4.2 Average Waiting Time

It represents the average waiting time of the vehicles on the road of the junction before they are
released.

AWT =
∑NR

i=1

WTi

NR

(37)

where

WTi denotes the waiting time of vehicle i on the road R

The above section presents the development methodology of our sensor fusion RL based traffic
control. It consists of Q-Learning Algorithm that is presented in Sub-Section 3.1, the formulation of
the traffic control problem that is presented in Sub-Section 3.2. Next, we provide the communication
infrastructure in Sub-Section 3.3. Afterward, we provide the sensor fusion in Sub-Section 3.4.

4 Experimental Results and Evaluation

This section provides the experimental design and the analysis and evaluation. It comprises two
subsections: the experimental design which presents the parameters of the developed algorithm and
the experimental results and analysis which is given in Section 4.2.

4.1 Experimental Design Waiting Time
For evaluation, MATLAB 2020a environment was used for implementing the simulation. we

use the parameters presented in Table 2. The action duration is set to 10 s, the number of iterations
is set to 30 s. The Kalman filtering parameters are the initial variance σ 2

P which is set to 100, the
process variance σ 2

Q and it is set to 0.1, and the measurement variance σ 2
R which is set to 0.5. The

chosen parameters for the traffic congestion control system strike a balance between responsiveness,
computational efficiency, and handling uncertainties. A 10-second action duration enables timely
responses and smooth traffic flow, while 30 iterations allow the RL model to learn and adapt efficiently.
The initial variance (σ 2

P = 100) accounts for the uncertainty in the initial state estimate, enabling quick
adaptation. The process variance (σ 2

Q = 0.1) indicates stable and predictable system dynamics, suitable
for typical traffic patterns. However, adjustments may be required for more complex scenarios. Lastly,
the measurement variance (σ 2

R = 0.5) acknowledges noise in measurements from sensors and cameras,
allowing the Kalman filter to better filter out noise and enhance state estimate accuracy.

The parameters of the simulation environment are given in Table 3. As presented earlier, the
environment represents an intersection area comprising four roads, R1, R2, R3 and R4. The lengths
are 1500 m for R1 and R2, and 3000 m for R3 and R4. The aggressiveness factor was set to 0.8, the
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probability of lane change was set to 0.5 for normal situation lane change pn and 0.9 for urgent case
lane change pu. The relative distance threshold for urgent lane change is set to DistRelT, which is
equivalent to 10.

Table 2: Parameters used for the algorithm

Parameter Value Unit

Action duration 10 second
Number of iterations 30 Iterations
σ 2

P 100 -
σ 2

Q 0.1 -
σ 2

R 0.5 -

Table 3: Parameters used for the simulation environment

Value Unit

Experiment time 500 Seconds
R1, R2 length 1500 Meter
R3, R4 length 3000 Meter
AGG 0.8 -
pn 0.5 -
pu 0.9 -
DistRelT 10 Meter

For evaluation, we have considered ten scenarios which are classified according to the initial state
of vehicles on the roads of the junction and to the incoming vehicle numbers. As depicted in Table 4,
scenario 1 is associated with an initial high number of vehicles for R2, R3 and R4 and a low number of
vehicles for R1, and low incoming vehicles. The intersection contains four roads. We simulated eight
scenarios of three congested roads and one non-congested and two scenarios of four congested roads.
Each of the two scenarios corresponds to a low and a high incoming vehicle rate. Hence, the total
number of scenarios is ten.

Table 4: Parameters used for the simulation scenarios

Scenario number R1 R2 R3 R4 Incoming vehicles number

S1 L H H H L
S2 L H H H H
S3 H L H H L
S4 H L H H H
S5 H H L H L
S6 H H L H H

(Continued)
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Table 4 (continued)

Scenario number R1 R2 R3 R4 Incoming vehicles number

S7 H H H L L
S8 H H H L H
S9 H H H H L
S10 H H H H H

4.2 Experimental Results
This section presents the evaluation of our developed approach. It comprises two subsections,

the traffic control evaluation is presented in Sub-Section 4.2.1 and the Kalman filtering approach is
presented in 4.2.2.

4.2.1 Traffic Control Evaluation

For evaluation, we compared our developed approach in [27], which uses also a Q-learning
approach with a standard deviation term in the reward function. We use the suffix STD with the label
of this approach or Q-STD. In addition, we used greedy-based traffic control as another benchmark
and it is labelled as greedy. The meaning of greedy indicates the greedy behavior of giving priority to
the most congested road at the moment of decision making.

We are interested in two metrics, the first one of which is the average waiting time presented in
Fig. 6. It shows that Q-STD has accomplished the least average waiting time compared with greedy
and AQQL. However, AQQL was superior to greedy in terms of the average waiting time. AQQL has
accomplished a higher number of released vehicles, as shown in Fig. 7, which meant superiority over
both greedy and Q-STD. The number of released vehicles is more transparent about the performance
than the average waiting time, considering that the latter is only calculated based on the vehicles that
have been released.

Figure 6: The average waiting time for Q-learning, Q-learning STD and greedy
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Figure 7: Number of released vehicles for Q-learning, Q-learning STD and greedy

Another observation is that Q-STD, which has accomplished the least average time, is not capable
of maintaining the number of vehicles on the road lower than the permitted threshold, which indicates
the road capacity. This is visualized from the graphs in Fig. 8, which shows a continuous increase in the
number of vehicles on the roads, indicating that the average waiting time is not an indicator of good
performance because it is only calculated for a small portion of the vehicles or the vehicles which were
released from the road after waiting. This is more obvious in scenario 2 where the number of vehicles
on the road had increased to beyond 400 vehicles, which caused failure in the approach compared with
Q-learning. The number of 400 was taken as a threshold of failure based on the assumed dimension
of the road in the simulation scenarios.

The time-series results of scenarios 1, 2, and 3 based on Kalman filter are presented in Figs. 8–10,
respectively. As we observed for scenario 2, the number of released vehicles increased for both greedy
and AQQL while it suddenly went to zero for AQQL. This is interpreted by the failure of Q-STD in
managing the intersection due to exceeding the number of vehicles or vehicles beyond the capacity of
the road. As mentioned earlier, the number of 400 was taken as a threshold of failure. This has been
observed in road 2. For comparing AQQL and greedy, we observed that the average waiting time was
higher for greedy than AQQL for all roads with a higher number of released vehicles.

Figure 8: (Continued)
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Figure 8: Time series of the metrics for the four roads of scenario 1-a-Road 1-b-Road 2-c-Road 3-d-
Road 4

Figure 9: Time series of the metrics for the four roads of scenario 2-a-Road 1-b-Road 2-c-Road 3-d-
Road 4
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Figure 10: Time series of the metrics for the four roads of scenario 3-a-Road 1-b-Road 2-c-Road 3-d-
Road 4

4.2.2 Kalman Filtering Perspective

The evaluation of the performance from the perspective of Kalman filter is presented in Fig. 11.
The Kalman filter developed in this article is denoted by multi-sensor Kalman filter and it will be
compared with the traditional Kalman that does not have developed process model. The latter is
designated as a smoothing Kalman filter. As it is observed in the graph, the number of released vehicles
was higher for KF compared with KS which indicates the effective of the process and measurement
model formulated in the Kalman filter.

In addition, for a more thorough evaluation, we present the time series of error for our developed
Kalman, and we compare it with the smoothing Kalman and the measurement error in Fig. 12. The
results show that the error of Kalman (KF) was the least when compared with the smoothing Kalman
(KS) and the measurement error.
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Figure 11: The number of vehicles based with respective to two our developed Kalman filter KF and
smoothing Kalman filter KS

Figure 12: The error with respect to the time for our developed Kalman, Kalman smoothing and the
measurement

To summarize, we present the numerical values of the overall waiting time and released cars for
each of AQQL, STD and Greedy in Table 5. They were calculated based on averaging the time series
results that were provided earlier. In addition, we use this table to derive the improvement percentage
in Table 6. We find that AQQL has accomplished a 30% improvement percentage with respect to the
average waiting time over the greedy. In addition, the improvement percentage with respect to the
number of released vehicles was 5% and 340% over STD and Greedy, respectively.
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Table 5: Summary of performance for the three methods AQQL, STD and greedy

Greedy STD AQQL Unit

Average waiting time 31.72793338 16.01509075 22.31531946 sec
Released vehicles 1959 468.5 2061 Vehicles

Table 6: Improvement percentage of AQQL over STD and greedy

Measure AQQL/Greedy AQQL/STD

Average waiting time improvement percentage 30% No improvement
Released vehicles improvement percentage 5% 340%

The evaluation results demonstrate the effectiveness of the proposed AQQL approach in com-
parison to Q-STD and greedy methods. While Q-STD achieved the lowest average waiting time, it
failed to manage the intersection efficiently, leading to an increased number of vehicles beyond road
capacity. In contrast, AQQL outperformed greedy in terms of average waiting time and the number
of released vehicles. This highlights the importance of considering not only average waiting times but
also other performance metrics such as road capacity and released vehicles. The multi-sensor Kalman
filter incorporated in the AQQL approach also showed promising results compared to the traditional
smoothing Kalman filter, indicating the effectiveness of the developed process and measurement
models. Overall, the AQQL approach demonstrates a significant improvement in traffic congestion
control, achieving a 30% reduction in average waiting time compared to greedy and a substantial
increase in the number of released vehicles. This underscores the importance of adopting advanced
methods like AQQL in conjunction with Kalman filtering for more effective and efficient traffic
management.

5 Conclusion

This article has provided a novel framework for handling the problem of traffic control in an
urban environment based on three elements, namely, adequate and effective data collection and
communication infrastructure based on the Internet of Things (IoTs) and vehicles to infrastructure
communication to capture the state of the road. In addition, the second element is a novel data fusion
Kalman filtering with a proposed process model to enable the exploitation of the weight cells data as
well as the camera data inserted on the road. The third element is a novel Q-learning algorithm based
on an adaptive quantized state that represents the roads in the junction to a vector of low or high
traffic. This is determined by a dynamically adjusted threshold calculated from the maximum number
of vehicles that exist in the junction at a certain point of time. Hence, this paper combines various
novelties. Firstly, addressing dynamic awareness from two perspectives: (1) prediction of location
based on developed model based Kalman filter (2) using predicted state in Q-learning representation.
Secondly, adaptive state representation for Q-learning by using an adaptive threshold for quantization.
On the other side, the developed agent was evaluated using a simulation that assumes driving behavior
modeling. The evaluation of the developed framework based on eight scenarios with different initial
states shows the superiority of our developed data fusion Kalman filtering in reducing the error of the
estimated number of vehicles on the roads of the junction on one side and the superiority of our AQQL
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in enabling lower number vehicles in any of the roads and the lower total number of vehicles in the
junction compared with both recently Q-learning-based traffic control works and greedy algorithms.
Furthermore, the evaluation has shown the superiority of the integrated data fusion Kalman when
it is combined with AQQL. Hence, the proposed AQQL approach combined with the multi-sensor
Kalman filter has shown significant improvements in traffic congestion control for single intersection
scenarios. However, to further enhance the effectiveness and applicability of the method, it is essential
to extend the development and testing to more complex scenarios. This includes traffic management in
areas with multiple intersections, varying traffic patterns, and diverse road infrastructures. Adapting
the AQQL approach to such complex scenarios may involve considering additional factors, such as
traffic signal coordination, real-time traffic data integration, and dynamic traffic demand estimation.
Moreover, incorporating more advanced machine learning techniques and optimization algorithms
could also help in further refining the decision-making process, leading to even better performance in
real-world traffic management. By extending the AQQL approach to more complex scenarios, we can
gain a deeper understanding of its performance and limitations, ultimately paving the way for more
efficient and effective traffic congestion control solutions that can handle the challenges of urban
transportation networks. Some limitations exist in the study. Firstly, the study develops a single agent
to manage traffic lights in a single interaction. However, multi-intersection traffic signal management
is more realistic. Second, the developed agent is based on Q-learning which leads to information loss
due to discrete state. Upgrading the agent to accept a continuous state is more effective.

Future works are to generalize AQQL to multi-agent-based traffic control and to handle the
problem of decentralized learning of agents. Another future work is to upgrade the agent from Q-
learning to deep Q-network or deep deterministic gradient in order to handle continuous state.
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