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ABSTRACT

A patient co-infected with COVID-19 and viral hepatitis B can be at more risk of severe complications than the one
infected with a single infection. This study develops a comprehensive stochastic model to assess the epidemiological
impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19. The model is fitted to
real COVID-19 data from Pakistan. The proposed model incorporates logistic growth and saturated incidence
functions. Rigorous analyses using the tools of stochastic calculus, are performed to study appropriate conditions
for the existence of unique global solutions, stationary distribution in the sense of ergodicity and disease extinction.
The stochastic threshold estimated from the data fitting is given by: Z; = 3.0651. Numerical assessments are
implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics
of both diseases. The effects of stochastic white noise intensities are also highlighted.
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1 Introduction

According to the report issued on April 24, 2023, by Johns Hopkins University Coronavirus
Center: The “Coronavirus Disease 2019” (COVID-19) caused by the “Severe Acute Respiratory
Syndrome Coronavirus-2” (SARS-CoV-2) has infected 676,609,955 individuals which resulted in
6,881,955 deaths globally, and 13,338,833,198 COVID-19 vaccine doses have been administered [1].
Viral hepatitis B virus (HBV) poses a great threat to public health globally [2]. The “Centers for Disease
Control and Prevention” has estimated that over 290 million individuals are infected with HBV with
nearly 0.9 million deaths globally [3]. HBV is among the high-risk factors for chronic liver infections:
cirrhosis, liver fibrosis and hepatocellular carcinoma. It is worth mentioning that HBV is responsible
for more than 40% of hepatocellular carcinoma cases and more than 25% of liver cirrhosis cases [4].
The “Global Burden of Disease™ has reported that HBV infection is one of the leading causes of adult
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mortality worldwide with more than 750,000 deaths annually associated with it [5]. The prevalence
of HBV cases differs across different countries and regions [6]. Most HBV cases have been reported
in the Middle East countries, Asia, and Africa [7]. In many of these countries, most of the reported
cases are transmitted via mother-child [7]. Particularly, in Pakistan, the prevalence of viral hepatitis B
is around 5 million [&]. Recent studies have indicated that between 2% and 11% of individuals infected
with COVID-19 were already suffering from the liver infection and about 25% of liver problems are
linked with COVID-19 [9]. SARS-CoV-2 infection can be a big risk factor for severe illness among
under-diagnosed patients with viral hepatitis B [10].

According to the report issued by the “McGill COVID-19 vaccine tracker” system on December
02, 2022; 50 out of 242 developed vaccines were approved and are now available in over 200
countries [11]. Some of the approved against COVID-19 include: “BNT162b2 (Pfizer/BioNTech),
AZD-1222/ChAdOx1-nCoV (Oxford/AstraZeneca), NVX-CoV2373 (Novavax), CoronaVac (Sino-
vac), nRNA-1273 (Moderna), rAd26-S+rAd5-S (Sputnik V), and Ad26.COV2.S (Janssen)” [12]. The
effectiveness of many recommended vaccines ranges between 60% and above 90% [12]. Although
antiviral agents can treat HBV, medicines alone cannot eradicate the virus from a host. Thus,
vaccination has become an important resource to eliminate HBV infections [13]. That is why, different
countries like China and the USA have made infant and adult vaccination programme a government
priority [13,14]. This measure has significantly reduced the prevalence of HBV, as reported by
Zheng et al. [14] and Zhao et al. [13]. However, developing nations in Asia and sub-Saharan Africa are
still far away from achieving the target of mass vaccination, especially among the adult population.

On the other hand, mathematical modeling play a significant role not only in understanding the
dynamics of the disease but also in suggesting the cost effective measures to eliminate the disease.
Different epidemiological models have been proposed and analyzed to understand the dynamics
of COVID-19 [15-21], Hepatitis B virus [22,23] as well as the co-infection both diseases [24-26].
Specifically, the authors [24] considered an HBV-COVID-19 model in resource limitation settings.
Omame et al. [25] investigated the impact of incident co-infection in a model for HBV and COVID-
19, and showed that this phenomenon could trigger backward bifurcation. Din et al. [26] investigated
a co-dynamical model for HBV and COVID-19 with a bilinear incidence rate. Mathematical mod-
elling can mainly be classified into deterministic and stochastic modelling. Though, deterministic
models have their own merits and advantages but stochastic models have a potential to incorporate
uncertainties and randomness and to explain the dynamics of epidemics more effectively. This is why,
stochastic models have been applied successfully in understanding the patterns of diseases in recent
years [27-32].

As a matter of fact, the nature of epidemic growth and spread is random due to the unpredictability
in human-to-human contacts [33]. Therefore, handling the variability and randomness in the different
states of the disease dynamical system is a big challenge [34] (see also, [35]). In many such cases,
stochastic models could best describe the randomness of infectious contacts which takes place at
different infectious stages [36]. It has been shown that stochastic models provide a higher level of
realistic outputs when compared with their deterministic counterparts [37]. It was shown in [37] that
an endemic equilibrium appearing in a deterministic model could disappear in its corresponding
stochastic model because of stochastic fluctuations. Also, the authors in [38] explained that stochastic
models give better interpretation to the question of disease extinction than their deterministic
equivalents. Nasell [39] pointed out that stochastic models present better approaches in describing
epidemics given large range of realistic parameter values when compared with the corresponding
deterministic models.
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Vaccination has become an important measure in managing the co-spread of both COVID-19 and
viral hepatitis B; a feature that has not been considered by previous studies. This is the main motivation
behind this work which aims to fill the gap in the existing studies by proposing a robust stochastic
model for the two viral diseases co-dynamics incorporating vaccine booster doses, logistic growth and
saturated incidence rates. The logistic growth deals with the population growth over time taking the
carrying capacity into consideration when there is limited resources whereas, in exponential growth
assumption, the population of interest grows over time and the carrying capacity is not considered
which is not realistic and hence the logistic growth is most suitable [40]. Also, effective contacts between
infected and uninfected humans may saturate at high infection peaks as a result of the crowding
effect of infected individuals or as a result of control measures by the uninfected individuals [41]. The
saturated incidence function best explains this, and has been adopted successfully in many epidemic
models [42—44]. In biological models which deal with high co-endemicity of two diseases, this serves
as the best incidence rate.

This study develops and analyzes the model using stochastic calculus tools. It seeks to suggest
comprehensive intervention measures against the two viral diseases with the inclusion of vaccination
programs for both infections. The study’s findings contribute significantly to aid in the battle against
COVID-19 and viral hepatitis.

This paper contributes in the following:

(1) A novel comprehensive stochastic model incorporating the logistic growth and saturated
incidence rates is designed to assess the epidemiological effect of vaccine booster doses on
the co-dynamics of viral hepatitis B and COVID-19.

(i1) The perturbed system is fitted to the real data from Pakistan and stochastic thresholds for both
diseases are estimated.

(iii) Rigorous analysis using the tools of stochastic calculus are performed to establish appropriate
conditions needed for existence of unique global solution, stationary distribution in the sense
of ergodicity and disease extinction.

(iv) The optimal levels for COVID-19 and viral hepatitis B primary and booster vaccination rates
that eliminate both infections are determined.

(v) Numerical assessments are carried out which highlight the impact of saturated incidence
functions and stochastic white noise intensities on the dynamics of both diseases.

1.1 Preliminaries
We shall now recall some basic tools of stochastic calculus required in the sequel.

Theorem 1.1. [45] Let e(z) be a “one-dimensional Ito process” on ¢ > 0 with “stochastic
differential” given by:

de(t) = p(t,e(t))dt + g(t,e(1)dB,, €(0) = &, (1)

where, p € Z' (R, x R;R), g € Z* (R, x R;R), and B, is a “one-dimensional Brownian motion”. If
H € ¢* (R, x R;R,). Then J(t, (1)) is another Ito process whose “stochastic differential” is given
by:
07 (t,e(1)) 07(t,e(1))
+
dat de

+ 0 (1, (1))
oe

1921, (0))
SR YC R (t,S(f))]df

dA(1,e(1) = [ p(t,&(1) +

g(t,e(n)dB,. 2
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The “infinitesimal generator” % associated with system (1) [45] is given by:

0 B 19> |
L=t oop(te() + 508 (1 e(D). (3)
Lemma 1.1. [45] If .Z applies to a function J7(¢,e(t)) € C* (R, x R;R,), then
0 0 102
2 ey = LD LD gy 4 ZEEED oy ey, 4

Also, the one dimensional Ito’s lemma [44] can be re-written as:

dA(t,e(t) = LAt e(t))dt + Wg(z, e(1))dB.,. (5)

2 Model Formulation

The compartments for the formulation of the proposed model are defined as follows: S(7):
susceptibles, V,(7): those vaccinated against COVID-19, V,(#): those vaccinated against viral hepatitis
B, 1,(?): infected with COVID-19, I,(?): infected with viral hepatitis B, 7.,(¢): infected with the dual
infections, R,(): those who have recored from COVID-19, R,(¢): those who have recovered from viral
hepatitis B, R, (?): those who have recovered from the dual infections, and at any time ¢, the total
population is given by N(#) = S(2) + V() + V,(t) + 1.(0) + L(2) + L,(t) + R,() + R, (1) + Ry(2). As
the constant recruitment rate which has been used in many epidemic models is unrealistic, this study
assumes the logistic growth in the proposed model, where r denotes per capita birth rate, K stands for
the carrying capacity of the environment. The COVID-19 and viral hepatitis B transmission rates are
defined as: 8, and B,, respectively. Unlike several existing models dealing with COVID-19 and hepatitis
B which assume the bilinear or standard incidence rates, the saturated incidence functions are used in
this model, where the saturation effects associated with COVID-19 and viral hepatitis B are denoted
by «, and «,, respectively. This form of incidence has been considered most favorable when dealing
with disease models involving large number of infectives. COVID-19 and viral hepatitis B primary
vaccination rates are defined by ¢ and p. The parameters: 6. and 6, denote the COVID-19 and viral
hepatitis B booster dose vaccination rates. Immunity due to COVID-19 and viral hepatitis B vaccines
are not lifelong, and wanes at the rates §, and §,, respectively. It is assumed that Individuals who
recovered from COVID-19 are immune to re-infection. Similar assumption is made for individuals
who have recovered from viral hepatitis B. However, infection with the other disease is possible. Due
to the imperfect nature of the COVID-19 and viral hepatitis B vaccines, vulnerable or unvaccinated
individuals have reduced rates of getting infected with either of the viral diseases with 0(0 < o < 1)
and y(0 < y < 1) denoting the COVID-19 and viral hepatitis B vaccine inefficacies. The model flow
chart is given in Fig. I, and parameters description is given in Table 1. The proposed model (both
unperturbed and equivalent perturbed form) is described by the nonlinear systems defined by Eqs. (6)
and (7), respectively.

dS(t) N ﬂnla leIb
— 2 =¢N(1—-=])-— S — S+6.V,.+ 6V, — S
=T ( K) TS T TrarStaVetsVim+v+p)
dVa(t) 01311111 IBbIb
—— =yS - vV, — V,—(6,+6 V,
dt w 1+a1[“ a 1+0(21,, a (a+ a+,u“) a

th(t) _ S— IBaIa V _ yﬁh[h
R T AL TN

Vh - (817 +9b +/"L)I/I7
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dla(t) IBaIa ﬂbIb
= S R Va V — a a Ia - 5 5 1a
dr 1+061[a( +R,+oV,+ V) — & +n.+w 9011+a21b
dl, (1) Bl B.1,
= S+R,+7, V) — I, —
g7 1+(X21b( + R +V.+yVy) — & +n+ 1wl (p21+051[ab
dIab(t) ﬂ/)Ib ﬂala
= I, — I
dt (p11+a2]ba+§021+allab (éab—i_nab—i_/-’l“) ab
dR,(1) Bsl,
== 9(1 I/'” ula - Ra - a
dt +4 " 1+ ayl,
de(t) ﬁala
=6,V I, — uR, —
dr WV + &1, — R, 1+ al, b
dR (1)
dbt = abIab - I’LRab (6)
'y
(s + 1)
Figure 1: Model’s schematic diagram
Table 1: Model parameters and variables
Parameter Description Value Reference
3, Waning immunity due to COVID-19 vaccination ~ 0.010-0.015 [31]
B. COVID-19 transmission rate 5.1024 x 107 day™ Fitted
By Viral hepatitis B transmission rate 1.0 x 107 day™ Estimated
11
&, COVID-19 recovery rate [%, 5] day™ [46]

(Continued)
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Table 1 (continued)

Parameter Description Value Reference
1
£ Recovery rate for co-infected persons 71 [46]
Db Co-infection death rate 0.05 [46]
N Viral hepatitis B induced death rate 0.05 [47]
1

& Viral hepatitis B recovery rate 1 day™ [47]
y Viral hepatitis B vaccine inefficacy rate (1-0.85) [47]
N COVID-19 induced death rate 0.158 Fitted
o Saturation effect 2.6891 x 10 Assumed
o Saturation effect 7.3 x 1073 Assumed
¥ COVID-19 primary vaccination rate 0.0015 Fitted
0 Viral hepatitis B primary vaccination rate 0.0010 Estimated
0, COVID-19 booster vaccination rate 0.0010 Estimated
0, Viral hepatitis B booster vaccination rate 0.0010 Assumed
3, Waning immunity due to viral hepatitis B 0.010-0.015 Assumed

vaccination
o COVID-19 vaccine inefficacy rate (1-0.85) [48,49]
r Per capita birth rate 0.0199 [50]
K Carrying capacity of the environment 238,181,034 [50]

1

Natural death rat —————— day™' 50
’ arural ceath e 3 69.37 x 365 “V 0]
01, P> Modification parameter for vulnerability to a 0.15 Assumed

second infection

The stochastic model analogue of the above deterministic model is given by:

dS(t):(rN(l—E)— bls o Bl S+50Va+5bl/1,—(u+w+,o)S)dt+{1SdB1(t)

K) 1+l 1+al,

Uﬁala ﬁhlb
dav,(t) = S — V,— V,—(6,+6 V., )dt V.dB,(t
a() (w 1+O{1[“ a 1+(X21b a (a+ a+:u“) a) +§2 a 2()
ﬁala V,Bblb
dav,(t) = S — Vv, — V,— (6, + 6 v, )dt V,dBs(t
5 (1) (,0 T+l b I+ o, y — (8 + 6, + W)V, + & V,dBs(1)
dl(t) = Pl S+R+0oV,+ V) —E+n.+ I, — wlﬂla dt + &,1,dBu(t)
1 + O(lla 1 + aZIb
dI ﬁbIb ,Bala
(1) = S+R,+V,+yVy)—E+n+ ), — @, 1, )dt + ¢51,dBs(1)
1 + aZIh 14a
/317Ib ﬁala
dl,(t) = I — 1, — (&, } L, )dt L,dBg(t
(1) ((p11+0t2[,,a+(p21—|—a1]al G + N + 1)1, + GolwdBg(1)
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1,
dRu(t) = (911 I/a + gala - :u'Ra - ﬁb ’ Ru)dt + §7R”dB7(t)
1 + o1,
Bul,
dR,(t) =\ 0,V, + &1, — nR, — R, )dt + &R, dBs(1)
1+ o,
dRab(t) = (Sablab - I‘LRuh) dl + §9RadB9(Z) (7)

where, B;(7),i = 1,...,9 denote “independent Brownian motions” with B;(0) =0,and ¢, i=1,...,9
are the intensities of white noise which reflects all random components that could impact the disease
dynamics in each compartment.

3 Analysis of the Unperturbed System (6)
In this section, we now present the analysis of the unperturbed system (6).

3.1 Unperturbed System’s Reproduction Number

The disease free equilibrium (DFE) for the deterministic system is:
Q= (S, VL VL I 1. I, RO R, Ry
with,

uK(r — )8, + 6, + 1) (S, + 6, + )

10, + w8 + 6, + ) + p (0 + (G, + 6, + ) + n@, + 0, + W@ + 0, + W’
_ YuK @ — ), + 6, + 1)
C YO A 106+ 0+ )+ PO+ )G+ O+ 1)+ 1By + O+ 1) (S + 6, + W]
puK(r— )6, + 6, +
" Y O+ 106+ 6+ 1) + 0O+ WS, + O+ 1) + By + 0,4 1) (8, + 6, + W]
O W K(r— )8 + 0, + 1)
YO+ )G+ 0y 4 1) + p O+ 1), + 0, + 1) + (8, + 0, + 1) (S, + 6, + W’
. 00K (r — ()3, + 6, + 11)

R) = . 8
My 6. + 1), + 6, + ) + p 6, + (6. + 0, + 1) + n(é, + 0, + w8, + 0, + w] ®

S =

Associated transfer matrices are:

B.(S°+aV+ V) +R) 0 0
F= 0 B.(S"+ V' +yV/+R) 0], and
0 0 0
E 1.+ 1 0 0
V= 0 E+m+u 0 . )
O 0 Sab—'_nab-'_u“

The basic reproduction employing the approach in [51]is: Z, = p(FV ") = max{%,., %}, where
%y, and %, denote the deterministic reproduction numbers for viral hepatitis B and COVID-19, and
are given by:
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Buln By + 6, + 1) (S, + 60, + ) + oy (8, + 6, + ) + p(u + 6,) (8, + 6, + )1S°
u(@Ba+ 6+ 1), + 6, + (&, +n.+ 1)

Bt (8, + 6, + 1) (8, + 0y + ) + wyp (8, + 0, + ) + ¥ (1 + 6,) (8, + 0, + w)18°
w(8, + 0, + ) (8 + 0 + ) (&, + 1, + 1) '

r%Ou =

b

%()b =

3.2 Local Asymptotic Stability the Unperturbed System’s DFE (6)

Theorem 3.1. The unperturbed system’s DFE, Q,, “is locally asymptotically stable” whenever %, <
1, and unstable for %, > 1.

Proof:

Note that, the stability within neighbourhood of DFE for unperturbed system (6) is analyzed with
the help of its Jacobian matrix evaluated at DFE given by:

—r—pn+V¥+p) A48 A48 A—BS"  A—BpS" A —(ButBp)S° A A A=BS

W ~Ti 0 —oBaVy =BV  —(Bat BV 0 0 0

p 0 -1 0 —BaVy ~7BVd ~(Bat+yBp)Vy 0 0

0 0 0 B.A° — K; 0 BaA° 0 0 0
J= 0 0 0 0 ByB° — K> By B° 0 0 0

0 0 0 0 0 —K;3 0 0 0

0 Oa 0 &, 0 0 —u 0 0

0 0 0 0 & 0 0 —u 0

0 0 0 0 0 —Eg 0 0 —u

(10)

where,

A=2u—rA"=(S"+oV)+V +R).B=(S"+ V' +yV)+R)., Y= +0.+p),
T2:((Sb_{—Gb—i_/-’l/):](l =§a+na+M>K2=§h+nb+/~’L>K3=§ab+nab+u(5a+0¢1+u)'

The first seven eigenvalue are given by:

@, = —p(with multiplicity of three), ®, = —(r—u + ¥ + p), &3 = -, + 6, + WP, = — (S, +
O, + 1), &s = —(Eu + Nw + 1),
and the solutions of these equations:

(@+E+n+wd—-%))=0, (@+E+n+wd—-%) =0. (11)

As all parameters of the model are positive, it is concluded that the equations in (11) will both
possess roots with negative real parts whenever %, = max{%,., %} < 1. Thus, the unperturbed
system’s DFE, Q, is locally asymptotically stable if %, = max{%,,, Z.} < 1.

4 Analysis of the Perturbed System (6)
4.1 Existence of Solution

In this section, we study appropriate conditions for the existence of a unique global solution to
the stochastic system with the help of well defined stochastic Lyapunov functions. We now present the
following result:

Theorem 4.1. Given the initial conditions

% = (S(O): Va(o)a I/b(o),la(o)aIb(o)alab(o):Ra(o)aRb(O)aRab(O)) € %,
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the perturbed system (7) has a unique global solution
gl = g(t) = (S(t)z Vu(t)v Vb(t)a Ia([)a Ib(t)a Iab(t)s Ra([)a Rb([)ﬂ Rab(t))

for ¢ > 0, which is invariant in .# with unit probability, where,
'% = {(S(t)a Va(t), Vb(t)a Ia(t)a Ib(t): Iab(t)a Ra(t)a Rb(t)a Rab(l)) € R9 :

S([) > O: Va(l) > 07 Vh(l) > O,Ia(l) > O’Ib(t) > 0: Iuh(t) > 05 Ra(t)a Rh(t) > 0, Ruh(l) > 05
SU) + V() + Vi) + L0 + 1,(0) + Lo(0) + Ro(0) + Ro(0) + Ru(t) < M }

Proof:

For giVen lnltlal states % = (S(O)9 Va(o)z Vb(o)’ Ia(o)a Ib(o)alab(o)a Ra(o)a Rb(o)v Rab(o)) € %9
unique local solution ¥, = 4(¢) = (S©), V. (1), V,(0), L(1), I,(1), L,(¥), R.(?), R, (), R, (?)) exists for
t € [0, t,) with 7, denoting explosion time [45]. Suppose ¢, > 0 is such that

S0, V.(0), V,(0), 1,(0), 1,(0), 1,(0), R,(0), R,(0), R,,(0) stay within [%, ¢0i|. Then, for every ¢ >

¢, we define the stopping time [29]:

Td) = lnf {t € [Oa TL’) : mln{S([): Vu([): Vb(t):Ia(t)aIb(t)>lub(t)aRa(z)aRb(Z)aRab(I)} S

RS

ormax{S(®), V.(0), V, (1), 1.(1), 1,(1), Ls(1), R,(1), Ry (1), Ry (D)} = ¢} (12)

Note that, 7, increases as ¢ — oo. Therefore, 7., =)  7,. Itis to be shown that 7, = co a.s., so
that 7, = oo and
(S([)a Va([)a Vh(t):la(t)alb(t)a Iab(t)a Ra(t)’ Rb(t)’ Rah([)) € % a.s for all t Z 0

Ifr, <oo,then3 T > 0and & € (0, 1) such that P{r...;} > . Thus, there is an integer ¢, > ¢,
such that

Pltyer} = 0V9 > 1. (13)
Define a ¢” stochastic Lyapunov function J# : R} — R, as:
FACS, Vas Voo Ly Iny Lup, Rgy Ry, Rip) = (S —1—InSH + (V, =1 —InVy)+(Vp—1—-InVy)+ U, —1—1Inl,)
+Up—1—Inl)+Up—1—-Inlp)+ R, —1—1InR)+ (Ry — 1 —InRy)
+ (Rap — 1 —In Ryp), (14)

Applying Ito’s lemma [45] to (14), we have
1 11 1 11 1
At =1—<)dS+ @S+ (1 - — ) aVi+ = —@V)* + (1 - —
¥4l ( ) + 5= )+< V) a+2V5( a)+( 7

S > - ) AV + ——g(dVb)

2V,

1 11 1 11
1— = )dl,+ =)+ (1— = )dl, + == @d,)* + (1 -
+( )d +213(d)+( Ib)db+2lg(db)+(

11
dl ——(dLy)?
1, ) ab+21§b( ab)

1
Ly
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— (dRp)?

R, 2R

1
¢18dBy + = C]zdl

R,

1 N Bala
(1= (nv(1-2) = S—
(1 S)(r( K) 1+ al,

+(1-5)

_OJI

0Bala By
1—— ) (vs- -
+ Va) (w 1+a1l, 1+ arly
1 Bala YBulp
1= —)(ps- Vi —
+ Vb) (p T tails 7 1+ el

1 .BaIa
1] —— S+ R V, Vy) —
+( Ia)(1+otll( tRo+ Vet Ve)
1
—I—(l —)§4IdB4+ Sopdt
1,
1 Bl
1] —— S+ R V, Vi) —
+( Ib)(1+a21b( +Rat VatrVe)
1
+(1 —)§5Ide5+ stl
I
1 By Bala
1 — — 1 1
+( Iab)(*‘”1+a21b”+‘”21+a11a
1 Bvlp
1] — — 6,V l,— uwR, — ——
+( Rg)(a a+ &aly — LRy 1+a21b
1 Bala
1] — — 6,V Iy — uRy — ——
+( Rb)(b p+ &y — Ry T+ ail,
1

On simplification, we obtain that

1 +anly

S+8aVa+5be—(M+w+p)S>d[

1 1
Va— (8a+ 04+ 1) Va)dt + (1 - 7) 0 VadBy + Eé‘zzdt

a

1 1
— (Bp+6p+ 1) Vb)dl‘ + (1 — 7) 3 VpdBs + 5(32dt
b

Ia) dt
Ib) dt

By
1 4+ arlp

Ea+na+ )l — @1

Bala
1+a1l,

GEp+mp+ Wl — 2

1 1
b — Eab + Nap + M)Iab)dt + (1 - I_b) SelupdBe + 54“62611

1 1
Ra)dt + (1 - R—a) ¢1RudBy + S 57d1

R, Eavlap — M Rap R,

1 1,
— RydB -
Rb) L8 Rpd 8+2§8dt

) C9RupdBy + = §9 sdt.

A=\1-5)'N\1-%)— S - S+ 8V + 85V — S
i [( S)(r ( K) Ttail,"  Ttad, oalat ool (n+v+p)
1 > 1 0 Bala Bulp 1,
D) 7 - - V,— (84 + 6, 1% Z
—|—2§1 +( Va) (ws [t all, AL (8q + 04+ 1) a)—i-z;z

vBulp
1+ azlp

1 Bala
1] — — S — Vi —
+( Vb) (p 1+ o1l b

Bala

1
1] —— S+ R V, Vy) —
+( Ia)(l—l—ozlla( +Ry+0oVy+Vp)

Bulp

1, 1
- 1—— S+ R+ VatyVy) —
+2§4+( Ib)(l-i-otzlb( + R+ VatyVe)

Ea+na+ )1, — @1

1
Vi — (8 + 6 +u)Vh) + 5@%

Bulp I}
a
1+ a2l

Ep +np + )1
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:Bala 1 2 1 ,3/71}) :Bala
— 1 = 1 — — 1 1
(p21+a11ab +2§5+ T (p11+a21b”+(p21+a11ab

1 1 I 1
~ Gab + 1ap +u>lab) + 540 + (1 - R—) (eaVa TN A T Ra) + 547
a

1+ anly
1 Bala 1,
] —— 0V, I, — uRy — R —
+( Rb)(b b+ Eplp — LRy T+ il h)+2Cg

1 1
+ (1 - Rab) (%‘ablab - MRab) + §§92:|dt

+81(S —apdBy 4+ o (Vy — a2)dBy + 53(Vyy — a3)dB3 + ¢4l — 1)dBs + ¢5(Ipy — 1)dBs + eIy, — 1)dBg
+ $7(Ry — as)dB7 + {3(Ry — as5)dBg + {9 (Ryp — ag)dBy.

Hence,
d = LAdt + ¢ (S — a))dB, + &,(V, — a,)dB, + &(V,, — a3)dB; + ¢,(1, — 1)dB, + ¢5(1, — 1)dB;s
+ &Ly — 1)dBs + (R, — a,)dB; + &s(R, — as)dBs + Co(Ryy — as)dBy

where,

1 N 1 1
3%2(1_5)(w(1_—)_ Pl o _Bli S+8aVa+8hI/,,—<u+z/f+p>S)

K 1+ o1, 1 + o,
+ %;5 + (1 — %) (I/IS— 123;{“1,, Vi— 1 f”z’zlb . — (8,46, +M)V) + %;;
+ (1 - %) (ps -+ fill v, — l’filb V, — (8 + 6, + 1) V,,) + %;;
+ (1 — 11) (%(SJF R+ oV, + V) = Et+n+mwl—og fhi’zlbla)

riea (1= DY (2h 54 R Vit y V) = @b+ 0l — oD 1) 4 22
24 Ib 1+(¥21}, a a b b b b 21+a11u b 25

1 ﬂblb :Bala
] — — 1, 1,
* ( Iab) (901 1+ ol * (,021 +ail, ’

— (4 N + W, +1;2+ L 0.V, + &I, — R, — Pls g +l;2
ab r)ab /-’L ab 2 6 RH aV a ata ,LL a 1+a21b a 2 7

1 Bl 1,
+(1- ? 0V, + &1, — uR, — mRz’ + 5{'8

1
+ ( ) ( abIab /’LRab) + _§92‘

5.V, S
LA < uK(r — ) — pRC = 1) + B, + B, — - 4

S S 7

S GV{' S(II(I
+ (8, + 6, +M)_7b+ﬁl+yﬁb[h+(8b+9b+:u) R _Ra

+ O_ﬁala + ﬂbIb

+u+ B,
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gb Vb sbIb IBaIa
- __+I’L+ﬁa1a_na_nb_nab_ +(§a+nu+u)+¢lﬂb1b+¢2ﬂala
R, R, 1,
I 71 Ia aIaI wla
I L L . PR . L
Ih Iab Iuh Rab

S S S S S S S S 51
i s e S

g% 5 //LK(”' - //L) + ,Bala + ﬂbIb + (M + W + p) + Gﬁala + ﬂbIb + (6:1 + 9{1 + /,L) + ﬂala
+vBuly+ (6 + 0, + 1) + 1+ Budy + 1+ Buds + (§a + na + 1) + @1 Bl + 0281,

tEEmt WGttt tut AT ST ET T TS+

(15)

256 < pkir— oy + CEDPKCZ ) | OFPIBKEZ

+nu+v+p)+06,.+6,+1)

2 2
+(5b+0b+m+u+u+(sa+na+m+<sb+nb+u>+(sab+nab+m+u+%+%
S S S S Y & R o1
CERNIRLTRES S AN TN S AR R
2+2+2+2+2+2+2

Thus, we have

+

dr] = Vdt + (;“1(5 — 1)dB, + &,(V, — 1)dB, + &(V, — 1)dB; + ¢,(I, — 1)dB, + ¢5(1, — 1)dBs

+ &Ly — 1)dBs + &(R, — 1)dB; + §5(R, — 1)dBs + §5(R,, — l)ng). (16)
If both sides of Eq. (16) are integrated from 0 to 7, A T, then we have

/¢ d%(S(U), Va(v)a Vb(v)aIa(v)alb(v)alab(v)aRa(v)5Rb(v)aRab(v))
<[ wans [0 (g(S(v)—1>dBl+;2<Vu<v)—1>de+c3<Vb<v>—1>d33+<;4<1a<v>—1>d34

+ &, (v) — D)dBs + &1, (v) — 1)dBs + & (R, (v) — DdB; + &5(R,(v) — 1)dBs + §o(Ry(v) — l)dB9)-
(17)
On taking expectation on both sides of the above inequality, we obtain that

EA(S(tg AT), Va(tg NT), Va(tgp A T), La(tg A T), Iy (g A T), Lap(tp A T), Ra(tp A T), Rp(tp A T), Rap (9 A T))
AT

=< J(S(0), Va(0), V5(0), 14(0), I5(0), 145 (0), Ra(0), Rp(0), Rap(0)) + WT.
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Let @, = {r, < T}V¢ > ¢,. Then, by (13), we have P(2,) > ©. Note that, for every w € Q, at
the least one of S(z,, w) or V,(t,,w) or V,(t,,w) or I,(t,, w) or I,(t,,®) or I,(t,,w) or R,(t,,w) or

R,(t,,®) or R,(t,,w) is equivalent to ¢ or g Thus,

% (S(rtb) CO), I/a(fdn C()), Vb(TqSJ C()), Ia(Ttba C()), Ib(Tqﬁ) C()), Iub(TqM a))v Ra(-[qﬁa C()), Rb(rdn C()), Rub(‘[d)) C()),)

is not less than

1 1
¢—1— ln¢or$ —1—In¢ (which equalszg -1+ ln¢) .

Therefore,

‘% (S(rdn C()), Vu(tdn w)s Vh(r(/)’ C()), Ia(rti)a C()), Ib(rd:a C()), [ab(rdn Cl)), Ra(rdn C()), Rb(td)a a)): Rah(rdn a))a)
zmin{«p— 1 —1n¢),(% -1 +ln¢>)}.

Finally, we have
J(S(0), Va(0), V5(0), 1,(0), 1,(0), 145 (0), Ra(0), Ry (0), Rap(0)) + W T
> E(lqpdi(S(tg AT), Vy(tg AT), Vi(tg AT, 1(tp AT), Ip(ty A T), Lip(tp AT), Ry(tp A T),
Ry(ty AT), Rap(tg A T)))
= E (lop(@) A4 (S(p, ), Va(Tg, ©), Vi (T4, ), Lo(Tg, @), I (Ty, ), Lup (T4, @), Ra(Ty, ), Ry (T4, ®), Rap (T4, ®))) ,

>E (min [19¢(w)(¢ —1—1n¢g), (% -1+ ln¢) ])
= min {(qb —1—1n¢), (% -1 —+—ln¢) }E(IQ¢(w))

zﬂmmlw—l—hwx(%—l+m¢)k (18)

where, 14,(®) is “indicator function” of Q,(w). If ¢ — oo, then

(&) > %(S(O)a Va(O)a I/b(o)aIa(O)DIb(O)5Iab(o)aRa(O)aRb(O)aRab(o)) + \IIT - OO, WhICh iS a
contradiction and hence 7., = co.

4.2 Extinction of the Disease
The following notation and results are stated first:

(l/(t)) = %/ K (s)ds.

Theorem 4.2 (“Strong Law of Large Numbers”). [45] Let G = {G},-, be continuous and real valued
local martingale vanishing at ¢t = 0 and (G, G); be its quadratic variation. Then

.G . G), .G,
=00, a.s. = lim—— =0, a.s.and, limsup—— <0, a.s. = lim— =0, a.s.

lim (G, G
lm( s )/ t—00 (G’ G), 1—00 t t—oo [

—00

(19)
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Lemma 4.1. Let (S(2), V,(0), V,.(2), 1(2), I,(?), L,(?), R,(¢), R,(?), R,,(¢)) be a solution of perturbed
system (7) subject to

(S(0)5 Va(o)a Vb(o)a I,,(O), Ib(o)a Iab(o)a R,,(O), Rh(O)’ Rah(o)) € (R)?p then
SO+ VO + VO + LO+ L0 + 1,0 + RO+ R0 + Ry () _

}Loo ; 0,a.s. (20)
Moreover, if u > (512 VEVEVEY 4;52 VENVEVEY ;“92) , then

i £ o,y BIEEE o, LG g L

im IN Ib(v)tdBS(v) ~0,lim IN Ial,(vidB(,(v) =0, lim IN R,,(vt)dB7(v) ~ 0, lim IN Rb(vt)ng(v) _o,

lim Jy Ra)dB,v) = 0. (21)

t—00

This Proof follows using the arguments similar to those given in Lemmas (2.1) and (2.2) in [32]
and is omitted.

The threshold parameter %, for the perturbed system (7) is given as:

K5 = max{ %, %}, (22)
where,
B — Bul (8, + 6, + 1) (8, + 6, + ) + oy (8, + 6, + ) + p(u + 6,) (8, + 6, + w)1S°
v (S0 + 0, + 1) (S + 0y + ) E, + 1u + 1)
¢ _ % ¢
5. . =% L
206, + 1.+ 1) 208, + .+ 1)
s = Plr@ut+ 0,4 w8 + 6, + 1) + pyp@, + 6, + 1) + ¥ + 696 + 6, + w1’
0

(@B, + 0, + )G, + 6, + )& +n, + u)
& ¢3
SN E—— N E—
2(5/; +ny + M) 2(%'/7 + 1+ M)

The theorem below provides necessary requirement for disease extinction from a population.

Theorem 4.3. Given the initial states (S(0), V,(0), V,(0), 1,(0), 1,(0), 1,(0), R,(0), R,(0), R, (0)) €
R?, the solution
(S@), Vu(0), Vi (D), L(0), 1,(2), Ly (1), R.(7), Ry (1), Ry (1)) Of the stochastic system (7) has the proper-
ties defined below: If
@ @) 2 > Balin (S + 6.+ 1) (S + 6, + 1) + uo (8, + 0, + 1) + p (1 + 6,) (8, + 0, + W (S°)?
4

208, + 0, + (8 + 6, + 1)?
then COVID-19 goes extinct “almost surely” (a.s).

20208, + 0, + (80 + 6, + 1)

b

(i) &7 > ,
viral hepatitis B goes extinct a.s.
(b) (1) Z;, < 1, then COVID-19 is eliminated from the population with unit probability.
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(ii) #;, < 1, then viral hepatitis B is eliminated from the population with unit probability.
Thus, if the requirements (a) and (b) above are satisfied, then

hmM <0, and Im —( og/y(0) <0, and lim —( % tab(t—» <0

=00 =00 t—00

, a.s.

That is, both viral diseases will be eliminated with probability one.

More-over,
lim (S()) = UK — ) (8, + 6, + 1) (8, + 0, + 1) ,
=0 My 0, + 1) (S, + 0, + 1) + p O + 1) (S, + 0, + 1) + (S, + 0, + 1) (8, + 6, + )]
YuKr— )@, + 6, + 1)

Iim{V, =

,Eg( ) Y 6, 4+ ) (S + 6, + 1) + p O + )G, + 6, + ) + n(d, + 6, + w8 + 6, + W’
lim (V,(1) = puK(r— pn)(8, + 6, + )

oo ! Y 0, 4+ ) (S + 6, + 1) + p O + 1), + 6, + ) + w8, + 6, + (S + 6, + W]’

lim(Z,()) =0, lim(Z,())=0, lim(l,()=0,

lim (R, (1)) = 0. K(r — 1) (8, + 6, + 1)
ponl il o r[w(e”+M)(8b+0b+M)+p(9b+u)(5u+9a+ﬂ)+M(5a+9a+,u)(5b+9b+,u,)]’

lim (R (l)) . prK(r - M)(aa +06,+ M)
oo T (B, A 1) 8y + 6y + )+ p B + 1) B+ O 4 1) + (s + O, + 1) (S + 0, + )]

lim (R, (1)) = 0. (23)

Proof:
(a) If Ito’s lemma is applied to the 2nd equation of (7), then we have

[ IBaIa ﬁbIb 1 ;42
dlogl, (1) = S+ R V.,+ V) — (&, + 1, I, — I |—dt — =dt dB,(t
ogl, (1) _1+0511a( +R,+oV,+V,)— (& +n,+ ) (P11+a21b ]Ia ) + £4dBy(1)

Bal,
| 1+,

5
2

A

1
S+R+0V,+V,)—E+n+ u)la} 7t — S di+ LdBy(1)

A

_ ! )
BA.(S+ Ry +0V,+V,) — (&, +n.+ M)Ia] I—dt - %dr + 5udB,(1)

IA

1 2
Bl (S*+ R A0V + V) = (& + 1.+ u)lu} Tt - %dt + ¢dBy ()

g
| 2
_IBM[M((Sa + 9{1 + M)(ab + 9}7 + M) + l’l’o_w((su + 9(1 + M) + p(l’L + 9/))(864 + 9« + /"L)]SO
w8, 40, + 1) (8, + 6, + 1)

=|B.(S"+ R+ V) + V) — (& +n.+ u)}dr — 2dt + £,dB.(1)

2

5 dt + ¢,dB,(1) (24)
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Re-writing (24) in the form of integral gives that

logL(t) < /r (,Ba[ﬂ(ag +60,+ ) +6,+ 1)+ pnoyr@,+6,+ )+ o+ 6,06, + 6, + wlS°
B w(S, + 6, + )8 + 6, + )

- %)du(& i+ / ¢udBy(v) + log(0)
0

This can also be written in the form given by:

@ [ Balit(Ba + Oa 4 1)y + Op + 1) + 1oV (S0 + O + 1) + p(1t + 0p) (Ba + O + 10150\
logl, () < =2 [ (1- > dr
2 Jo Cim(8a+0q + ) (Sp + 0p + 1)

+/’ B (8a + 00 + 1) (S + Op + 1) + oY (8a + 00 + ) + p (1 + 0p) (8a + 04 + W]*(S0)? 0
0 20712 (Ba + 0 + )28 + 0p + 1)?

t
— (8q + 04 + )t + / C4dB4(v) + logl,(0)
0

B2 (S0 + 0 + 1) (8p + Oy + 1) + oY (8a + 0a + 1) + p(i + 0p) 8y + 04 + 11)] (50)2
< —|Gat+na+pi— 3 2
2;4:“ (8q + Oy + )= (8p + Op + 1)

t
+ / C4dBy(v) + logl,(0)
0

Dividing by ¢, we get that

loglam B2L1(a + Oa + 1) (Bp + O + 1) + no Y (8a + 04 + 1) + p (i + 0p) (84 + O + 1]*(S?)?
———=< G+ g+t — ) 2 2
{ 2{4 u>@Bq + 00 + 1)*(6p + 0p + 1)

logZ,(0
/ L4dBy(v) + ——— og () (25)

I .
Using the “Strong Law of Large numbers”, lim p fo L4dB,(v) = 0.a.s.,

o> Balin(a + 0, + 1) (S + 0, + ) + uoy (3, + 0.+ 1) + p(p +6,) (6. + 0, + W (S°)?

T 228, + 0, + 2B, + 0, +
taking “limit superior on both sides of” (25), we have

logl, (1)

, and on

lim sup
—00

B2y + 00 + 1) (Sp + Op + 1) + oY (8a + 04 + 1) + p(14 + 0) (8a + 04 + )IF(SO)?
< (€ +na+ w1 - 55 5 7 <0
20212 (84 + g + 12(8p + O + 11)

That is, im 7,(0) = 0.
Similarly, it can be shown that
logly (1)

t

lim sup

—00

B2Lp + Op + 1) Ba + 0a + 1) + 110y Ba + 0a + 1) + ¥ (1 + 0a) By + 0 + (S
—\GEp+mp+1)— ><0

2020280 + 0a + 128y + O + 11)?
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which implies that lim 7,(0) = 0.
(b) Also, if Eq. (24) is integrated over the interval [0, 7] and divided by ¢, we obtain
_ 2 t
logly(t) —logla(0)  Bala (S+Rp+oVu+Vp) Brlp %4 " ;“74/ dB4(v).
0

; =Tt el 7, —(%‘a+na+u)—¢1l+a21b—
_ BalttGa +0a+ )G + 0y + 1) + 1Y Ba + 0a + 1) + P(1t + ) Ba + Ou + 1))S°
- W@ + O + 1) (8 + 6y + 1)

2 t
—a+na+p) — %‘ + 9/ dB4(v)
t Jo

Bali(Ba + 0a + 1) (8p + Op + 1) + RO (S0 + 0q + 1) + p(1t + 0p) (80 + 04 + 1)]S°
w(Sq + 64+ )Gy + 0p + ) (&g + ng + 1)

¢ ) 84 /’
_ 1 — dB.
2084 +nq + 1) * t Jo 4

= (Sa+na+u)(

t
= (Ea+na+ 1) (%ga - 1) + %4/ dBy(v). (26)
0
Moreover, G(t) = % f()’ dB,(v) is “locally continuous and G(0) = 0”. Employing the Lemma (4.1)
on taking  — oo, we get that
. G(t
lim sup¥ =0 27)

If %) < 1, then Eq. (26) becomes

logl
lim sup%"(t) < (gu F .+ M) (%01 _ 1) <0 as. (28)

Eq. (28) implies
limI,()=0 a.s. (29)

Applying Ito Lemma to the 5th equation of system (7), we have

logl(f) — logl},(0)
t

Boli(Sa + 0a + 1) (8p + Op + 1) + wyp(Sp + 0 + 1) + ¥ (i + 02) (8 + 0p + 1)]S°
W(Bq + 64+ )8y + 0p + 1) (Ep + np + 1)

¢? ) L4 /’
5 )+ [ aB
2(&p +np + 1) t Jo 4

< ($b+nb+u)(

t
= Gt 0 (25— 1) + 2 /0 dBs(v). (30)

Note that G(¢) = {—: fot dB,(v), is “locally continuous martingale” and G(0) = 0. By applying
Lemma (4.1) with  — oo, we obtain

lim sup@ _0. 31)

=00
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If Z;, < 1, then Eq. (30) results in
logl, (¢
gtb( ) =< (Sb +n, + /L) (%()Sb — 1) <0 a.s.

Eq. (32) gives

lim sup

=00

Iim/7,(¢) =0 a.s.

Using the last equation of the stochastic system, we have
lim(R,(n) =0, as.

From the first equations of system (7), we get that

! N 1311111 ﬁbIb
S — S0) = N{l——)— S — S+68,V,+68,V,)d
0 =50 /O(V ( K) Ttal’ Ttap” 0t b) Y

v+ ) / SOydv + ¢, / SO)B,(v),

0
Considering the bound for N, and recalling (29) and (33), gives

S(t) — S(0) = Mz s / V.0)dv + 8, / Vidv — (u+ ¥ + p) / S)dv

—i—{l/ SW)B,(v),

Dividing by ¢ and taking lim, we obtain that

1—00

S(H) —SO)  uK(r— 1 g
lim 20 =50 _ nR@ M)+8,,lim;/ V,,(v)dv—l—(Sblim?/ v, (v)dv
0 1— 00 0

t—00 t r t—o00

1 R
— e+ p) lim / S)dv + 5 lim - / SO B, (),

_ M + 8, lim {V,(0) + 8, im (V,()) = (u + ¥ + ) lim (S (1))

L
+ & llm;/ S(W)B,(v),
—00 0
which can be re-written as:

K(r— .
(4 ) Jim (S(0) — b lim (Va(0) — 8y lim (Vi 0) = "2

t— 00 t

S —
m -2 =

On taking t — oo, the above becomes

(u+w+q»ggwa»—&ggWKM—wggymu»=§£€¥Qﬁ

(32)

(33)

(34)

(335)

(36)

S 1 /!
© + & [E)Igo;/o S(v)Bi(v)

(37)

(38)
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Following the similar arguments to those given above, the following expressions can also be
obtained from the stochastic system (7):

¥ lim (S(0) = (8, +6, + ) lim (V, (1),

plim (S(0) = (@, + 6, + w lim (¥, (1),

0.lim (V. (1) = plim (R, (1)),

0, }irg (Vy(n) = }in; (Ry(0)) (39)

Solving the Eqs. (38) and (39) simultaneously, the following bounds are obtained

lim (S (1)) = uK@— )@, +6,+ wn)yé,+6,+ wn

o T YO, + 1S+ O+ 1)+ PO+ )G+ O+ ) + 1S, + O, + 1) (S + O+ )]
YuKr — u)(S, + 0, + un)

r[w(ea + I‘L)(Sb + eb + I’L) + 10(91, —+ M)(Sa -+ Ga —+ I’L) —+ I’L(aa + Qa + I’L)(gb + 91; + M)]’
puK(r — )8, +6,+ 1)

lim (R, (1)) = 0,9 K(r — 1) (8, + 6, + )

oo W (G, + ) (S 0y + )+ p O + 1) (Sa + 0,4+ 1) + 1S, + 0, + )6, + 6, + )]’
OppK(r — ) (8, + 60, + 1)

1w 6, + 1) (S, + 6, + 1) + p O, + 1) (Sa + 6, + 1) + (S, + 6, + (8, + 6, + )]

(40)

lim (V, (t)) =

lim (V, (1)) =

lim (R, (1)) =

4.3 Existence of Ergodic Stationary Distribution

Definition 4.1.[52] “The transition probability function P(s, ¢, ¢, A) is said to be time-homogeneous
(and the corresponding Markov process is called time-homogeneous) if the function P(s, e, 1+ s, A) is
independent of s, where 0 < s < ¢, ¢t € R, A € % and % denotes the o-algebra of Borel sets in R?”.

Let Y (7) represent a “time-homogeneous regular Markov” process in R’ defined by the SDE
below:

dY (1) = p(Y)di + D h(Y)dB,(1). 41)

r=1

The corresponding diffusion matrix is defined as:

k
A(e) = (ay(e)),  ay = D ()N (o).

r=1

Lemma 4.2. [52] “Suppose there exists a bounded open domain .# C R’ having regular boundary
I, with the following properties™:

e 4@ pip; = GlplP e € M, p € R

ij=1 =

A2: “there exists a non-negative ¢*-function .7 such that .Z ¢ is negative for any R*\.Z".

Al: “there exists a positive number G such that >
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“Then the Markov process Y (¢) have a unique ergodic stationary distribution @ ()”. That is
1 T
IF’S[ lim —/ p(Y)dt =/ p(s)u(a’s)} =1, VeeR,
r— T J, RS,
with p(e) denotes an integrable function relative to measure j.
Theorem 4.4. Define the threshold

S = : : HATABaBp : : _
[(u+w+p+%)+(80+9a+u+%2)+(8b+0b+u+%3)] (sa+na+u+%) (é—'b+nb+u+%)
(42)
where,
A = Bulp(a + 0.+ 1) (S + 6, + ) + poy (8, + 6. + ) + p(u + 6,)(8, + 6. + M)]SO,
w(Ba + 6+ 1) (3, + 6, + 1)
A, = Bl (8, + 0, + ) (8, + 6, + ) + myp (S, + 6, + ) + ¥ (u +6.)(8, + 6, + M)]SO’

/"(’(80 + 9« + M)(ah + Qh + /J')
0 /-'LK(V - /-'L)(Sn + 9{1 + /-’L)(Sb + 91) + /-’L)

YO+ )G+ 6+ 1) + O+ )G+ 0u + 1) 4+ 1(8a + 0u+ 1) S+ 6, + )]

_ Then the perturbed system (7) has a “unique ergodic stationary distribution” w(-) whenever
Fx; > 1.

Proof:

For (S(0)> Va (0)5 Vb(o)a Ia (0)5 Ib (0)9 Iab (O): Ra (0)5 Rb(O)’ Rab(o)) € Ria We haVe unlque SOIUtion

(S, V.(0), Vi (), 1(1), I,(1), 1,(1), R, (1), Ry (1), R,,(1)) € R’. Moreover, the diffusion matrix of (7)
is given as:

KL 0 0 0 0 0 0 0 i
0 gr: o O 0 0 0 0 0
0 0 Gv:o 0 0 0 0 0
0 0 0 0 0 0 0 0
A=1]0 0 0 0 &rro o0 0 0
0 0 0 0 0 gr o 0 0
0 0 0 0 0 0 R 0 0
0 0 0 0O 0 0 0 2R 0
L0 0 0 0 0 0 0 0 LGRS, (SO, Va0,V 0:Ta (0T (0T (D, Ra(),Ry (. Rgp ()R

Suppose that G = min{¢;'S*, &V &V GLL 61 L, G R GERGL R, )-
Wherea (S(t)a Va(t), Vb(t)a Ia(t)a Ih([)5 Iab(t)a Ra(t)’ Rb(t)’ Rah([)) € 5 € Ri

Then we have

> a4y (S@), VD), Vi(0), (D), 1, (1), L (1), R, (1), Ry (1), Ruy(1) iy

ij=1

= S0+ GV + GVipy + GLps + G0+ G 1P+ &R+ &R + GIRG B
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Z Glpl Where (S Vu; Vha as Ib; abs Ra: Rb; Rab) € E) and /5
= (:0_1’ 10_29 10_37 p_47 §59 lo_(n p_79 /0_8, p_‘)) € R+'
Therefore, the requirement 4/ of Lemma (4.2) is fulfilled.

Now, consider a C*— function V: R — R:
Let

% = —InS — InVa - Ian - a)llnla - a)ZInIb + (S+ Va + Vb + Ia + Ib + Iab + Ra + Rb + Rab)a
where w, > 0 and w, > 0 are to be determined. Applying Ito’s Lemma, we have

g(S+Va+ I/vlr+la+]h+lnh+Ra+Rb+Rab)

=rN (1 1]\;) wS+vV,.+v,+I1,+1,+1,+R,+R,+R,) — = 0y — NapLns
2 = =15 (1= F) + o Bl BBy &
L(—InV,) = —‘”VS + l‘fi“la b fil Fon s
f(mm%—~%+lf; +1T;h+@+@+unfi
2ty = P CEREIRAI | b+ 4 2
2ty = - PO CERELIVID b+ P+
L(—Inl,) = ﬂ%fﬁh%—%ﬁﬁig+@wﬂm+m+%
ZL(~IhR,) = —S;;—f:b +n+ %92 (43)

Thus, we get that

rN N B.l. Bil, 8 V. &V, :
LA =——|1- - 1
S( )+1+(x1 l+awl, S S +( +1/f+,0+2)

‘//S oﬂztla ﬂb[h ;2
3, +6
+1+a1 +1+0121b n+a+M+2

pS B.1, YBol, &3
- — ) 0
v, T Tdal T Tqar \2TOTRETS
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ﬂala (S+Rb+GI/(1+ Vb) 542 13}7[/)
+“)1[ 1 +al, 1, A CRECRECREY R

ﬂbIb (S + Ra + Va + y Vh) ;52 ﬂala
+w2[ 1+ anl, 1, ARy R cr s

N
+ [I”N (1 - E) - /'L(S + Vu + Vh + Iu + Ib + Iab + Ru + Rh + Rab) - nala - nblh - nnhlab:|

< _K(V_I’L)/"L _ wlﬂa(S+Rb+oVa+ Vb) _ wZﬂb(S—i_Ru-"_ V'a_j’_be)
- rS 1 +al, 1 + o1,
&3

2
+a)1 (Sa—i_na—i_ﬂ—i_%)+w2(§b+r)b+ﬂ+3)

9 & &
+ M+w+p+3 + 5a+0a+,u+3 +\0+0,+u+ =

2
B.2+0)l, B2+ y)l, » Bul, ‘o B.l,
14+ o, 1 + a1, 1 1+ o1, 22 1+ o1,
Kr—mp Kr—mwp V. &V, ¢S pS
r r S S V, V,
Bl (S, + 0, + )8, + 0y + ) + noyr (8, + 60, + ) + p(u + 6,)(8, + 6, + w)1S°
w(@, + 60, + n)(d + 6, + 1)
Bilin (8, + 6, + 1) (8, + 60, + ) + nyp (S, + 0 + ) + ¥ + 6,)(8, + 6, + w)]S°
/"L(aa + 9« + M’)((Sh + 9[) + /“L)

2 2
+ (Sa+m+u+§—4)+wz(%‘b+m+u+§—5)

+

e A

W,

2 2

2 2 2
+(M+w+p+%‘)+ (5a+0a+u+%)+ (6h+0b+u+%)
ﬂn(z + G)Ia ﬁb(2 + V)Ib ® ,BbIb + ® IBaIa

1+ a1, 1 + a1, 1@ 1 4+ o1, 2('021 + o1,
Kr—wp Kr—wp V. &V, ¢S pS

S Y A A
r r S S Va Vb Nad, Npdp Navdab»

+

Since the arithmetic mean is always greater than or equal to the geometric mean, it implies that

1
3 o ¢?
LA < —3|:MA1A2wlw2lga/3bj| + w (Sa + g+ 1+ —4) + w (Sb +np+u+ —5)

2 2
K(r—pp ¢} ¢} 3\ B2+ o),
+—tut+v+o+ )+t Oat+n+ )+ +n+ 2 )+
r 2 2 2 1+ o1,
B2+ vy Blp Bala 8aVa Ve ¥S pS

+ - — — — — = nala — nply — Naplap-
Traly,  "van,  PTval, S S Ve oy, el bl
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where,

Bulin(8s + 60, + 1) (8 + 0, + 1) + po (8, + 6, + ) + p(u + 6,) (8, + 0, + W)1S°
m(@,+ 6, + 1)+ 6, + n)

Bolin (8, 4 6, + 1) (8, + 0, + ) + nyp (8, + 0, + 1) + (i 4 6.) (8, + 0, + )1S°
w(, + 6, + )8, + 6, + 1) '

Alz

AZZ

Let

: ; A AB,
wl(éa+”a+/¢£+§_4):w2(§b+)”[)+“+{_5): I’L 1 zﬂﬂb ’

2 2
2 2/ (et nrn+S) (stmru+ )

with
WA A BBy WAL ABBy

wy; = .
2\ 2 2\’ 2 o\ 2
(e+m+n+s) (G+n+n+d) (E+nt+n+%)(a+m+n+s)

w; =

(44)

Consequently, we have

y AL A2B4Bp

[ 2 2
[(u+w+p+%‘)+(6a+9a+u+%

,Ba[a (Sa Vu 5[) Vb 1//S pS
. . e e 45
L " T v, s s v, W, )

14 a1, 14+ axlp +w1¢11

;2 CZ §2
fﬁ%s—[(u+xﬁ+p+21)+(8a+9a+u+22)+(6b+9b+u+23 = nala — pIp — Naplap
N
o

2 2 2
+(6b+9b+u+%)](sa+na+u+%4)(sb+nb+u+%5)
b
2

_ 1} L BCH DL B f

It implies that

¢} 3 ¢} _
Z%f—[(u+w+p+2‘)+(8a+0a+u+22 + 5b+9b+ﬂ+73 [(%‘OS)—I]—nala—nblb—nablab

Ba2+0), B2+ v Bulp Bala 8aVa Ve ¥S oS
+ w191 + w22 - .
1+ a1, 1 4+ anly 14+ arly 1+ o1l S S V, Vy

Moreover, define
I = w3[ —InS— mV,— IV, —wlnl, —wmnl,+S+V,+V,+1,+1,+1,+ R, + R, + R,,b)]

—InS—-InV,—-InV,—-InR,—InR,—InR,+S+V,+V,+1,+1,+1,+R,+ R, + R,
where, w; > 0, shall be determined later.

Now, consider a C*—function 7 : R?. — R,:
%(Sy Vu; Vh: Iu) Ib, [ab) Raa Rb, Rab) = %(Sa I/'”’ Vb) [aa Ib) Iah: Rtn Rb) Rab)
— 7(5(0), 1,(0), 1,(0), 1,,(0), R(0), V(0)).
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Applying Ito’s Lemma, we have

55 & & ~

Bu2+0)1, + B2+ v)Ip + w9 Bvlp + Wy Bala 8aVa
14+ a1l 1+ anly ! 11—|—0{2[b 2 21+“11a S

— Nala — 1pdp — Napdap +

Vs ¥S  pS

N
S 7 7})]+VN(1—?)—M(S+VQ+Vb—l—Ia—l—Ib—l—Iab-l—Ra-l-Rb—l—Rab)

rN N Bala Boly  8aVa Vi ¢}
—nady — pdy — naply — — (1 — = — — 2L
Nala — 1pdy — Napdap S( K)+1+oqla+l—|—a21b 5 5 +(M+1/f+p)+2
vS 0Bl Buly G pS Bl vBulp
- == 8a+6, L — 8y +6,
V, 1+a1l, 1+Olzlb+(a+ a+M)+2 Vi 1+arl, 1+a2]b+(b+ b+
G 0Va &l B G OV &b Bulo & Ealw 5
2 R, R, T taady 2 R, Ry, M 0valy 2 Ry M2
(46)

which results in

N
LH < —w3ws + TN (1 - ?) —u( S+ Va+Vp+ 1y +1Ip+ Lop + Ry + Ry + Rap) — nala — nplp — Naplap

rN N Bala Boly  8.Va Vi tf
——(1-= — — 2L
S ( K)+1+a11a (tal, 5 s TwrviEets
(N G pS  Buda | vBoly
- = 8a+6, 2 = 8p+ 6,
Va+l—|—(xlla+1+o{21b+(a+ a+l/«)+ 2 Vb+1+(x11a l+a2]b+(b+ b+ 1)
2 2 2 2
5 bV Sada o Bl G OVe &by Bula &G Sale 5
2 R, R, 1 4+ arly 2 Ry Ry 1+a1l, 2 Ry 2
47)
where,
Cf ; C; S
Wy = u+x//+p+3 + 8,,+9a+u+3 + 3,)+9,,+M+7 (%) —1] > 0.

Define the domain

1 1 1 1 1
D={81<S<—,81<Va<—,81<Vb<—,81<Iu<—,81<Ib<—,81<lab<—,81
& & & 2 & &

1 1 1
<R, <— <R <—,66<R,<—1}.
& & &

where ¢; > 0 for i = 1,2 will be estimated later. First, we subdivide the domain R’ \ D as follows:

D] = [(Sa Vaa I/bala’ Ib: Iab’ Rwaa Rab) € Riao < S S Sl]a
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D, = ((S, Vi, Vi I, 1y, Iy, Ry, Ry, Ry) € R,0< V, <6, S > 82},
D; = ((S, Vi, Vi I, I, Ly, Ri, Ry, Ry) € R0, 0 < V), < 6, V, > 82],
D, =S,V Vi, L, Iy, 1y, R, Ry, Ry) €R2,0< I, <&, V), > 82],
Ds =S,V Vi I, Iy, Ly, R, Ry, Ry) € R0 < I, < 6,1, > 82],
Dy =1(S,V, Vi, L, Iy, Ly, Ry Ry, Ry) € R0 < Iy, < 5,1, > 81},

&

1
D7 = (S, Va: Vbalaa Ib: Iah: Raa Rb: Rab) € Riao < Ra < _5Iab Z Sl]a

1
DS = t(Sa Va: VbalaaIbalaba RaaRba Rab) € Riao < Rb < _5Ra 2 81}’
&
1
D9 = {(Sa Vaa Vbalaa Ib: Iab: RaaRba Rab) € Riao < Rab < E_,Rb 2 81}3
2
1
DlO - {(Sa Va: Vbalm Iba Iab: RaaRba Rab) € Ria S 2 8_}’
2

1
Dll = {(Sa Va: Vbalm I[n Iab: RaaRba Rab) € Ria I/a Z _}5
&
( : 1
D12 = (Sa Vaa Vbalna Iba Iab: RaaRba Rnb) € R.p I B
&,
1
Dl3 = ((Sa Vaa Vbalaalbs Iab9 Rasta Rnb) € Rj_a _}
&
1 }

Dl4 = (Sz Vua Vba Im]bs Iaba Rm Rbs Rab) € R Ib Z

DIS - t(Sz Vua VbaImIba Iab, RaaRba Rab) € Rj_a Iab - _}a
&
1
D16 - t(Sz th Vba Ia7 Ib’ Iab7 Raa Rb’ Rab) € Rj_a Ra Z N E
&

\
| —
D i ——

D17 = {(S7 th Vb) I(l) Iba Iab) Ra: va Rub) € Ria Rb -

&

1
D18 = [(S7 Va) I/b) I(l) Ih: Iab) Ra; Rb: Ruh) € Ria Rab Z - } .
&
Next, we show that Z .57 < 0 in all the above eighteen domains which then implies that
gﬁ(sz Vua Vln Iu, Iba Iaba Raa Rba Rab) < O on Ri\D
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Case 1. Suppose (S, V., V,,, 1, 1,, L, R,, R,, R,;) € D,, then using Eq. (47), we have

N
$%§_w3w4+rN(l_E)_ (S+V+Vh+l+Ih+lab+Ra+Rh+Rah) bIb nublal)
rN N Bl Bul,
RSt I I
S( )+1+a1 o TEHY P
2
WS oB.l, Bul, &5 PS B.l. vBul,
2L 8, + 0, 2
+2 1+ o1, +1—|—oz21b+( + +M)+2 1+al, 14+l
N &l Bi1, & 91, V, &I, B.1,
k) ] 23 4’ ae  2ea 2T _ 270 220 L
+(”+”+“)+2 R R "Y'1¥wL "2 R R il
& Suln &8V, &V,
2 "R, M2 TS TS
N
S_w3w4+rN(1_E) /J’(S—i_ I/u+Vh+Iu+Ib+[ab+Ra+Rh+Ruh) anb nablab
rN N B.1, Bul, <3
1= 2
S( )+1+011 1+ 2117+(M+w+,0)+
WS 0B, B, é'z PS Bal, vBul,
8,1+ 0, - ) 0
ol +1+ +( + +M)+ +1+a] +1+ +(b+ )
; 0.V, 1, I NN Y I, o wla
_3___5 ﬂbb +§_v_u_£+u+ p +§_8_M
2 Ra R 1 + 0521;, 2 Rb Rb 1 + O{]I 2 Rah
S 4 S, V,
fut -t (48)
2 €, €

If ¢, > 0 is chosen to be sufficiently small such that the right hand sides (48) is not greater than
Zel‘O, then fﬁf < O for (Sz Vm Vba Iaa Iba Iaba Raa Rba Rab) € Dl'

Similarly, it can also be shown that ¥.# < 0 for (S, V,, V,,1,,1,,1,, R,, R,, R;) € D,

(S th Vb7 Ib7 [aby Ra) Rb) Rab) € D3: (Sa th Vb7 Iualbylaby Ra: Rb7 Rab) € D43
(S th Vb) Ib, abs Ra: Rb) Rab) € DS:

(S, I/m Vbalaalba Iab: RaaRba Rab) € D65 (S’ I/m VbalaalbalabaRa,Rba Rab) € D7,
(S I/m Vba Iaa Iba Iab’ Raa Rba Rab) € DSa

(S Va) %) [ha abs Ra) Rh) Ruh) € D9'
Case 2. If (S, V,, V), 1, 1,, L;, R, R,, R,;) € Dy, then by Eq. (47), we get

N
$%§—w3w4+rN(1 K) wS+V,+Vy+1,+1,+1,+R,+ R, + Ry) — — Mol — Nl

rN N B, Bul, &}

_ 2 (2
S( )+1—|—oe1 Figap tUTVTo+5
WS Uﬁ I ﬁb b ;2 IOS ﬂala yﬁb b

- — 8, +0, = - — 8, + 6
V. +1+a, AT AR C T O s 7N Dy S By MRBLC O D)
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; ea Va aIa 71 ; 97V 17 :1Ia ; a Ia

53 _g 'u/+ ﬂlb +§—7—1b—$b—l+l,(/+ ﬁ {_8_§bb

2 Ra Ra 1+O[21b 2 Rb Rh 1+a]la 2 Rah
258, V, 8V,
9 aV a bV b
TS TS TS

N
= —a)3a)4+VN (1 - E) _/-’L(S+ Va + I/Zv+1a +Ib+Iab +Ra +Rb+Rab) - 77(1111 - anb - nablab

}’N N ﬂala IBbIb ;12
(1= 2L
S( K)+1+m4+1+%@+W+W+pH_2
‘(/IS Gﬂulu ﬁh[h ;‘22 /OS ,Bala VIBbIh
- 811 90 N T 37 3 6
Vo T el Tl Tt e T Ty, OO
2 eﬂ Va ﬂIll I 2 0 V I (llﬂ 2 al Ia
S _OVe &b BL K GV &L BL & Sels
2 R, R +al, 2 R, R I+l " 2 R,
2 5, 8y
fput+ -2 (49)
2 & &

If we take, &, = &3, for large value of w; > 0 and smallest value of &, > 0 such that right hand
sides of (49) is not greater than zero, then ¢ < 0 for every (S, V,, V,,1,,1,,1,,, R,, R,, R,;) € D;.

Similarly: we can Obtain that (Sa Va:« Vbs Ias Iba Inba Rm Rb5 Rab) € Dlla(Sa Vaa Vba Iaa Ibs Iab9 Raa Rba Rnb)
€ DlZa (S: Va: I/ba Iaa Iba Iaba Ra: Rba Rab) € Dl}: (Sa Vrn Vba Iua Iba Iaba Rna Rba Rab) € Dl4a (Sa Va: Vba Iz/) Iba Iab:
Ra: Rba Rab) € DlSa (Sa Va: Vba Im Iba Iab: Raa Rb: Rab) € Dlé'

Hence, there exist W > 0 such that
g‘%(sa Va) Vb; ]zn [ha Iuhy Ru; Rha Rah) < _W < 0 fOI‘ every (S) Vaa Vbalay [h: Iuh) Ru; Rh: Rah) € Ri\D

Therefore, we have
d%(sa Ia: Ibalaba R) < _Wdt + [(603 + 1) S - (a)l + l)gl]dBl(t)
+ [(w; + 1)1, — w,w58,]dB, (1) + [(ws + 1)1, — ws&5]dB;(7)
+ [(ws + D1y — 0381dBy(1) + [(ws + DR — fs]st(t) + [(ws + DR — Cs]dBé(Z)-
(50)
Let (S(O): Va(o), I//)(0)’ Ia(0)9 [h(o)a Iuh(o): Ra(0)9 Rb(o)a Rab(o)) =& = (81, €25 €3, €4, €5, E, €75 E3, 89) €
R’ \D, and t° denotes the time in moving from ¢ to D
andt, = inf{t : z = | Y (9|}, andt® () = min{z°, 1, 7.}.
Taking expectation, applying Dynkin’s formula [53] and integrating both sides of Eq. (50) over
[0, 79(0)], gives
EA(S(x? (1)), Vo (t9(0), Vi (z9(1)), L(t? (1)), (7 (1), Ly (T (1), R, (z? (1)), Ry(T (1)), Rop( (1))

T(2)(0)
- %(O) = ]E gﬁ(s(‘))a Va(v)a I/b(v)a Ia(v)a Ib(v)a Iab(v)a Ra(v)a Rb(v)a Rab(v))du

0

(@)0)
< IE/ (—W)du
0
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= —WET®(1). (51)
Since .77 is non-negative, we have
1
Et9(r) < Wﬁ”(e).

Following arguments similar to those in the proof of the Theorem (4.4), we can show that P{z, =
oo} = 1. Hence, the system (7) is regular. But, if z — oo and ¢t — oo, then 7(z)(f) — t° a.s. Hence,
using Fatou’s lemma [54], it is obtained that

1
Et9() < W%”(e) < 00.

Now, sup,_, ET° < oo, where K denotes the compact subset of R’ ; condition 42 in Lemma (4.2)
is satisfied. Therefore, it is concluded that system (7) has “unique stationary distribution”.

5 Numerical Scheme/Simulations

The perturbed system (7) shall now be experimented numerically in this section. The higher order
scheme by Milstein [55] shall be used and is defined below:

N,») BuSil.i B Sili

S.=S+ v (1-2) =
+ +[V ( K) T+al, " 1+awl,

+0,Vi++6,V, — (n+v + p)Si:| At

2
+ oS Atg + %Si(wi,- -1 AL,

o a Vc iIc./' I/c,il N
KM=VL+8ﬁr-ﬁ Ao _ B M W F O 4 WV | A4 GV A,
1+ allc,i 1+ 052111,1'

& vV, 1A
+ ? c,i(wzj - ) ta

_ IBa I/h,ilc,i _ yﬁb I//z,ilh.i
1 + alI(',i 1 + aZI/lJ'

Vieen = Vi + |:(SbSi —(p+0,+n) Vh,i] At+ & Vh,i\/ Aty

;‘32 V 2 1
+ E h,i(wg‘,- - ) A ta
aSi+GVci+ V_,'+RiIC.,‘ IiICi /
Ligw=1,+ Pl . . ) — &+ na+ )l — L At Gl Aty
1 + 061[(,,- 1 + a21/1,i
+ E (',i(w4~,‘ - ) [a
(S + Ve v Vi + R Ly
Lo = 1+ | POV VP ROy ey g, — 2Rl g SR,
1+ )y, 1 +al;

é:521 -1 A
+ 3 /z‘i(ZD-S,,' - ) ta

wllh,ilc,i (pzlc,ilh,i
1 + a21h.i 1 + all"i

2
[(‘/1,i+1 - I(‘h,i + [ - (Su + na + M)Ich,l} A t+ ;611'/1,1'\/ Atwﬁ,i + %[C/l,f(wéi - 1) A Z:
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5

P Rc,i(wi,' - 1) A l:

Ih l'ch
R('H—l = RL'J' + 911 I/(‘i + Sa[(*i - MRL'i - A t+ §7Rci AZZD-71' +
| R E e

IciRzi ;
Rl1i+1 = Rhi + 9b V/z‘i + 'i:h[h_i - /-'LRhi - —/ A 4+ §8Rhi\/ Atws:‘ + é‘_8Rhi(w'g2,- - 1) A t,
' ’ N S ’ ’ 2 7 F
é—Z
Rchi-H - Rch,i + [Sablch,i - /-'LRL'II,I'] A Z+ ;9Rc/1,i\/ AtZD-9,i + %Rch,i(w;,i - 1) A t’ (52)

with, @,,(j = 1,2,3,4,5,6,7,8,9) the “independent Gaussian random variables”, N(0, 1), “normal
distribution” and At represents step size. {; > 0,(i = 1,2,3,4,5,6,7,8,9) represent white noise
intensities. In the sequel, numerical experiments are implemented to substantiate qualitative results
established in preceding sections. Demographic data related to Pakistan have been used for the sim-
ulations. The initial conditions for the state variables are assumed thus: S(0) = 175,000,000, V,(0) =
15,000,000, V,(0) = 15,000,000, 7,(0) = 1,296,527, 1,(0) = 250,895, 1,,(0) = 5,000, R,(0) = 0, R,(0) =
0, R,;(0) = 0. For the fitting of the model to data, available records for daily reported COVID-19 cases
in Pakistan [56] between January 01, 2022 and April 10, 2022 are used. The fitting shown in Fig. 2
reveals that our perturbed model (7) behaves very well with the data. Important parameters estimated
from the fitting exercise are presented in Table 1. Other parameters are estimated or derived from
relevant literature. As depicted by Figs. 3—5, assessments of the perturbed system (7) are carried out,
when the white noise intensities are: {* = 0.015, fori=1,2,...,9 and when «; = 2.6891 x 107, o0, =
73%x 107, B, =5.1024 x 107, B, = 1.0 x 107, so that Z; = max{Z;, %, } = max{3.0323,1.5789} =
3.0323 > 1. These assessments show that both viruses will persist in the population with unit
probability. This experiment is also compatible with the conclusion of Theorem 4.4. The associated
frequency distributions showing the intensity of random fluctuations, for the different compartments
under this scenario are also presented alongside their solution profiles.

x10°

¢ Data
—— Stochastic Model ﬂ M

1.1 1 1 1 1 1 1 1 1 1
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Figure 2: Fitting of the proposed stochastic model to real data
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5.1 Impact of Primary and Booster Vaccination Rates

Numerical assessments of the epidemiological impact of COVID-19 and viral hepatitis B vaccina-
tion strategies are presented in [Figs. 6 and 7, respectively. The solution profiles for infected components
at different primary and booster vaccination rates for COVID-19 are shown in Fig. 6. It is observed
that increasing primary and booster dose vaccination rates greatly caused reduction in infected classes
with COVID-19 (Fig. 6a as expected). This measure also brought about reduction in the infected
individuals with viral hepatitis B and the compartment co-infected with both diseases (as can be noted
in Figs. 6band 6¢). Itis interesting to observe that, stepping up the COVID-19 primary vaccination rate
to, ¥ = 0.30 and booster dose vaccination rate to the level, 6, = 0.20, the least number of infections is
recorded for all the infected components (including those infected with viral hepatitis B). This result
also support the epidemiological records from the introduction [10] showing that severe COVID-19
infection can be an important risk factor for viral hepatitis B infection. The solution profiles for the
infected components at different primary and booster vaccination rates for viral hepatitis B are shown
in Fig. 7. It is observed from this experiment, that increasing primary and booster dose vaccination
rates for viral hepatitis B not only caused reduction in infected classes with viral hepatitis B (as seen in
Fig. 7a, which is expected), but also brought about noticeable reduction in the infected individuals with
COVID-19 and the co-infection of both diseases (as can be seen in Figs. 7b and 7c¢). It is interesting to
note that, keeping the viral hepatitis primary vaccination rate at a high level, p = 0.20 per day and the
booster dose vaccination rate at 8, = 0.15 per day, the least number of infections is recorded for all the
infected components (including singly infected with only viral hepatitis B). This result also support
the epidemiological evidences [9] from the introduction section that viral hepatitis B infection could
enhance susceptibility to COVID-19 infection.

5.2 Impact of Saturation Effects

The numerical investigation of the epidemiological impact of saturation effect «; on the various
components of the model is presented in Figs. 8—11. It is observed that, the saturation effect greatly
impacted the different compartments. In particular, while decreasing values for «; caused some initial
increase in random fluctuations for 7, and 7, compartments (as observed in Figs. 8d and 8f), marginal
random fluctuations or impact is observed for the class of individuals infected with viral hepatitis B
(as can be noted in Fig. 8e).
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6 Conclusion

In this paper, a comprehensive stochastic model was developed to assess the epidemiological
effect of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19 using the
real data from Pakistan. The proposed model incorporates logistic growth and saturated incidence
functions. Rigorous analyses employing the tools of stochastic calculus have been carried out to find
appropriate conditions required for the existence of unique global solutions, stationary distribution
in the sense of ergodicity and disease extinction. The stochastic threshold estimated from the data
fitting is given by: #; = 3.0651. Numerical assessments are implemented to illustrate the impact
of double dose vaccination and saturated incidence functions on the dynamics of both diseases. The
effect of stochastic white noise intensities is also highlighted. Important highlights from the numerical
assessment of the perturbed model are presented as follows:

(1) The perturbed system was fitted to the real COVID-19 data from Pakistan (depicted by Fig. 2)
with stochastic threshold estimated at %, = 3.0651.

(i1) Increasing the COVID-19 primary vaccination rate to ¥ = 0.30 and booster dose vaccination
rate to the level 6, = 0.20, the least number of infections is recorded for all the infected components
(including those infected with viral hepatitis B and co-infections, as observed in Figs. 6b and 6¢).

(iii) It is noted from the experiments that increasing primary and booster dose vaccination rates
for viral hepatitis B not only caused reduction in infected classes with viral hepatitis B (as seen in
Fig. 7a, which is expected) but also brought about a noticeable reduction in the infected individuals
with COVID-19 and the co-infection of both diseases (as can be seen in Figs. 7b and 7c¢).



CMES, 2024, vol.138, no.3 3009

However, further investigations to improve the present study with fewer limitations can lead to
some new avenues of research. More efficient algorithms can be developed for the proposed model
with some more realistic assumptions. The model can also consider time dependent contact rates and
time delay. Asymptomatic classes can also be considered for both viruses, and data for both diseases
to be used for more accurate model fittings. In the future, we shall consider the impact of quadratic
Levy noise and variable diffusion rates on the dynamics of both diseases [57-59].
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