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ABSTRACT

Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging and
fundamental operations in various monitoring or tracking applications because the network deploys a large area
and allocates the acquired location information to unknown devices. The metaheuristic approach is one of the
most advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditional
methods that often suffer from computational time problems and small network deployment scale. This study
proposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on the
siege mechanism (SWOA) for node localization in WSN. The objective function is modeled while communicating
on localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localization
approach also assigns the discovered location data to unidentified devices with the modeled objective function
by applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of the
designed localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executed
time. Compared experimental-result shows that the SWOA offers the applicability of the developed model for WSN
to perform the localization scheme with excellent quality. Significantly, the error and convergence values achieved
by the SWOA are less location error, faster in convergence and executed time than the others compared to at least a
reduced 1.5% to 4.7% error rate, and quicker by at least 4% and 2% in convergence and executed time, respectively
for the experimental scenarios.
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1 Introduction

A wireless sensor network (WSN) is constructed with various small devices called sensor nodes
installed in an observing region for tracking some environmental or physical factors as a preeminent
resource critical in multiple ramifications, including surveillance, military, healthcare, agriculture,
and astronomy [1]. Because it possesses the advantageous characteristics of WSN [2], such as self-
organization, speed, feasibility, and ease of implementation, it is frequently used across the Internet
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or cloud environment [3]. The tiny components of heterogeneous or homogeneous sensor nodes are
presented in the WSN network to observe environmental and physical conditions [4]. As its name
suggests, the sensor node can perceive, act upon, and transfer the information gathered from the source
environment into the sink node [5] or base station using wireless communication [6]. The sensor node is
built with various units like the location finding, transmitting, processing, power, and sensing modules
[7]. Some sensor nodes have a global positioning system (GPS) in the location finding module [8], which
helps to utilize these sensor nodes in various applications like deep water exploration, under liquid
exploration, space exploration, hailstorm detection, fire detection, flood detection, even detection,
surveillance application, environmental monitoring, and so on [9]. However, these nodes do not require
any wired external infrastructure for communication like chemical clouds, and vehicles require mobile
sensor nodes for gathering information from the external world via the Internet of Things (IoT) [10].
While designing the mobility-aided WSNs, the information on the coordinated position of a sensor
node plays an essential role [11]. The location information is assumed as the data to be collected in
some WSNs that randomly deploy the sensor nodes and distribute them at random locations [12].

Moreover, it is challenging to manually offer every node its unique position information. There-
fore, for performing this process, other practical approaches require GPS, the principal location
method primarily utilized for designing WSNs. It is impractical to attach every single node with
a GPS device owing to financial cost and other factors comprising their size and incapability of
working in various applications [13]. Localization methodology is one of the fundamental functions
of WSN as an active research field that has recently resulted in designing multiple algorithms and
models [14]. The two classifications of WSN localization techniques are range-free and range-based,
which gauges distance during positioning [10,13]. Range-based positioning calculates the distance
between the beacon node and the unknown node and has higher accuracy. Here, the term “beacon
node” refers to a small sensor node that is aware of its coordinates and can be used to deploy other
unidentified sensor nodes. In WSN deployment, unknown nodes do the locating task using the distance
or network connectivity formula from the beacon nodes [10]. The range-free positioning performs
better while being less expensive than the ranging-based positioning method because it does not check
the requirements of applications, such as the higher precision need, and it has lesser localization
accuracy [13]. When doing the placement, the range-free localization approach does not calculate the
distance between the sensor nodes [8]. Since node localization is the main problem with WSN, it has
problems finding the nodes to convey the data collected from the sensor nodes. It makes it difficult to
estimate the information that the sensor gathers [15]. Therefore, this study investigates how to pinpoint
a node’s location in a WSN precisely.

Additionally, one of the excellent dealing ways with the localization challenges problem is the
meta-heuristic algorithms [16]. Various meta-heuristic approaches have been used in recent research
on accuracy employing WSN node localization and developing numerous algorithms [17]. These
methods are explicitly designed to deal with challenging optimization problems. There are several
main categories of meta-heuristics algorithms, e.g., swarm-based, physics-based, and evolution-based
techniques. Here, the Genetic algorithm (GA) [18] illustrates an evolution-based approach. Simulated
annealing (SA) [19,20] is a typical example of a physics-based method. In contrast, several swarm-
based techniques include Particle swarm optimization (PSO) [21], Whale optimization algorithm
(WOA) [22], Harris hawk optimization (HHO) [23], Ant lion optimization (ALO) [24], Moth flame-fire
optimization (MFO) [25], Gray wolf optimization (GWO) [26], and others.

The WOA is a recent swarm-based intelligent optimization algorithm that vividly simulates
whales’ behavior of finding and attacking prey to model its mathematical formulas [22]. Compared
with the meta-heuristic optimization algorithm, WOA has several distinct advantages, e.g., simple
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principle and understandable concept, few parameter settings, and strong optimization ability [27].
The algorithm has all existing benefits and disadvantages simultaneously; however, the WOA also
has limitations of defects such as dropping into local optimum or slow convergence speed or/and
low convergence accuracy when dealing with the complicated optimization problem. Thus, great
academic significance is needed for the algorithm to give full play to the advantages and improve
the known WOA shortcomings for a suitable solution to particular problems [28]. The WOA has
also been recently enhanced with various strategies to prevent its disadvantages. For example, an
adaptive whale optimization (AWOA) algorithm was suggested based on inputting the weight and
bias matrix to increase the extreme learning machine’s performance robustness and accuracy [29]. An
enhanced WOA (EWOA) was developed with its parameter of A and C were adapted as modifier
and applied effectively to explore and exploit the search area to improve better performance [30]. The
improved WOA (IWOA) was introduced approach based on combining the WOA exploitation and
differential evolution exploration for global optimization solution [31]. A modified WOA (MWOA)
was implemented to improve the nonlinear decreasing convergence factor to solve nonlinear problems
better [32]. The no-free lunch principle theorem on optimization [33] states that no optimization
approach best addresses every optimization problem. Unless we can make whatever prior assumptions
about the optimization model we are trying to solve, no strategy can be expected to perform better than
any other. More and more optimization methods would have been developed to suit specific problems
thanks to the no-free lunch principle theorem [34].

This study also suggests an investigation strategy for enhancing WOA based on the siege
mechanism, namely SWOA, for the complicated node localization problem in WSN. The method in
the SWOA is figured out based on the siege mechanism, essential initial candidate locations, and inertia
weighting parameters for avoiding the drawbacks of the local optimum and stagnation in the original
one, which is referred to as escaping or allowing scoring goals in a difficult situation. Sieges enclose the
target successfully applied in the Harris hawks optimization (HHO) [23] that incorporates information
about running, grouping center, randomizing population division, and other related concepts or to
jump out of the trap of falling the local optimum in the complex optimization problem solution. Harris
eagles cooperate with other individuals in the eagle group during the foraging process. A soft and
hard siege mechanism with fast convergence and population communication properties is established
with the advantages of fast convergence speed and global optimization. The Harris eagle optimization
algorithm takes this kind of cooperative behavior vividly expressed by mathematical formulas.

Siege’s enhanced whale optimization algorithm (SWOA) is a suggested strategy aiming to improve
the performance solution to the challenging multimodals with more complex, e.g., one of those issues
like localization in WSN and prevent the drawback of the trapping local optima additional algorithm.
This section presents the proposed SWOA.

Several highlights are considered investigation of this study.

• An exploration capacity is increased by hybridizing it with HHO’s siege mechanism to make
the shrinkage and encirclement whale mechanism robust and adaptable to the specific node
localization problem.

• A re-initialization of essential initial candidate locations employs inertia weighting parameters.
It makes the closer expecting solution and avoids the local optimum’s drawbacks to increasing
population variety.

• The node localization model is figured out for the objective function with Err as the formulated
functional derivation, del as a specifying delay, Eng as deriving the energy function, and the path
loss is denoted as PL, and received signal strength.
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• The outcomes demonstrate that the suggested algorithms can significantly raise SWOA’s
performance.

The remaining parts of the study include the following sections. Section 2 presents a literature
review with the node localization problem statement and standard model definitions, and reviews
the original WOA approach. Section 3 introduces the application siege mechanism to enhance the
WOA algorithm (SWOA), implement tests to verify the performance in comparison, and analyze the
results. Section 4 presents the SWOA for optimal WSN Node Localization. Finally, Section 5 draws a
summary as the conclusion.

2 Literature Review

This section presents a statement of the node localization in the WSN problem and reviews the
node localization situation developments and the original WOA algorithm.

2.1 Node Localization Problem Statement
The sensor nodes in a WSN gather information like humidity, temperature, and pressure depen-

dent on the specific region [35]. The node localization strategy, which is widely used in many industries
due to cheaper sensor nodes, is the WSN trend-setter issue. Localization of sensor nodes needs to
be done accurately when considering the WSN to enhance the network’s performance in various
real applications, e.g., monitoring, military, healthcare, agriculture, and astronomy applications [36].
However, it is very challenging to determine the accurate location of the mobile sensor nodes because
of their time-variant movement. Therefore, various metaheuristic and profound studies algorithms
are developed for performing node localization in WSN. Table 1 lists some of these works with a short
brief description of features and challenges.

The elitist genetic algorithm (EGA) [37] adopted a preservation strategy for optimal node
localization with an RSSI quantization based on sensing disks of nodes. The whale optimization
algorithm (WOA) [38] and improved whale optimization algorithm (IWOA) [39] for the node location
in WSN. The distance measurement error was reduced with the modified RSSI by Gaussian that was
used in a network large-ranging positioning accuracy to overcome the disadvantage of the traditional
positioning algorithm.

The improved particle swarm optimization (IPSO) [40] used a hybridized node localization model
with improved particle swarm optimization into the local optima problem and ensured communication
without obstructions between the anchor nodes and unknown nodes within the same group. However,
it could provide more accuracy when observing the actual positions of the unknown nodes at the
convex hull outside that, which makes less precision for localizing the unknown nodes. Hybrid
Particle Swarm Optimization (HPSO) [41] provided more accurate localization results and decrease
localization errors. But, it suffers from handling challenging scenarios requiring real-world node
localization. ABC-BAT [42] reduced the localization delay and localization error. Yet, it did not
consider the propagation error for further improvements in node localization.

Krill Herd Optimization Algorithm (KHA) [43] reduced the error rate regarding the mean abso-
lute error and root means square error, propagation error, and localization error. But, it depends on
the length of the communication radius to increase the success rate of localization. Sequential Greedy
Optimization Algorithm (SGO) [8] achieved good convergence efficiency and is also appropriate for
distributed network optimization. Yet, it only performs efficiently when the anchors are randomly
placed inside the networks. Bio-inspired Algorithms (BIA) [44] performed faster and more accurate
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localization and reduced the sensor node count in deploying terrains without interest. On the other
hand, it is not applicable for centralized localization, which makes it particularly useful regarding
energy awareness.

Chicken Swarm Optimization (CSO) [45] is considered robust and efficient for determining the
unknown nodes at a considerable rate of minimum error. However, it secures lower precision on
node localization since it needed to improve their rooster behaviors for making the velocity update
properly. Butterfly Optimization Algorithm (BOA) [14] provided effective performance regarding the
computation time, localizing the nodes, and localization error. On the other hand, it does not consider
the energy problems involved in the WSN and needs to reduce the location estimation error. These
challenges in the existing localization scheme in WSN motivate the development of a new heuristic
strategy for localizing the unknown nodes in WSN.

As is noted, a good monitoring and tracking application relies heavily on location accuracy.
The existing works suffered from handling specific difficult conditions that need real-world node
localization, tried to make it more accurate for localizing the unknown nodes, and did not consider
propagation error for further advancements in node localization. The scheme positioning system’s
executed time consumption should be considered when there is a large-scale ranging network. It
benefited energy awareness because it did not require centralized localization and functioned well
when the anchors were dispersed throughout the networks. Additionally, they neglected to consider
the WSN’s energy-related issues and the need to lower location estimation errors. Creating a new
metaheuristic technique or improving the existing algorithm for suitable localizing the unknown nodes
in WSN is motivated in this study by these issues with the current localization scheme in WSN.

Table 1: Several existing WSN node localization models with their features and challenges

Author [Citation] Approach Features Challenges

Ren et al. [37] EGA It was precision still only
appropriate due to the fitness
function independent units.
The overlapping of rings was
figured out by calculating the
binary code sequence.

It quantized RSSI
measurements from sensor
nodes with irregular
appearing areas that
reduced the localization
error.

Gou et al. [39] IWOA It reduced the distance
measurement error that was
used in a network
large-ranging positioning
accuracy to overcome the
disadvantage of the
traditional positioning
algorithm.

It suffers from time
consumption with a
large-ranging network. The
modified RSSI by
Gaussian in the fitness
function.

(Continued)
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Table 1 (continued)

Author [Citation] Approach Features Challenges

Phoemphon et al. [40] IPSO It does not undergo the local
optima problem but ensures
communication without
obstructions between the
anchor nodes and unknown
nodes within the same group.

It provides less accuracy
when observing the actual
positions of the unknown
nodes at the convex hull
outside, making less
precision for localizing the
unknown nodes.

Lakshmi et al. [41] HPSO It provides more accurate
localization results and also
decreases localization errors.

It suffers from handling
certain challenging
scenarios that require
real-world node
localization.

Nithya et al. [42] ABC-BAT It reduces the localization
delay and localization error.

It does not consider the
propagation error for
further improvements in
node localization.

Shi et al. [8] SGO It achieves good convergence
efficiency.

It does not perform
efficiently when the
anchors are randomly
placed inside the networks.

It is also appropriate for
distributed optimization over
the networks.

Kulkarni et al. [44] BIA It performs faster and more
accurate localization.

It is not applicable for
centralized localization,
which makes it particularly
useful regarding energy
awareness.

It reduces the sensor nodes’
count in deploying terrains
without interest.

Al Shayokh et al. [45] CSO It is considered to be robust
and efficient for determining
the unknown nodes at a
considerable rate of minimum
error.

It secures lower precision
on node localization since
it does not improve their
rooster behaviors for
making the velocity update
properly.

Arora et al. [14] BOA It provides effective
performance regarding the
computation time, localizing
the nodes, and localization
error.

It does not consider the
energy problems involved
in the WSN and also needs
to reduce the location
estimation error.

2.2 Node Localization in WSN
The problem definition of node localization in WSN possesses many sensor nodes, such as

anchors or beacon nodes, unknown nodes or dumb nodes, and settled nodes, where every node has a
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communication range [36]. An anchor node is depicted as a small node that knows its own position
with coordinates in the network. Unknown node is depicted as nodes unaware of their location in the
network; later on, they can be identified, also termed free nodes, by deploying localization algorithms
[15,46]. A settled node is initially also a dumb node; afterward, it can somehow manage to determine
the position by localization scheme. To successfully carry out monitoring or tracking applications,
which is a process of selecting or estimating a location known as localization, the position must be
aware of sensor nodes. As a result, in the WSN setting, location finding presents a significant issue.
Either the range stage or the estimating phases are included in the process. With the use of angle of
arrival, RSSI, Time of arrival, the former, or distances, are measured between the nodes [47]. The
estimation stage is then completed by considering the range value and minimizing the localization
error.

Fig. 1 depicts a typical calculation in node localization issues in WSN via anchor nodes to the
unknown node. It is an expected WSN localization issue with dashed and solid arrows, respectively,
and indicates anchor-to-anchor and anchor-to-unknown node measures. The WSN deployment area
are divided into grid cells with the node’s communication radius. The adjacent grid cells must guarantee
direct communication between two nodes. In order to determine which cell the node would belong to,
it is assumed that it knows the location coordination of its neighbor.

A1(x1,y1)

A2(x2,y2)

A1(x3,y3)

U(x,y)

di

Unknown node

Anchor node

Sensing radius
Distance

Figure 1: A typical calculation in node localization issue in WSN via anchor nodes to the unknown
node

Let us assume the WSN is a symmetric type, illustrated as a Euclidean graph E = (A, B). Here, we
could assign the vertices A as a set as A = {a1, a2, . . . , az} and B indicates the edges as B = {b1, b2, . . . bm}
where b is set to coordinates (x, y). Subsequently, the communication is happened by computing the
distance between the two nodes. Hence, the two nodes as ax and ay, and their estimated distance is
dx,y ≤ m, in which m gives the maximum distance among the nodes. The communication is done only
when the distance becomes less than the variable as m. Given E = (A, B) of WSN, a set of anchor
nodes with its known position coordinates as (xi, yi) for all i ∈ I , where I is a number of anchor nodes
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(max is M). Further, it aids in estimating the location or position of unknown nodes coordinated as
(xj, yj) for all j ∈ J, where J a number of unknown nodes (max is N). Thus, influencing the localization
algorithm on the unknown node makes it a settled node by identifying the position as S solution.

The objective function is mainly designed with the fitness approaching value to validate the
efficacy of the node localization approach in WSN. Once the optimal location is determined, it aids in
reducing the error factor in locating the sensor nodes. Here, the localization error is mainly calculated
by the distance estimation concerning anchor nodes and sensing ranges of the chosen dumb node and
the beacon node. The mathematical expression of the objective function is given formula as follows:

ObF = argmin
S∗

z

[Err] (1)

where S∗
z is a resultant optimal position as a solution; Err denotes the error measure that is determined

by using the following formula:

Err = del + 1
Eng

+ 1
RSS

+ PL (2)

Here, Err is the formulated functional derivation, del specifies the delay, Eng derives the energy
function, and the path loss is denoted as PL, and RSS (Received signal strength) is “the intensity of
the acquired signal by the wireless access point”. These factors are all closely related to the distance
of the coordinates of the anchor and target nodes. The distance between the anchor nodes within the
sensing range of the target node ith the coordinate known as position (x, y) is used to identify the
target node.

2.3 Basic WOA Algorithm
The WOA simulates the whale’s predation action. It divides the whale’s predation process into

three steps according to the whale’s predation characteristics, that is, three position update methods:
shrinkage and encirclement, spiral position update, and random search [10].

Shrink and surround is a phase of the place whales can perceive the area where the prey cover it
and is located for the position of the optimal design in the hunting or search space is inconsistent with
the previous position. The WOA optimization algorithm assumes that solution S(t) = {s1, s2, . . . , sN} is
the current candidate solution, with N as the population number, t is the current generation of iteration
and the best candidate solution S∗ is the target prey or close to the optimal solution. In this phase case,
the whale defines the best search agent with S∗; other search agents S will then try to change positions
and move closer to the best search agent. The following formula describes the hunting behavior of
shrinking surroundings:

S (t + 1) = S∗ (t) − α.D1,
D1 = |β.S∗ (t) − S (t)| , (3)

In the formula, t represents the current number of iterations, α, and β are vector coefficients, S(t)
is the current position, S(t + 1) is the next position, D1 is the absolute value of the difference between
β times the prey position and the current whale position, S∗ (t) is the position vector that currently
obtains the optimal solution. If there is a better solution in the result of each iteration, that is, the
fitness value of the position at this time is less than the fitness value of S∗ (t), then the whale position
vector is set to the new S∗ (t). The formulas for calculating α and β are set as follows:

α = 2.a.r1 − a,
β = 2.r2,

(4)
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where r1 and r2 are random numbers within [0, 1], a is set to 2− 2t
Tmax

, with Tmax is the maximum number
of iterations, β is set in the value range of a is [0, 2], and it changes linearly with the increase of t.

Updating whale location phase is figured out with two ways to update the whale’s position: a
spiral position update and a random search. The whale’s position update method at a particular time
ensures that the whale has an equal probability of choosing a spiral position update or random search
at the same time. A random number p is used to switch the updating ways with random in the range of
[0, 1]. The value of p randomly selects the update method of the whale position.

Spiral position update is carried out when p ≥ 0.5; the spiral position update method is selected,
and the spiral position update equation is established by simulating the way the whale spirals around
the prey, which is used to update the next whale’s position. The calculation formula is given as follows:

S (t + 1) = D2.ebl.cos (2π l) + S∗(t),
D2 = |S∗ (t) − S (t)| , (5)

where D2 represents the distance between the prey and the whale, b is a parameter that controls the
shape of the spiral (b is set to 1 in the experiment), and l is given as the following formula:

l = (a1 − 1) ∗ r3 + 1 (6)

where, a1 is a parameter that changes linearly in [−2, −1], and it is set to
(

−1 − t
Tmax

)
, it means the

value range of l is [−2, 1], and r3 is a random number between [0, 1].

Random search update is carried out when p < 0.5, and the random search position update
formula is selected. The random search is divided into two ways. When |α| < 1, the whale is moving
toward the prey. Eq. (4) to surround the target. When |α| ≥ 1, the whale moves beyond the position
where the prey exists. At this time, the whale will give up the previous moving direction and randomly
search for a new update position in other approaches to prevent falling into the local extremum.

A randomly selected whale position is formulated given the following equation:

Drand = |β.Srand (t) − S (t)|
S (t + 1) = Srand (t) − α.Drand

, (7)

where Srand(t) and Drand represent a randomly selected whale position vector and the absolute value of
β times the difference between Srand(t) and S(t), respectively, α and β are mentioned above.

Several variants of the WOA have been developed recently that, includes the AWOA [29] suggested
an adaptive one by inputting the weight and bias matrix to increase the optimal learning machine’s
performance, EWOA [30] developed by adapting parameters of A and C as modifiers and applied
effectively to explore and exploit the search to improve better performance, IWOA [31] introduced
by combining the WOA exploitation and differential evolution exploration for global optimization
solution, and MWOA [32] implemented by modifying the nonlinear decreasing convergence factor to
solve nonlinear problems better. Unlike the existing variants, we consider initial candidate locations,
inertia weighting, and balancing the global and local search for both adapting parameter and targeting
problems. The other motivation is based on the no-free lunch [33] principle theorem on optimization
states that no optimization approach best addresses every optimization problem.

3 Siege’s Enhanced Whale Optimization Algorithm (SWOA)

Siege’s enhanced whale optimization algorithm (SWOA) is a suggested strategy aiming to improve
the performance solution to the challenging multimodals with more complex, e.g., one of those issues
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like localization in WSN and prevent the drawback of the trapping local optima additional algorithm.
This section presents the proposed SWOA based on the siege mechanism, essential initial candidate
locations, and inertia weighting parameters for avoiding the drawbacks of the local optimum and
stagnation in the WOA.

3.1 An Enhanced Whale Optimization Algorithm
The whale position update process randomly selects the position update mechanisms, so the

practical updating whale locations cannot be specified by changing the role of the leader S∗(t) leads
to the problem that the convergence process ends prematurely. That is, when solving the optimization
complex problem, it may quickly drop to the local optimum, and finally, the quality of the solution of
the optimization algorithm decreases. An enhanced whale optimization algorithm is proposed based
on the siege mechanism for the existing problems in the traditional whale optimization algorithm.

The harris eagle siege mechanism is applied to speed up the whale hunting; add an inertia
weighting parameter at the end of each whale hunting iteration. The initial population location of
the random generation algorithm is mapped by the chaotic Tent method so that the population is
distributed more uniformly and the convergence speed of the algorithm would be accelerated; a new
nonlinear parameter a is proposed so that the whale optimization algorithm can adapt to complex
nonlinear problems; the fitness control is introduced mechanism, by controlling the update of the
population position, to prevent the update from stagnation, and to improve the ability of the algorithm
to jump out of the local optimum. The flowchart of the SWOA is shown in Fig. 1.

Re-initial whale’s population location: As whales can perceive the area where the prey is located and
surrounded, the position of the optimal design in the searching or hunting space is inconsistent with
the previous position in solving the function optimization problem. The initial population location
has a critical role in ensuring the population’s diversity, leading to faster optimization performance of
the algorithm [48,49]. The whale algorithm usually uses randomly generated data as, on the one hand,
the chaotic map has randomness and regularity.

On the other hand, for the intelligent optimization algorithm based on population iteration, the
initial population’s quality affects the algorithm’s solution accuracy and convergence speed. It assumes
that the current best candidate solution is the target prey or close to the optimal solution whale defines
the best search agent; other search agents will then try to change positions and move closer to the best
search agent.

The following formula describes the characteristics of the chaotic map that can make the algo-
rithm effectively escape from the local optimum, thereby maintaining the diversity of the population
and improving the global search ability. The Tent map is used to initialize the whale candidate location,
and the reference [49] takes u = 0.7; its limit parameter expression is as follows:

g (i + 1) =

⎧⎪⎨
⎪⎩

g(i)
0.7

0 ≤ g (i) < 0.7,

1 − g(i)
0.3

0.7 ≤ g(i) ≤ 1,
(8)

Here g is a generating variable for initialization given randomly (0, 1) over iteration for generating
chaotic sequence {g1, g2, . . . , gn}, i = 0, 1, . . . , n − 1. For the initialization, agents can be applied with
the Tent map for the sequence following the solution.

St = St,min + (St,max − St,min)gt (9)

Here, St,min and St,max represent the lower and upper boundaries of the S space search with its
dimension.



CMES, 2024, vol.138, no.3 2211

An inertia-weight is a parameter that is used to adjust controlling the momentum of agents’
contribution in previous generation search moving forward. It can be seen that the size of the inertia
weight value would affect the ability to exploit and explore search phases.

Let w be an inertia weight coefficient that is added to SWOA in the optimizing process. Its
expression of the updating location is figured out as follows:

S (t + 1) = w · S∗ (t) + D2.ebl.cos (2π l) (10)

Here, w is a parameter of inertia weight that would be increased gradually from [1/2 to 1] over the
iteration. The coefficient of inertia weight is given as follows:

w = 1
2

× t
Tmax

+ 1
2

(11)

Here t and Tmax are the current and Max iteration numbers.

Harris hawk optimization siege mechanism: Siege is an escape mechanism or allowing scoring
goals in a difficult situation in battle [23]. A siege is launched when an aggressor runs into an area
or stronghold that cannot be quickly captured and will not give up. Sieges entail enclosing the target
to prevent the delivery of supplies and the reinforcement or ejection of warrior fighters.

This siege mechanism has been successfully applied in the HHO to jump out of the trap of failing
the local optimum in the complex optimization problem solution. The HHO simulates the predation
action of the Harris eagle and simulates its action with mathematical formulas.

The algorithm vividly simulates the Harris eagle’s Siege and predation mechanism, which gives the
algorithm a robust global search ability. In the WOA, finding the optimal position is often the random
exploration of a single whale individual. The lack of communication between individuals and groups
makes some individuals far from the prey to conduct many useless investigations.

The siege strategy in the HHO would be used to improve the position of the WOA to a certain
extent. The formula of the HHO is applied to adapt for the WOA exploring phase updating equation
as follows:

S (t + 1) =
{

Y , f (Y) < f (S (t))
Z, f (Z) < f (S (t))

Y = w · S∗ (t) − γ · D1

Z = w · S∗ (t) − α · D1 + τ · LF(M)

, (12)

In the formula: f (S (t)) is the position fitness value of S(t), which means that a particular position
is substituted into the fitness function to calculate its fitness value; γ is an M-dimensional random
vector on the uniform distribution of (1, M); LF(M) is Levi’s flight formula with the M-dimensional
random vector generated by Levi’s flight, that is given as follows:

LF (M) = 0.01 ×

u ×

⎛
⎜⎜⎝

Γ(1 + θ) × sin
(

πθ

2

)

Γ

(
1 + θ

2

)
× θ × 2

θ−1
2

⎞
⎟⎟⎠

1
β

|v| 1
θ

(13)

Here, �(x) is a Gamma function, u and v are random values between (0, 1), and β is set to 1.5.

The exploring phase capability is the key for the group to use the position update method to
explore a wide search area and avoid the algorithm falling into the local optimum. However, the
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exploiting phase capability is mainly to use the existing information of the group to analyze the
solution space. The local search is carried out in some neighborhoods of the algorithm, which has a
decisive influence on the convergence speed of the algorithm. The convergence factor with a significant
change has a better global search ability and prevents the algorithm from falling into a local optimum;
a smaller convergence factor with a more vital local search ability can speed up the convergence
speed of the algorithm [13]. However, the convergence factor a in the whale optimization algorithm
decreases linearly from 2 to 0 with the number of iterations, which must fully reflect the exploration and
exploitation process optimization. The parameter a is directly controlled by modifying the coefficient
adapted to its a from Eq. (4), and the change of coefficient a leads to specific changes in the random
search and shrinkage encirclement mechanisms.

a = 2.
(

1 −
√

t
Tmax

)
, (14)

Here, Tmax is the maximum number of iterations, and t is the current number of iterations. A
nonlinear decreasing convergence factor with rapid change in the early stage and relatively slow
change in the later stage is designed to balance the exploration and exploration. When the algorithm
keeps exploring and exploiting the search position during the iterative process, the optimal position
frequently needs to change the fitness value of the whale’s position after the iterative update continues.
The spiral position update formula is to update the current situation; otherwise, the following position
update formula is judged according to | α | as a flowchart, as shown in Fig. 2. Algorithm 1 illustrates
a siege’s enhanced whale optimization as its pseudo-code SWOA.

Algorithm 1: Siege’s enhanced whale optimization algorithm (SWOA)
Input: population size, candidate solutions, parameters, and objective functions
Output: Optimal results
1 Initialization: Initialize the candidate solutions’ locations Si(i = 1, 2, . . . , N), Eq. (9), N-
population size, parameters α, Tmax, a, compute the objective function of each candidate, S∗-the best
search candidate
2 Main loop:
3 while (t<Tmax)
4 for each candidate’s solution
5 update α, β, a, l, and p
6 if1 (p ≤ 0.5)

7 if2 (|α| < 1)

8 update solutions’ location with Eq. (12)
9 else_if2 (|α| ≥ 1)

execute Srand(·)
10 update solutions’ location with Eq. (7)
11 end if2
12 else_if1 (p > 0.5)

13 update solutions’ location with Eq. (10)
14 end_if1
15 Check fitness value for updating S∗, if it gets the better candidate’s solution
16 end_while
17 Output results S∗ the best global solution
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End

Initialize the SWOA population
size, parameters α, β, a, l, Tmax,
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and if there is a better solution, update  best

solution S*
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Calculate the objective function f of each
candidate and obtain the best solution S*

Figure 2: A flowchart of the pseudo-code SWOA algorithm

3.2 Experimental Results with Benchmark
This subsection analyzes the qualified performance of the suggested SWOA algorithm by com-

paring it with the selected popular algorithms. A popular suit test with benchmark functions of the
CEC2013 consists of 23 tasks (F1∼F23) with variable-dimensional parts used to test and evaluate
the SWOA algorithm. Three sets of comparison-experimental tests consist of with the original
optimization algorithms, with different optimization algorithms, and with improved WOA algorithms
for the selected benchmark functions of the CEC2013 test suit. The practical testing compared to the
original optimization methods includes the WOA and HHO [23] algorithms.
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The experimental test with other optimization algorithms consists of the ALO [24], GWO,
MFO [25], and PSO [21] algorithms. The practical test with different improved whale optimization
algorithms has the AWOA [29], EWOA [30], IWOA [31], and MWOA [32]. Various complexity types
and dimensions settings in the selected functions in test suites are used, such as unimodal (F1∼F3),
multimodal (F4∼F19), hybrid (F10∼F16), and compound (F17∼F23) test functions. The obtained
results of the algorithms for the test are the global optimum presenting in the form of tables and
figures.

Table 2 lists the parameter settings for the algorithms. It is a fair comparison and done in the same
condition setting of the number of iterations, Tmax is set to 1000, population size is set to 80, and all
optimization algorithms are run independently 30 times to avoid randomness and ensure the accuracy
of the experiment.

Table 2: Parameters settings for the algorithms

Algorithm Parameters settings

SWOA a = 2 to 0, b = 1, l = [−1, 1] , u, v, g ∈ [0, 1], β = 1.5
WOA [22] a = 2 to 0, b = 1, p ∈ [0, 1]

AWOA [29] β = 1.5, b = 1, a = 2
(

1 − t
tmax

)
, p ∈ [0, 1]

EWOA [30] a = 2 to 0, b = 1, p ∈ [0, 1]
IWOA [31] a = 2 to 0, b = 1, p ∈ [0, 1]
MWOA [32] β ∈ [0, 2] , a = 2 to 0, b = 1, p ∈ [0, 1], μ, v ∈ [0, 1]
ALO [24] ω ∈ [3 to 6] , r = 1 or 0
PSO [21] Vmax = 10, Vmin = −10, ω ∈ [0.9, 0.4] , c1 = c2 = 1.489
MFO [25] a = −1, b = 1
GWO [26] α ∈ [0, 2] , r1, r2, r3 ∈ [0, 1]
HHO [23] E ∈ [−2, 2], r1, r2, r3 ∈ [0, 1]

The first test set of comparison with the original optimization algorithms is implemented by
uniformly setting the same population size, number of iterations, and dimension, e.g., 30, 50, and
100D. The results of the SWOA algorithm are compared with WOA [22] and HHO [23] and verified
by experiments. Table A1 shows the calculation results of the average and standard deviation of the
optimal values of the original algorithms in different dimensions over run separately 30 times. For each
pair in Table A1, the average and standard deviation of the optimal values of proposed result values
compared with the original algorithms are summarized in the last column. The summarized column
uses symbols such as ‘+/−/=,’ which means better, worse, and equivalent. It is seen that the number of
wins belongs to the SWOA algorithm. Fig. A1 shows the three original optimizations algorithm, the
convergence curves of F1, F3, F5, and F6 in the same dimension of 50D, where the horizontal axis is
the number of iterations, and the vertical axis is the optimal fitness value. It can be seen from the figure
that in different dimensions, the optimization convergence characteristics of the algorithm have not
changed significantly, the SWOA algorithm is only slightly lower than the HHO algorithm on the F1
and F6 test function, and the SWOA algorithm shows excellent convergence accuracy and speed on
F3, and F5. The compared results prove that the SWOA is better than the original WOA and HHO.
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The second test set is implemented experiment and comparison with different optimization
algorithms. Several popular developed optimization algorithms in recent years are selected, e.g., ALO,
GWO, MFO, and PSO algorithms for the test benchmark functions. Table A2 shows the calculation
and comparison of the optimal fitness value of different optimization algorithms under the same
dimension, running 30 times separately. The optimal result values are statistical mean and standard
deviation (std.) calculated by the various algorithms for the functions with dimensional of 30D and
100D. The comparison summary of the experimental data is put in the last table with a paired
comparison with the SWOA. The symbols >/∼/< are better, equal, and worse. The statistical result
shows that the SWOA has more ‘better’s numbers than the others, which means the SWAO provides
excellent performance.

The third test set is implemented experiment and comparison with variant improvement strategies
for the WOA algorithm. Several developed improved WOAS algorithms are selected, e.g., AWOA,
EWOA, IWOA, and MWOA algorithms, for the test functions with the same condition settings,
population size, iteration, and the number of run times. Table A3 compares the optimal results of
different improved WOA algorithms, e.g., AWOA, EWOA, IWOA, and MWOA, with the SWOA
approaches. It displays the calculation and comparison of the optimal fitness value of variant improved
WOA strategies for the test functions in the same dimension, running 30 times separately. The optimal
result values are statistical mean and std calculated by the various algorithms for the functions with
dimensional of 30D and 100D. The last table summarizes the comparison of the experimental data
with a paired comparison with the SWOA with >/∼/< of symbols that are better, equal, and worse.
The statistical result shows that the SWOA has more ‘better’s numbers than the others, which means
the SWAO provides excellent performance.

Fig. A2 contains the convergence curves of the different optimization algorithms and the SWOA
for selected functions of F1, F3, F4, F5, F6, F7, F11, and F13 in the dimension of 100D. Comparing
the convergence curves of the algorithms, it can be seen that in the different modal benchmark tests
in 100-dimensional, the SWOA has a better convergence speed of optimal fitness values. There are
significant differences between the algorithms; through the sign test, it can be seen that the quality
of the SWOA solution in different tests is better than the above-selected algorithms. The above
experimental data shows that the SWOA has excellent optimization performance.

4 SWOA for Optimization WSN Node Localization

Stepwise presenting subsections are described as following stepwise execution in designing an
optimal node localization with the SWOA strategy in WSN. The objective function frame as the
efficient localization scheme in WSN would be stated via solving the objective functional derivation
regarding factors like delay, path loss, energy, and RSS for optimizing the anchor nodes to reach the
target nodes in sensor field simulation. A node localization schematic in optimizing node positions for
anchor nodes towards the target nodes using the newly recommended SWOA algorithm. Update the
objective function in optimizing using t the optimal solutions candidates of the SWOA for reaching
the higher convergence rate and getting the location of anchor nodes based on the anchor nodes. The
results implement simulation with scenarios of different WSN networks, e.g., network area, number
of target nodes, anchor nodes, and sensing range, to perform the node localization process. The
best localization solution in WSN in terms of location coordinates of anchor nodes is found for the
solution with minimum fitness. The resolution is the optimal solution that reaches higher localization
performance with a better convergence rate.
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4.1 Modeling Objective Function Frame
The node localization strategy to reach the target nodes in the sensor field using a new SWOA

algorithm for minimizing localization errors with the optimized anchor node provided a limited
resource of the solution element. As a result of resolving the objective functional derivation concerning
variables, including latency, path loss, energy, and RSS, are recognized as the effective localization
strategy in WSN. The designed node localization model for WSN is derived in the following manner
with the objective function ObF is referred to in Eq. (1) that mainly designed with the fitness
approaching value to validate the efficacy of the suggested node localization approach over WSN
as follows:

ObF = argmin{
ANj

} (
1

Eng
+ 1

RSS
+ PL + del

)
(15)

Here, Eng derives the energy function, del specifies the delay, and the path loss is denoted as PL,
and RSS is “the intensity of the acquired signal by the wireless access point”.

The energy function of anchor nodes is estimated as derived as follows:

Eng = (
dis2 · ρ · Fsl +

(
TXeng + ADeng

) · ρ
)

, (16)

Here, Fsl and ρ are coefficients loss for free space derived of anchor nodes; TXeng and ADeng are
the transmission energy and the acquired energy, respectively.

The node localization strategy to reach the target nodes in the sensor field using a new SWOA
algorithm for minimizing localization errors with the optimized anchor node where provided limited
resources of the solution element. Once the optimal position is determined, it aids in reducing the
error factors related to the distance estimation via energy Eng in locating the sensor nodes. Hence, the
position optimization is taken place by the SWOA algorithm. Here, the localization error is mainly
calculated by the distance estimation concerning anchor nodes and sensing ranges of the chosen dumb
node and the beacon node in WSN. Euclidean distance has specified the coordinate known as positions
used to identify the target node (rtj, stj), and the location of the anchor node is referred to as (rj − sj).

disj = √
(rtj − rj)2 + (stj − sj)2 (17)

Here, disj is the distance between the anchor nodes and target nodes. The recommended node
localization strategy gets the node information via the position of anchor nodes in the direction of the
optimal target nodes or unknown nodes by applying the SWOA algorithm, where the nearest target
nodes are reached by minimizing node localization errors. The anchor nodes are specified as ANj, the
number of anchor nodes is considered as O, and j = 1, 2, . . . , O and the target nodes are represented
as TNt, where t = 1, 2, . . . , T , the in which a number of target nodes T .

The derivation concerning the variable of the RSS is given as follows:

RSS = RP
NP

(18)

Here, the term NP specifies the noise power, and RP illustrates the receiving power that describes
the RSS of anchor nodes; that is, in the experimental setting, it is set to −91 to −35 dBm. The path
loss PL variable is modeled by formulating the normal log for defining the communication range of
nodes.

PL = LN(Rangec) (19)
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Here, Rangec is the communication range of a node, in which the pass loss exponent is used for
determination and setting a Rangec = 10

( pwtr−pwτ
10μ

)
, where the path loss factor is denoted as μ, Pwτ

derives the least threshold receiver power attained by nodes, and the transmitted power is derived as
Pwtr. In the experimental section, it is set to 10 to 30 m. Localization delay is known as de, which
is defined as the time variation while broadcasting a request message by a sensor node and when it
achieves its place as formulated in Eq. (20).

del = RMtime − LNtime (20)

Here, LNtime, and RMtime are the time while the position coordinates are achieved for a node and the
time while a request message is broadcast, respectively. The best localization solution in WSN in terms
of location coordinates of anchor nodes is found via optimizing objective functional derivation for
minimum fitness solution for expecting taken as the optimal solutions that reach higher localization
performance with better convergence rate.

4.2 Node Localization Schematic in WSN
As mentioned, the sensor nodes in WSN are employed to gather the details, e.g., humidity,

temperature, and pressure, which rely on the corresponding location to be collected with concern
WSN for the node localization scheme owing to less-cost sensor nodes. The WSN deployment region
must be divided into several virtual grid cells based on the node’s coordination and communication
radius. The adjacent grid cells must guarantee direct communication between two nodes. In order to
determine which cell the node would belong to, it is assumed that it knows the location coordination
of its neighbor. For instance, a specific area has three subrings intersecting with r as a grid unit length,
which means that the mesh is surrounded by three rings covered; multiple rings cover the actual
location of the grid as equal to 3r; as a result, the more covered grids there are, the more likely it
is that there will be unknown nodes in the area. The fundamental idea behind building an ideal model
is establishing a boundary condition for the optimization algorithm constraint that must be specified
to control the forward updated solution. It ensures that any two nodes in adjacent cells can interact
with each other directly, removing the need for noise-reducing device terminals and ensuring that cell
radius requirements are met as (3r)2τi + (3r)2τi+1 ≤ R2. The formula can be drawn from the expression
rewritten as follows:

r ≤ R

3
√

2
, (21)

where R is the communication radius; a set to grid unit length is met a condition Eq. (21); τi is an
effective noise coefficient to node i, generally set to 1.

Considering these constraints, the metaheuristic optimization algorithms, e.g., bio-inspired algo-
rithms, swarm intelligence, and genetic-based heuristic approach, are applied for node localization
and formulated the equations for reducing the localization error among the nodes in WSN. Over
the iteration, the algorithm is deployed to find the position of unknown nodes that continues till
the dumb nodes become settled nodes. Fig. 3 illustrates a typical scheme of a heuristic algorithm for
node localization in WSN using the SWOA strategy. The node localization strategy with the SWOA
algorithm in WSN is optimized over the system node localization model.
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Figure 3: Schematic representation of optimal node localization issue with minimizing error localiza-
tion in WSN based on the SWOA approach

The prime intent of the suggested model is to resolve the node localization issue over the WSN
sector and build the objective function of node localization based on the SWOA with distance
computation and localization error. The distance measurement and range value among the nodes,
the novel method can mitigate the localization error. Due to the attainment of fewer errors, the
proposed procedure ensures effective localization performance. The simulation results are validated
and compared against other existing heuristic optimizations, which is reviewed in the following
subsection.

4.3 Results and Discussion
The obtained results of the node localization framework in WSN and simulation setup from the

proposed SWOA are analyzed to evaluate performance. Based on convergence analysis and statistical
analysis, the performance of the suggested model is compared with several previous schemes in
the literature with model condiction. Here, the total iteration count is set at 1000, the number of
populations is taken to be 40, and the number of dimensions is set to the number of anchors and
unknown sensor nodes, along with the node’s (x, y) coordinates.

Fig. 4 compares the obtained convergence by SWOA with the original WOA [38] for the objective
function as designed fitness localization with 30/60 anchor/target nodes for two cases in areas 60 × 60
and 100 × 100 m2, respectively. It can be seen that the SWOA produces convergence faster than the
WOA in the same condition simulation settings.

Moreover, the obtained results of the suggested SWOA method are compared with the previous
scheme algorithms, including EGA [37], IPSO [40], KHA [43], CSO [45], and IWOA [39] algorithms.
Experimental parameter settings are initialized for the scheme simulating in the compared fair of the
algorithm of the WSN for node localization.



CMES, 2024, vol.138, no.3 2219

(a) area of 60x60 with 30/60 anchor/target nodes (b) area of 100x100 with 30/60 anchor/target nodes

Figure 4: Comparison of the obtained convergence by the SWOA with the original WOA for fitness
localization with 30/60 anchor/unknown nodes: (a) cases in areas 60 × 60 m2, (b) 100 × 100 m2,
respectively

Table 3 lists considered parameter settings simulating schemes. The directional antenna is used
for the WSN localization approach, which is range free with four directional antennas connected with
nodes. The sensor nodes and the coordinates that detect the beacon messages are determined using a
simple processing approach that evades the sensor node communication effects of changes in the range
of transmission of the WSN nodes.

Table 3: An experimental parameter setting

Description Parameter settings Value settings

Simulation area of the network of deployment W ·L 100 m × 100 m, 150 m × 150 m
Initial node i energy Ni 0.5J
Transmission energy TXEng 0.00000000 001J
Acquired energy ADeng 0.00000000 5J
Coefficientsloss for free space Fsl and ρ 0.00000000 001J, and 4000
Anchor noise and receiving power NP and RP −95 and −35 dBm
Sensing radius ranges with directional
antenna

Rs 20 m, 20 m, 30 m, 30 m

Number of anchor nodes M 15, 20, 30, 35
Communication radius, with directional
antenna

Rc 10 m, 10 m, 12 m, 20 m

Number of unknown sensor nodes N 25, 35, 45, 60, 80
The number of iterations-No. of rounds Round iteration 500, 1000

In most operations during the routing process, it becomes necessary to gather neighbor informa-
tion to understand the nodes’ state, convey nodes’ parameters (energy, memory, and nodes’ id), and
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so forth, using probe messages. The protocol is used in networks to send beacon and probe messages
by taking the control packet with piggybacking for updating the neighbor node about node status
or querying some neighbor nodes. Additionally, communication networks commonly use broadcast,
unicast, multicast, or any cast. Broadcasting or beacon messages are discouraged unless necessary
because of the “always broadcast nature” of messaging in wireless communication.

Table 4 compares results obtained from the proposed SWOA with the other methods: the IPSO,
KHA, SGO, SCO, and BOA algorithms, in situations of rate percentage of coverage, executing times,
round iterations to convergence reaching, and sensor nodes for monitoring region sizes.

Table 4: Statistical evaluation of the SWOA approach for the node localization scheme in WSN over
classical optimizations

Metrics EGA [37] IPSO [40] KHA [43] SCO [45] IWOA [39] SWOA

Best score 4.48E+00 4.81E+00 4.76E+00 4.99E+00 4.90E+00 4.01E+00
Worst score 2.70E+01 2.70E+01 2.91E+01 2.99E+01 2.31E+01 2.11E+01
Mean 7.70E+00 7.62E+00 7.70E+00 7.62E+00 7.25E+00 7.88E+00
Std. deviation 6.98E+00 6.87E+00 6.91E+00 7.38E+00 8.57E+00 6.54E+00
Time (s) 5.84E+00 4.49E+00 6.37E+00 5.94E+00 6.98E+00 5.45E+00

The performance of the routing protocol is also impacted by and dependent on the deployment
of WSN applications. Because the sensor nodes are dispersed at random, an ad hoc infrastructure
is produced. To enable connection and energy-efficient network operation, optimum clustering is
required if the resulting node distribution is not uniform. Inter-sensor communication typically takes
place within small transmission ranges due to energy and bandwidth restrictions.

As a result, it is very possible that a route will have several wireless hops. In this work, Span
[50] is chosen as some nodes as coordinators based on their placements since it is the energy-efficient
coordination mechanism for topology maintenance in ad hoc WSN. In the distributed, randomized
method Span, nodes locally decide whether to go to sleep or to become a coordinator in a forwarding
backbone. Each node bases its choice on an estimation of the number of neighbors that will profit
from its being awake and the energy supply.

Several metrics over iterations represent analysis for the node localization scheme based on the
SWOA with the objective function, e.g., the best, worst, mean, standard deviation score values, and
computation time of different optimization approaches. A statistical evaluation of the proposed SWOA
for the node localization scheme in WSN over classical optimizations. The SWOA algorithm attains
better quality performance in contrast with conventional algorithms such as EGA, IPSO, KHA, CSO,
and IWOA approaches.

Fig. 5 shows the optimal graphical demonstration of the SWOA for some node localization under
situations of the number of unknown and anchor nodes in the same deployment of a 100 × 100 m
area, e.g., anchor/unknown nodes: 15/25, 20/35, 30/60, and 35/80, respectively.
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(a) anchor/unknown nodes: 15/25 (b) anchor/unknown nodes: 20/35

(c) anchor/unknown nodes: 30/60 (d) anchor/unknown nodes: 35/80
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Figure 5: The optimal graphical demonstration of the SWOA for some node localization under
situations of the number of unknown and anchor nodes in the same deployment of a 100 × 100 m2

area

Fig. 6 shows the convergence analysis of the proposed node localization scheme in WSN compared
against various optimizations, e.g., EGA, IPSO, KHA, SCO, and IWOA methods. Several scenarios
are carried out in this comparison convergence analysis of the SWOA scheme with previous algorithms
for localization errors in different deployment network ranges and different rates of distribution
density, e.g., (a) deployed 60 × 60 m2 area: rate 15/25 nodes, (b) deployed 80 × 80 m2 area: rate 20/35
nodes, (c) deployed 100 × 100 m2 area: rate 30/60 nodes, and (d) deployed 150 × 150 m2 area: rate
35/80 nodes. Over the iteration, the objective function is gradually decreased.

It means that it tends to attain a higher convergence rate. The enhanced model effectively
determines the position of the unknown node in WSN. It depicts the convergence evaluation of
the proposed node localization approach over specific optimizations. The most cases, the superior
belongs to the SWOA scheme. Hence, the lower value convergence tends to significantly improve the
convergence rate to locate the sensor nodes in WSN.
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(a) deployed 60×60m2 area: rate 15/25 nodes (b) deployed 80×80m2 area: rate 20/35 nodes

(c) deployed 100×100m2 area: rate 30/60 nodes (d) deployed 150×150 m2 area: rate 35/80 nodes

Figure 6: Convergence analysis of proposed node localization scheme in WSN compared against
various optimizations, (a) deployed 60 × 60 m2 area: rate 15/25 nodes, (b) deployed 80 × 80 m2 area:
rate 20/35 nodes, (c) deployed 100 × 100 m2 area: rate 30/60 nodes, and (d) deployed 150 × 150 m2

area: rate 35/80 nodes

The localization error analysis of localization errors of the proposed method compared with
traditional algorithms concerning the variation of anchor nodes and sensor ranges. Fig. 7 shows the
localization error analysis of the SWOA scheme compared against various algorithms for different
scenarios of areas network deployment, e.g., (a) 60 × 60 m2, (b) 80 × 80 m2, (c) 100 × 100 m2, (d) 150
× 150 m2 setting, respectively.

In most cases of setting net area deployments, the localization error analysis of the proposed
SWOA scheme is smaller than the other schemes’ optimizations. In the error analysis with net
deploying ranges of Fig. 7, the SWOA algorithm obtained the error output as less when compared
to percentages of EGA around 1.5% to 3.2%, IPSO around 2.1% to 3.3%, KHA, around 1.5% to
4.2%, CSO around 2.5% to 5.2% around 2.5% to 4.6%, and IWOA around 1.5% to 5.1%. Similarly,
Figs. 7b–7d represent the localization error analysis of the proposed scheme with varying unknown
nodes. The error value achieved by the suggested SWOA algorithm is less localization error than the
others in comparison as acquired to improve the localization performance over WSN.
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(a) Area deployment of 60m×60m (b) Area deployment of 80m×80m

(c) Area deployment of 100m×100m (d) Area deployment of 150m×150m

Figure 7: Localization error analysis of the SWOA node localization scheme compared against various
algorithms for different scenarios of areas network deployment, e.g., (a) 60 × 60 m2, (b) 80 × 80 m2,
(c) 100 × 100 m2, (d) 150 × 150 m2 setting, respectively

Sensor nodes can exhaust their limited energy supply by performing computations and informa-
tion transmission in a wireless environment without losing accuracy. Therefore, it is crucial to use
energy-efficient communication and analytic methods. The battery life determines the lifespan of each
sensor node, which serves as both a router and a data emitter. Its power outages or runs out cause some
sensor nodes to malfunction, might have a substantial topological impact, and need packet rerouting
and network reorganization.

The energy consumption during the receiving, demodulating, decapsulating, processing, encap-
sulating, modulating, transmission, and routing processes negatively affects network efficiency, which
causes congestion and increases delays. The energy-aware routing involves the routing features, e.g.,
cluster formation, routing table, establish, and maintenance path. Due to its central significance
in these functionalities, solutions are needed to reduce message broadcasting and beacon message
exchange. The routing algorithm minimizes broadcast in environments with strict energy factor con-
straints. Packet sequencing is a popular method for resolving broadcast storm issues. The broadcast
protocol should transport packets to all nodes in the network with the least amount of overhead,
latency, and energy consumption possible.
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In the Span method, the coordinator forms the message-forwarding backbone of the network.
If two neighbors of a coordinator node cannot communicate directly or through one or more
coordinators, the node should become a coordinator. Rotating coordinators show how localized node
choices result in a connected, capacity-preserving global topology. As the ratio of idle-to-sleep energy
consumption rises and grows with network density, the improvement in system lifespan due to Span
increases. For instance, the simulations demonstrate that the system lifetime of an 802.11 network in
power-saving mode with Span is two times better with a realistic energy model than without one. When
used with the 802.11 power-saving methods, Span seamlessly interacts with the latter and enhances
system longevity, capacity, and communication latency.

Table 5 compares the synthetic statistical analysis over parameters like errors, executed time,
achieved converge at round generation, and average optimal converges that considered optimization
algorithms with the other EGA, IPSO, KHA, SCO methods, and IWOA algorithms. It can be seen
that the proposed SWOA has acquired a higher value than 1.5% to 4.6% for the EGA, 2.3% to 4.1%
for the IPSO, 1.5% to 3.23% for the KHA, 1.7% to 4.1% for the SCO, and 2.3% to 4.1% for the IWOA
algorithms in statistical analysis mean of the measured localization error, respectively.

Table 5: Comparison of results obtained from the proposed SWOA scheme with the other schemes: the
EGA, IPSO, KHA, SCO, and IWOA algorithms, in situations of rate percentage of coverage, executing
times, round iterations to convergence reaching, and sensor nodes for monitoring region sizes

Approach Factor variables 60 m × 60 m 80 m × 80 m 100 m × 100 m 150 m × 150 m

Localization errors 7.8% 9.0% 7.9% 7.1%
Time execution (s) 2.26E+00 5.84E+00 8.01E+00 7.25E+00

EGA [37] Round iterations for convergence reaching 354 459 554 735
Average optimal converges 3.42E+00 6.25E+00 8.57E+00 7.76E+00

Localization errors 8.7% 7.9% 7.9% 9.2%
Time execution (s) 2.56E+00 4.48E+00 7.36E+00 8.89E+00

IPSO [40] Round iterations for convergence reaching 145 458 336 781
Average optimal converges 4.08E+00 7.48E+00 1.03E+01 1.18E+01

Localization errors 7.6% 8.0% 1.9% 9.3%
Time execution (s) 2.98E+00 6.32E+00 8.35E+00 8.45E+00

KHA [43] Round iterations for convergence reaching 379 485 468 719
Average optimal converges 3.19E+00 6.76E+00 8.93E+00 9.04E+00

Localization errors 7.7% 7.9% 2.0% 9.2%
Time execution (s) 3.32E+00 5.94E+00 7.13E+00 8.19E+00

CSO [45] Round iterations for convergence reaching 445 555 665 776
Average optimal converges 4.18E+00 1.06E+01 1.39E+01 1.41E+01

Localization errors 7.8% 7.9% 8.9% 9.1%
Time execution (s) 2.92E+00 6.98E+00 7.40E+00 8.24E+00

IWOA [39] Round iterations for convergence reaching 665 473 595 824
Average optimal converges 4.23E+00 1.06E+01 2.39E+01 2.41E+01

Localization errors 6.7% 6.9% 6.8% 7.0%
Time execution (s) 2.81E+00 5.45E+00 7.01E+00 7.19E+00

SWOA Round iterations for convergence reaching 231 463 556 765
Average optimal converges 3.01E+00 5.83E+00 7.50E+00 7.69E+00
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From the results, the statistical estimation of the recommended node localization model of
the SWOA offers better performance in the cases of setting deployments than the other schemes’
optimizations. Significantly, the error and convergence values achieved by the SWOA are less location
error, faster in convergence and executed time than the others compared to at least a reduced 1.5% to
4.7% error rate, and quicker by at least 4% and 2.1% in convergence and executed time, respectively
for the experimental scenarios.

5 Conclusion

Because of the unsatisfactory performance of the traditional whale optimization algorithm
(WOA), this paper proposed a siege whale optimization algorithm (SWOA) for the node localization
scheme in WSN. The siege mechanism learned from the Harris Eagle optimization (HHO) algorithm
was utilized to speed up whale hunting. An inertia weighting parameter was added at the end of each
whale hunting iteration to control the update of the population position to prevent the update from
stagnation. The mapped chaotic method generated the random initial population location to improve
the algorithm’s ability and jump out of the local optimum. The SWOA algorithm was analyzed through
function tests and node localization, compared with the other algorithms in the literature, which
proved that the SWOA made significantly differs from the original algorithm. The core objective of the
localization model is to determine the location of the unknown node in the WSN, considering variables
like delay, path loss, energy, and received signal strength. The obtained optimal unknown node
localization is provided with the help of the optimal value of the optimal solution in terms of position
by the SWOA. The graph estimates the localization error with the objective function mathematically
derived based on optimization from the SWOA. The simulation and performance are measured as
convergence, and statistical analysis in the mean value of the proposed SWOA has acquired a higher
value than 1.5% to 4.6% for the EGA, 2.3% to 4.1% for the IPSO, 1.5% to 3.23% for the KHA, 1.7%
to 4.1% for the SCO, and 2.3% to 4.1% for the IWOA algorithms, respectively for some deployed
area networks in terms of the measured localization error. Thus, the novel method can appropriately
estimate the location of unknown nodes. In future work, the proposed algorithm could be applied to
the broader use of WSN localizations in cloud computing, autonomous driving, the Internet of Things
(IoT), and vectorized mapping. The placement can be established using vectorized road network maps
and sensor data. Alternatively, the positioning is used for cloud-based crowdsourcing today and offers
the self-services and other clients based on the information.
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(a) Convergence of F1 (b) Convergence of F3

(c) Convergence of F5 (d) Convergence of F6 

Figure A1: Comparison of the converge curves of the SWOA with the original WOA and HHO
algorithms for the selected functions: (a) F1, (b) F3, (c) F5, and (d) F6
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(a) Convergence of F1 (b) Convergence of F3

(c) Convergence of F4 (d) Convergence of F5

(e) Convergence of F6 (f) Convergence of F7

Figure A2: (Continued)
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(g) Convergence of F11 (h) Convergence of F13

Figure A2: Comparison of the converge curves of the proposed SWOA with the ALO, GWO, MFO,
AWOA, EWOA, IWOA, and MWOA algorithms for the selected functions (a) F1, (b) F3, (c) F4, (d)
F5, (e) F6, (f) F7, (g) F11, (h) F13
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