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ABSTRACT

As massive underground projects have become popular in dense urban cities, a problem has arisen: which
model predicts the best for Tunnel Boring Machine (TBM) performance in these tunneling projects? However,
performance level of TBMs in complex geological conditions is still a great challenge for practitioners and
researchers. On the other hand, a reliable and accurate prediction of TBM performance is essential to planning
an applicable tunnel construction schedule. The performance of TBM is very difficult to estimate due to various
geotechnical and geological factors and machine specifications. The previously-proposed intelligent techniques
in this field are mostly based on a single or base model with a low level of accuracy. Hence, this study aims to
introduce a hybrid random forest (RF) technique optimized by global harmony search with generalized opposition-
based learning (GOGHS) for forecasting TBM advance rate (AR). Optimizing the RF hyper-parameters in terms
of, e.g., tree number and maximum tree depth is the main objective of using the GOGHS-RF model. In the
modelling of this study, a comprehensive database with the most influential parameters on TBM together with TBM
AR were used as input and output variables, respectively. To examine the capability and power of the GOGHS-
RF model, three more hybrid models of particle swarm optimization-RF, genetic algorithm-RF and artificial
bee colony-RF were also constructed to forecast TBM AR. Evaluation of the developed models was performed
by calculating several performance indices, including determination coefficient (R2), root-mean-square-error
(RMSE), and mean-absolute-percentage-error (MAPE). The results showed that the GOGHS-RF is a more accurate
technique for estimating TBM AR compared to the other applied models. The newly-developed GOGHS-RF model
enjoyed R2 = 0.9937 and 0.9844, respectively, for train and test stages, which are higher than a pre-developed RF.
Also, the importance of the input parameters was interpreted through the SHapley Additive exPlanations (SHAP)
method, and it was found that thrust force per cutter is the most important variable on TBM AR. The GOGHS-RF
model can be used in mechanized tunnel projects for predicting and checking performance.
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1 Introduction

The population is growing at a rapid pace, which necessitates countries setting the stage for
development, particularly in sectors such as tunnel construction and underground spaces. In the
process of constructing a tunnel, two methods are commonly used by engineers: tunnel boring machine
(TBM) and drilling-blasting [1]. The drilling-blasting method has been well-recognized as a highly
workable method with relatively low costs and high efficiency; however, this traditional method can
adversely affect the rock-mass around the excavation area and the adjacent environment [2–5].

In recent decades, many projects involving tunnel construction have implemented TBMs. This
excavation method is becoming increasingly popular, particularly in the case of projects within dense
urban regions with low excavation depth and high levels of risk induced by the external loading
of neighboring structures [6,7]. The implementation of TBMs in tunnel construction projects has a
number of advantages, including a higher advance rate, lower labour intensity, controlling the stability
of the adjacent rock masses, not creating ground vibration and undesirable cavities, being safer for
workers to work with, higher efficiency, etc., [8–12]. On the other hand, TBM suffers from sensitivity
to geological conditions; in adverse geological situations, TBM cannot work in a flexible way [13,14].
In fact, if there is any unknown geological information at the front of the tunnel face during the
excavating operation, the performance of the TBM may be reduced [15]. Although these machines have
been designed to work in different ground conditions, their performance level in complex geological
conditions is still a great challenge for practitioners and researchers since the users are not able to
change the relevant TBM specifications for different ground conditions [2,16,17]. For that reason, to
effectively control the efficiency of any tunnel construction operation, it is of high importance and
advantage to accurately predict the TBM’s performance in complex geological conditions [18–21].

The prediction of TBM performance such as penetration rate and advance rate (AR) has been
considered a vital task for many researchers. Some researchers proposed empirical equations for the
aforementioned task [22] using a single parameter or a combination of several factors related to TBM
specifications and/or rock properties. However, a low and moderate level of prediction performance
has been reported for the proposed empirical equations [20]. This may have different reasons, such
as considering only one or two important relevant parameters [23]. Apart from these techniques,
statistical-based models that work on the basis of mathematical rules have been used by some other
researchers to predict TBM performance [18]. However, since TBM performance and its mechanism
are highly nonlinear problems, the statistical techniques are not effective enough. In addition, their
level of accuracy in this regard is just average, which is not good for the mentioned problem [20].

With the rapid advancement of artificial intelligence (AI) technology, an increasing number of
machine learning (ML) techniques have been introduced into various engineering applications [24–
26], particularly in the fields of geotechnical engineering and geology. These cutting-edge techniques
provide researchers and engineers with powerful tools, enabling them to analyze and predict critical
parameters and performance in engineering projects more accurately. Recently, numerous researchers
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have suggested different AI and ML techniques for the evaluation of TBM performance [6,10,11,27–
32]. For instance, five supervised learning models (i.e., chi-squared automatic interaction detection,
classification and regression trees, artificial neural network (ANN), k-nearest neighbor (KNN), and
support vector machine (SVM)) were used in the study conducted by Xu et al. [33] to predict the TBM
penetration rate. The results of the five models were compared to each other, and KNN was found to be
the optimum model for the task defined. In another investigation, with the use of the gene expression
programming method, Armaghani et al. [17] attempted to determine an effective equation for the
prediction of the TBM penetration rate during a case study on the excavation operations in a tunnel
in Malaysia. They succeeded in achieving an acceptable performance prediction (i.e., a coefficient of
determination, R2, of 0.850) for the TBM penetration rate. In addition, the group method of data
handling was used by Koopialipoor et al. [34] as a soft computing model in order to estimate the TBM
performance in tunnel excavating projects. An advanced ANN model (also referred to as deep neural
network) was developed by Koopialipoor et al. [35] for the estimation of the TBM’s performance. The
results showed 93% accuracy with the coefficient of determination, R2 = 0.934 and root-mean-square-
error (RMSE = 0.032).

Furthermore, for the prediction of the TBM performance, Li et al. [9] used several AI techniques
and big data when working on the case of the Yin-Song Diversion Project (China) with a tunnel of
72.1 km length. The TBM performance in their research was examined in real-time. They used the
long short-term memory (LSTM) model with the aim of estimating the total thrust and cutter head
torque of the TBM in a variety of geological settings. The obtained results showed that LSTM provided
84.99% and 83.96% of accuracy in thrust prediction and cutter head torque prediction, respectively.
In another work, Zhang et al. [36] attempted to find out how different geological conditions affect
the TBM performance (for instance, the cutterhead speed, cutterhead torque, AR, and thrust). To
this end, they performed a study on a tunnel located in China with the use of AI techniques and
big data. In similar research, Yu et al. [7] introduced a semi-supervised model for the prediction of
the type of rock mass prior to the use of TBM for tunneling projects. To do this, they developed
the stacked sparse autoencoder and deep neural network models. Their developed model attained a
high level of accuracy; however, the stacked sparse autoencoder showed a disadvantage in comparison
with deep neural networks, which was the higher computation cost. Some other techniques, such as
genetic programming (GP), polynomial neural network, extreme gradient boosting, fuzzy and neuro-
fuzzy, and Bayesian optimization have been used successfully in the literature in the area of TBM
performance [10,27,30,37,38]. As a summary, it is important to mention that ML and AI algorithms
have solved many problems in the various fields of science and engineering [39–43].

The literature presented above showed the implementation of AI and ML techniques in the
prediction of geotechnical problems, especially in TBM projects for the prediction of TBM perfor-
mance. However, many of the proposed models in this area are considered single or base intelligence
techniques, and as a fact, the performance of base models can be improved using powerful opti-
mization algorithms. According to the above reviews, this study aims to propose hybrid intelligent
techniques where the base model is the random forest (RF). In this way, different heuristic algorithms,
including the genetic algorithm (GA), artificial bee colony (ABC), particle swarm optimization
(PSO), and global harmony search with generalized opposition-based learning (GOGHS), as powerful
optimization techniques were selected. Therefore, four new models, i.e., GOGHS-RF, PSO-RF, GA-
RF and ABC-RF are employed to predict the TBM AR in a variety of geological conditions. Then, the
same models are evaluated and discussed to introduce the best RF-optimized technique in estimating
TBM AR. These models are recognized as state-of-the-art intelligent control systems that can be
effectively applied to tunnel construction projects.
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2 Study Area and Used Data

Selangor is one of the most developed states in Malaysia and has the highest population density
in the country. To this end, there is a large demand for water supply to support the residents in the
area. The Pahang-Selangor Raw Water Transfer (PSRWT) project aims to divert water supply from
Pahang to Selangor through the tunnel excavated using three TBMs. Of the total 44.6 km of tunnel
distance, 39.4 km of tunnelling work has been excavated using the mentioned TBMs.

The PSRWT project has been undertaken in Peninsular Malaysia, located between Pahang and
Selangor states. Pahang State is located to the east of Selangor State and has a lot of excess water
resources in comparison with the state’s water demand. The objective of this project is to transfer 1890
million litres of water diverted from the Sematan River in Pahang to the South Klang Valley region
in Selangor. The flow of the Sematan River is extracted to the reservoir by the pumping station next
to the intake via a pipe to a connecting basin at the tunnel inlet. The connecting basin diverts the raw
water to the outlet-connecting basin with the aid of gravity flow. Subsequently, the raw water will be
transferred to the water treatment plant to purify it before it can be dispatched to the residents in the
Klang Valley area. Fig. 1 shows the location of the PSRWT tunnel project in Peninsular Malaysia.

Figure 1: Location of the PSRWT tunnel project in Peninsular Malaysia Source: Resourced from [30]

Field observation was done for the PSRWT project in the middle of 2013 to assess the rock mass
properties along the alignment of the tunnel. Rock mass classification is an essential parameter to be
assessed during the preliminary design or planning of the project [44]. During the field observation
of the rock mass properties, several parameters, including rock quality designation (RQD), rock
mass rating (RMR), and weathering zone (WZ), were observed. These rock mass properties were
observed and recorded for each panel, which was an average of 10 m. Together with these parameters,
rock material properties should be measured, as they are considered significant parameters for TBM
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performance estimation [45,46]. To do this, many block samples, which were of the granite type, were
collected from the site. In the laboratory, uniaxial compressive strength (UCS) and Brazilian tensile
strength (BTS) tests were conducted [47]. The geometry and sizing of the samples, together with testing
procedures, are specified in the International Society for Rock Mechanics [48] and the same was used
in this study. Apart from rock mass and material properties, machine (TBM) specifications need to be
considered as effective factors in TBM performance prediction. Therefore, for each panel, thrust force
per cutter (TFC) and revolution per minute (RPM) values, together with AR values, were recorded.
In this way, the study considered the effects of all three important categories of the most significant
features on machine performance, which are machine factors and material/mass properties of the
rock. About 13 km of the mentioned tunnel were considered and observed during data collection
for this project, and a total of 1286 data points were prepared for the purpose of TBM performance
modelling and introducing an optimized RF technique in this field. Table 1 presents a summary of
the parameters and data samples used in this study for the said purpose. In this table, values of 1–3
for WZ are referred to as fresh granite, slightly weathered granite, and moderately weathered granite,
respectively. A number of seven parameters were selected, measured, and used as inputs in this research
to forecast TBM AR values.

Table 1: Summary of field observations and laboratory testing results used for TBM AR modeling

Input Symbol Average Min Max Std. Dev

Rock quality designation (%) RQD 54.259 6.250 95.000 28.610
Rock mass rating RMR 72.894 44.000 95.000 16.101
Weathering zone WZ 1.699 1.000 3.000 0.693
Unconfined compressive strength
(MPa)

UCS 135.128 40.000 194.000 45.104

Brazilian tensile strength (MPa) BTS 10.321 4.690 15.680 4.066
Thrust force per cutter (kN) TFC 301.514 80.603 565.840 88.266
Revolution per minute (rev per min) RPM 8.827 4.040 11.950 2.314

Output Symbol Average Min Max Std. Dev

Advance rate (meter per hour) AR 1.083 0.017 5.000 0.663

In addition, the binary continuous distribution of the seven input variables through the TBM AR
cut, and the analysis of their outliers are clearly visible in the multivariate box line plot displayed in
Fig. 2. According to this figure, all variables show no outliers when the AR values are in the range of
4–5 m/h. More information about the data used in this study can be found in the correlation matrix plot
of the characteristic variables with the TBM AR (Fig. 3). Significantly high negative or positive values
of the correlation coefficients between the variables may affect the performance of the mode. From
Fig. 3, it is possible to know the relationship between AR and the pairwise correlation coefficients
between the influencing variables, as well as the respective marginal frequency distributions. It can be
observed that the parameter TFC (CC = 0.892) is highly correlated with AR.
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Figure 2: Binary continuous distribution of the seven input variables with system output

Figure 3: Correlation matrix plot of the characteristic variables with the TBM AR
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3 GOGHS-RF for TBM AR Prediction
3.1 GOGHS Background

Harmony search (HS) is one of the meta-heuristic algorithms that simulates the procedure of
harmony production [49]. Each harmony in HS represents a possible solution, and this algorithm will
randomly generate HMS harmonies into the harmony memory (HM) during the running process (it
is like population in GA or particle size in PSO). The initialized HM(t) is expressed as follows:

HM (t) = {
X t

i

} =

⎡
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xt
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where, X t
i = [
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i,1, xt

i,2, · · · , xt
i,j, · · · , xt

i,D

]
(i = 1, 2, . . . , HMS, j = 1, 2, . . . , D) denotes a candidate

solution, HMS refers to the harmony memory size, D is the dimension of the problem to be optimized,
t denotes the generation. In HM(t), each element xt

i,j is limited to a certain range, as shown in Eq. (2):

xt
i,j = LBj + rand (0, 1) × (

UBj − LBj

)
(2)

where, the lower and upper bounds of the search space are presented by LBj and UBj, respectively.

After initialization, HS will enter the optimization loop, which mainly includes three search rules:
pitch adjustment, random sampling, and memory consideration. Based on these three rules, four
additional parameters need to be defined in HS, i.e., the harmony memory considering rate (HMCR),
the pitch adjust rate (PAR), the bandwidth (BW) and the maximal iteration number (T). The function
of these three search rules is to generate a new harmony vector V = (v1, v2, · · · , vN).

In the traditional HS algorithm, the search direction is random and unpredictable. Although this
feature makes it more difficult for this algorithm to miss the real optimal answer in the search space,
the excessively random search direction will greatly reduce the convergence speed of the algorithm
and make it unable to deal with complex problems, effectively. When the practical problem is complex
enough, an improved HS algorithm, called novel global HS (NGHS) [50], may be a more suitable
choice than the traditional HS. Unlike the HS algorithm, which randomly selects harmony vectors
from HM, the selected object of NGHS is always the best harmony vector existing in HM. In addition,
NGHS introduces the probability of genetic mutation Pm to carry out genetic mutation operations,
which is essentially similar to the process of random selection using the probability of 1-HMCR in
HS [50].

The improved harmony search algorithm, NGHS, can greatly increase the exploitation capability
of the overall model to meet the needs of the mentioned problems. However, to further improve
the global search ability of the model, the generalized opposition-based learning (GOBL) plan is
introduced, which was developed by Wang et al. [51]. An optimization framework combining GOBL
and NGHS is built, which is the proposed GOGHS algorithm in this research [52]. There are two
significant advantages to this framework. Firstly, it balances the relationship between the exploitation
and exploration abilities of the HS algorithm. Secondly, it can effectively improve the probability of
HS finding the optimal solution. The GOGHS core (i.e., the evolutionary process) consists of the
following four steps [52].

Step 1. According to the running program of NGHS, GOGHS will first generate a new harmony V.
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Step 2. Based on the GOGHS strategy, the generalized opposition-based solution OV (OV = [ov1,
ov2, . . . , ovD]) corresponding to the candidate solution V will be generated. The expression of ovj is
as follows:

ovj = k × (
At

j + Bt
j

) − vj (3)

where, k refers to the random generalized opposition-based factor. In Eq. (3), the maximum and
minimum of the jth dimension are presented using Bt

j and At
j, respectively.

Once ovj goes beyond the range defined by LBj and UBj, the value of ovj will be expressed as
follows:

ovj = rand
(
At

j, Bt
j

)
(4)

Step 3. The third step is to evaluate V and OV and compare the advantages and disadvantages of
these two solutions to select a better BV solution.

Step 4. When the search process goes to generation t, according to the information conveyed by
the fitness function f (x) in GOGHS, there will be a worst solution X t

worst with the worst fitness value in
the current harmony memory [52,53]. The next work is to compare BV with X t

worst and decide whether
to keep X t

worst or not. If X t
worst is worse than BV, BV will go into HM to replace X t

worst. The framework of
GOGHS is displayed in Fig. 4.

Figure 4: Framework of GOGHS algorithm
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3.2 Random Forest
The decision tree is a simple and widely used model that branches by impurity calculation and

can be used to deal with classification and regression problems. The Random Forest (RF) model is
an integrated predictive algorithm proposed by Breiman [54] based on decision tree, which belongs to
the integrated learning Bagging algorithm. Additionally, RF is considered an ensemble ML technique
that utilizes a group of learners to apply their individual learning results to have a better result and
performance. There are two types of ensemble learning: one is the boosting type, and the other is the
bagging type. RF is a widely used bagging integration algorithm whose base evaluators are decision
trees [54,55].

RF can improve the decision tree building and performance. For ordinary decision tree building, it
selects an optimal feature among all sample features P on the node through the calculation to carry out
the sub-tree partitioning. While RF is constructed by randomly selecting a part of the sample features
n on the node (certainly, n is less than P) to construct the best partition. It can further enhance the
generalization ability of the model and make it perform better. Finally, the computational results of the
large number of decision trees constructed are comprehensively considered to obtain the final decision.
The structural process of the RF model [56] is shown in Fig. 5.

Figure 5: Structural process of RF model
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3.3 GOGHS-Based RF for TBM AR Prediction
In this study, GOGHS was applied to the parameter optimization of the RF prediction model.

PSO, GA, and ABC optimization approaches were also used for comparison purposes. The main
process for using the mentioned approaches is as follows:

(i) Data division/preparation: In this stage, the entire dataset should be divided into model training
data and model test data. The division ratio should be based on the suggestions from previous
investigations.

(ii) Initialization parameters: Set the parameters of the optimization method.

(iii) Fitness evaluation and update parameters: Compute the fitness function and optimize its
parameter values according to the fitness.

(iv) Status check: When the optimal shutdown requirements are met, the best parameters are
obtained.

The study decided to use the relevant index determination coefficient (R2), root-mean-square error
(RMSE), and mean absolute percentage error (MAPE) to assess the performance of the proposed
models [14,57–59]. In regression, R2 is a statistical measure that the regression prediction is close to
the true data point. R2 = 1 means that the regression prediction fits the data perfectly. RMSE is a
measure of the size of the data prediction error. MAPE is a prediction accuracy index and 0% means
that the model is perfect. In the following equation, where X i−m is the measured AR value, X i−p is the
predicted AR value, Xi is the mean value of TBM AR, and N is the total number of data samples.

R2 = 1 −
∑N

i=1

(
Xi−m − Xi−p

)2

∑N

i=1

(
Xi−m − Xi

)2 (5)

RMSE =
√

1
N

∑N

i=1

(
Xi−p − Xi−m

)2
(6)

MAPE = 1
N

∑N

i=1

∣∣∣∣Xi−m − Xi−p

Xi−m

∣∣∣∣ × 100 (7)

4 Results and Discussion
4.1 Models Performance Comparison and Analysis

The RF is highly effective for processing high-dimensional data and handling nonlinear problems.
As each tree is constructed independently, RF is quite robust in identifying outliers and avoiding
overfitting [54,55]. Additionally, it achieves superior predictive performance, outperforming many
other similar predictive models [60].

To develop a hybrid TBM AR prediction model based on RF, this study combined the improved
GOGHS meta-heuristic optimization method with RF and performed corresponding AR prediction
tests. Then, according to the Pareto principle, the AR database in this study was randomly divided into
two data sets at a division ratio of 80%/20%. 80% of the data was used for the TBM AR prediction
training, and 20% of the data was used for the AR prediction test. This model considers the previously
mentioned seven influencing factors (UCS, RQD, RPM, RMR, BTS, WZ, and TFC) as input
parameters, with AR serving as the output parameter. According to the RF tuning experience and
literature theoretical reference, this study selected the number of trees (n_estimators), the maximum
tree depth (max_depth) and the minimum number of samples of leaf nodes (min_samples_leaf) as the
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three main parameters of the model for training. To evaluate the performance of the AR prediction
models, performance indicators, i.e., RMSE, R2, and MAPE were used to evaluate the developed
models.

As part of the model optimization, an exploration was conducted into the effect of population
size, a crucial parameter in meta-heuristic algorithms [23]. Therefore, this study delves into the role of
population size in influencing the performance of the GOGHS optimization method. For this purpose,
population sizes of 20, 40, 80, 100, and 200 were selected for modeling the GOGHS-RF. Fig. 6 displays
an iterative curve obtained based on the optimized fitness value corresponding to each population
size. By the time the iteration reaches about 60, it becomes apparent that the fitness curves of different
population sizes have reached their respective stable states. This pattern in Fig. 6 suggests that an
optimal population size exists that would maximize the performance of the GOGHS-RF model. To
further explore this concept, a performance comparison was carried out using different population
sizes, with results detailed in Table 2. From this table, it is evident that the model’s performance
for different population values was quite satisfactory. However, to determine the optimal population
size, a further analysis of the comprehensive performance of all constructed models under different
populations was conducted, as depicted in Fig. 7. The results, depicted in Fig. 7, make it clear that the
optimal population size for the model is 100. The performance metrics for the model at this population
size during the training and test stages were as follows: (R2 = 0.9937, RMSE = 0.0529, MAPE = 5.9810
for training, and R2 = 0.9844, RMSE = 0.081, MAPE = 11.8260 for testing).
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Figure 6: Fitness curves of GOGHS-RF model based on different population sizes

Table 2: Indicator values for GOGHS-RF model with different population sizes

GOGHS-RF

Training
Swarm R2 Score RMSE Score MAPE Score Total
20 0.9914 1 0.0619 1 7.4338 1 3
40 0.9932 3 0.0548 3 5.8140 5 11
80 0.9915 2 0.0614 2 7.0174 2 6

(Continued)
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Table 2 (continued)

GOGHS-RF

100 0.9937 5 0.0529 5 5.9810 4 14
200 0.9934 4 0.054 4 6.2803 3 11

Testing
Swarm R2 Score RMSE Score MAPE Score Total
20 0.9839 3 0.0822 3 11.8644 2 8
40 0.9833 2 0.0837 2 12.3044 1 5
80 0.9844 5 0.081 5 11.8122 4 14
100 0.9844 5 0.081 5 11.8260 3 13
200 0.9841 4 0.0816 4 11.6210 5 13

20

40

80

100

200

-20 -15 -10 -5 0 5 10 15 20 25

Score

Sw
ar

m

R2(tr)
 MAPE(tr)
 RMSE(tr)
R2(te)

 MAPE(te)
 RMSE(te)

Figure 7: Cumulative scores with different population sizes of GOGHS-RF model

Building on the understanding of population size’s impact on the GOGHS-RF model, this
research also developed three common RF-based meta-heuristic algorithm models for the same
problem, namely GA-RF, ABC-RF, and PSO-RF. Then, the performance results of these optimized
hybrid models and other single models were compared with the main predictive model in this study.
It is worth noting that the modelling procedures of these optimization methods are not discussed
in this article, and only their results are given. More details related to their modelling procedure
and building are available in the original literatures. In all the above-mentioned hyper-parameter
adjustment processes, a 5-fold cross-validation resampling technique was applied to increase model
performance and reliability. The setting parameters of each optimization algorithm and their used
hyper-parameter combinations for each model to predict TBM AR are listed in Table 3. Based on
this table, the GOGHS-RF model receives the best testing performance (R2 = 0.9844, RMSE = 0.081
and MAPE = 11.8260) under the best parameter combination (n_estimators = 45, max_depth = 11
and min_samples_leaf = 2). In addition, the GA-RF model got the corresponding test results (R2 =
0.9777, RMSE = 0.0967 and MAPE = 13.9562) under the parameter combination (n_estimators =
356, max_depth = 23 and min_samples_leaf = 12); the PSO-RF model got the best test performance
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(R2 = 0.978, RMSE = 0.0961 and MAPE = 14.9889) under the parameter combination (n_estimators
= 356, max_depth = 5 and min_samples_leaf = 1); and the ABC-RF model got the best test results
(R2 = 0.9799, RMSE = 0.0919 and MAPE = 13.2602) according to the parameter combination
(n_estimators = 155, max_depth = 13 and min_samples_leaf = 9).

Table 3: Optimal parameters obtained by different optimization-RF techniques

Algorithm Parameters Value Optimal parameters

n_estimators = 45
GOGHS Genetic mutation probability 0.1 max_depth = 11

min_samples_leaf = 2

Crossover probability 0.5 n_estimators = 356
GA Mutation probability 0.25 max_depth = 23

Selection probability 0.75 min_samples_leaf = 12

Cognitive coefficient1 1.7 n_estimators = 356
PSO Cognitive coefficient2 1.7 max_depth = 5

Inertia weight 0.7 min_samples_leaf = 1

n_estimators = 155
ABC Number of trial limits 10 max_depth = 13

min_samples_leaf = 9

Following the optimization outcomes of these models detailed in Table 3, a deeper examination
into the detailed index values and peculiarities of the four hybrid models based on RF was conducted.
It is evident in Table 4 that the test set accuracy of the three hybrid models (GA-RF/ABC-RF/PSO-
RF) seems to be higher than the accuracy of the training set. However, generally, prediction models
may be more accurate for the training set. An analysis of the reasons for this discrepancy is provided
here. Firstly, it might be due to the fact that the four RF models employed different optimization
methods, leading to varying performances on the training and test sets. Among them, the GOGHS-
RF model performed better on the training set, as the GOGHS optimization resulted in better fitting
effects on the training set, indicating that GOGHS is a more effective parameter optimization method
when compared. This implies that the GOGHS-RF model has better generalization ability, adapting
well to both the training and test sets. On the other hand, the other three hybrid RF models (GA-
RF/ABC-RF/PSO-RF) did not overfit the training data and exhibited good generalization effects
on unseen data, which might have led to better performance on the test set. This suggests that the
GOGHS-RF model achieved a better balance between model complexity and overfitting, enabling
it to perform excellently on the training set while maintaining good generalization ability. The other
three models (GA-RF/ABC-RF/PSO-RF) might have had slightly imbalanced performance between
the training and test sets.

Furthermore, to evaluate the comprehensive performance of these hybrid models, scoring was
done for performance on the training and test sets, and these scores are displayed in Fig. 8. The
results indicate that the GOGHS-RF model achieved the best comprehensive score, followed by the
high comprehensive score for the ABC-RF model. In conclusion, the GOGHS-RF model might have
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performed better in aspects such as hyperparameter optimization, data distribution adaptation, model
stability, and overfitting control, potentially resulting in better performance in practical applications.

Table 4: Indicator values for different optimization-RF techniques

Training

Model R2 Score RMSE Score MAPE Score Total

GOGHS-RF 0.9937 4 0.0529 4 5.9810 4 12
GA-RF 0.9621 1 0.1298 1 14.0811 2 4
PSO-RF 0.975 3 0.1053 3 15.0945 1 7
ABC-RF 0.9676 2 0.1199 2 12.9691 3 7

Testing

Model R2 Score RMSE Score MAPE Score Total

GOGHS-RF 0.9844 4 0.081 4 11.8260 4 12
GA-RF 0.9777 1 0.0967 1 13.9562 2 4
PSO-RF 0.978 2 0.0961 2 14.9889 1 5
ABC-RF 0.9799 3 0.0919 3 13.2602 3 9

Figure 8: Comprehensive performance evaluation of the proposed hybrid-RF models

Building on these comprehensive performance results, the scatter plot analyses presented were
further conducted in Figs. 9 and 10 to compare the learning efficiency of these models in capturing
the relationship between input and output variables. The analysis in Figs. 9 and 10 revealed that the
GOGHS-RF is superior at learning the relationship between input and output. This was shown by
comparing the predicted training and test AR values from the hybrid RF models with the actual
AR values. Most data instances are distributed near the perfect regression line (x = y line). From
the perspective of the coefficient of determination, GOGHS-RF demonstrates a better learning effect
among the four hybrid RF models. The training set (R2: 0.9937) and the test set (R2: 0.9844) exhibit a
high coefficient of determination; the RMSE value is very low (training set: 0.0529 and test set: 0.081).
Additionally, the MAPE values are also very low for the GOGHS-RF model (training set: 5.9810
and test set: 11.8260). The performance comparison of the GOGHS-RF model with the other hybrid
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models indicates that the model is well-trained and effectively avoids under-fitting and over-fitting. The
results show that the R2 values of the four hybrid models are generally above 0.96, representing a high
level of prediction accuracy. Furthermore, the scatter plot analysis included two equations, one linear
and one nonlinear, proposed by Armaghani et al. [61] for performance comparison, demonstrating
that the prediction performance of the hybrid RF-based models is superior, particularly for the
GOGHS-RF model, as its predicted and actual points almost perfectly fall on the x = y line. This also
reflects the effective optimization of the GOGHS method on the RF model and the high regression
performance of GOGHS-RF on the entire data set.

Figure 9: Scatter plot of AR predictions for the GOGHS-RF hybrid model and the comparative models
on the training set
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Figure 10: Scatter plot of AR predictions for the GOGHS-RF hybrid model and the comparative
models on the test set

In view of the above discussion, this part vividly illustrates the effectiveness of these optimization
methods for RF optimization from various perspectives in Fig. 11. As can be seen in Fig. 11a, the
hybrid RF models perform far better than the singular RF model, especially the optimization effect of
GOGHS is most pronounced. Fig. 11b demonstrates the prediction error changes of the GOGHS-RF
model for the test data set, indicating a significant prediction accuracy of the model with a generally
steady overall error. Then, the GOGHS-RF model with the best test performance is verified on the
entire data set. As shown in Fig. 11c, the prediction error is extremely small. It confirms that the
GOGHS-RF model has excellent performance in data learning and proves that it has better versatility
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and robustness. Therefore, GOGHS-RF can be selected and introduced as the best method for TBM
AR prediction in this study.
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Figure 11: Model performance. (a) Three-axis diagram of evaluation indicators; (b) Performance of
the best GOGHS-RF on the test set; (c) Error analysis of the best GOGHS-RF on the entire data set

To effectively compare the simulation effects of different models, relying solely on scatter diagrams
may not be intuitive enough. The Taylor diagram is a way to intuitively compare models [62].
It provides a visual framework for comparing model results with observations and displays three
evaluation indicators on a single graph. Fig. 12 shows a Taylor diagram showing the prediction
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accuracy of different models under the same input combination. In this study, whether it is the RF-
based hybrid model or the single model, the GOGHS-RF model is closer to the reference point and
has better performance than other models.

Figure 12: Performance evaluation of the nine ML models used: Taylor diagram involving standard
deviation and correlation coefficient

In intelligence and simulation work, it is very important to maintain and increase the performance
prediction if a new model is proposed. In addition, it is also important to decrease the number of
features or inputs compared to previous related works. Considering the previous studies similar to
this one, it can be seen that the model presented in this study is more accurate and applicable. For
example, the same data was used by Zhou et al. [23] to predict the same output, which is TBM
AR. They developed different SVM-based metaheuristic models and received a lower performance
prediction than the one proposed in this study. The best model developed by Zhou et al. [23] provided
a performance capacity with R2 = 0.962 and 0.972, and RMSE = 0.127 and 0.116 for train and test
stages, respectively. In contrast, this study developed the GOGHS-RF model, which achieved R2 =
0.9937 and 0.9844 for the train and test stages, respectively. In another work, Armaghani et al. [11]
used the same input parameters as in this study, together with quartz content, to estimate TBM
AR. They combined models of ANN with PSO/imperialist competitive algorithm and obtained R2

= 0.958 and 0.961 for the train and test stages, respectively. The advantages of the present study
lie in: (1) performance prediction, (2) the number of factors used as inputs. It is obvious that the
developed GOGHS-RF model predicts TBM AR more accurately and better than the PSO-ANN
model that Armaghani et al. [11] published. In addition, this study used 7 input variables, while
Armaghani et al. [11] used 8 input variables, making their model more complex. On the other hand,
Koopialipoor et al. [34] introduced a GP model to predict TBM AR with the same inputs except
WZ. However, they received a low performance prediction (R2 = 0.897 and 0.916 for train and test
stages, respectively) compared to this study. Therefore, it can be concluded that this study and its
newly developed model, i.e., GOGHS-RF, make a significant contribution to the literature and can be
introduced as a practical and accurate technique in mechanized tunnel excavation.

4.2 Sensitivity Analysis
The predictive accuracy of the GOGHS-RF model depends on the input variables used (RQD,

UCS, RMR, BTS, WZ, TFC, and RPM). It is meaningful to identify relatively valid and relatively
invalid parameters [63]. To do that, the SHAP (SHapley Additive Explanations) method was utilized
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to reveal the importance of the parameters and their contribution to TBM AR prediction. SHAP
is a contribution analysis method based on game theory, which quantitatively presents the functional
contribution of complex learning model by calculating shapley value [64,65]. In the following equation,
where N represents the set of all features in the data set, S is the set after index i is removed, the
importance of feature i to the model output is represented by Φ i, xs represents the vector of input
features in set S, and the contribution of features is calculated with the corresponding function q.

Φi =
∑

S⊆N\(i)

|S| ! (|N| − |S| − 1) !
|N| !

[qS∪i (xS∪i) − qS (xS)] (8)

The results of the significance of the inducing factors were obtained according to the Shapley value
(Fig. 13). Most of the selected variables are not negligible for AR prediction, and TFC is the most
significant parameter (this is consistent with the conclusion by Zhou et al. [23]). Other parameters
(namely RPM, UCS, RQD, BTS, RMR, and WZ) are the next important parameters. By calculating
the Shapley value of the sample to summarize the salient features of the model, the predictor variable
TFC has a score of 0.4245. Similarly, the variable RPM has a score of 0.1409, the variable UCS has
a score of 0.0366, the variable RQD has a score of 0.0292, the variable BTS has a score of 0.0250, the
variable RMR has a score of 0.0119, and the variable WZ has a score of 0.0015. The score of TFC is
much higher than the other input parameters.

Figure 13: Importance analysis of input parameters in AR prediction

Following the evaluation of the overarching significance of the influencing factors using Shapley
values, the analysis now shifts its lens to a finer scale. The investigation is further narrowed down to an
individual test sample to probe the singular effects of these parameters on the prediction. This section
performed a detailed analysis of the fifth test sample, and Fig. 14 displays the significant parameters
used for individual prediction. The prediction starts with the base value, and the parameters are used as
the driving force predicted by the model. Red represents driving force, and blue represents resistance.
According to the results in the figure, the average output of the model is about 1.083. The overall
contribution of these parameters reduces the output value, and the final output is 0.62.

Figure 14: Predictive interpretation of test sample



2892 CMES, 2024, vol.138, no.3

To gain a deeper understanding of the interaction between variables, the most significant feature,
i.e., TFC, can be plotted based on the SHAP values. According to Fig. 15, the x-axis and z-axis depict
the TFC values and the SHAP values, respectively, while the y-axis represents the RPM values. It can
be seen that the greatest impact on TBM AR prediction occurs when TFC and RPM are large. The
same trend can be found in the study conducted by Armaghani et al. [2]. It should be mentioned that
similar analyses can be implemented using other input variables. This can be further studied by other
researchers in the coming relevant investigations in the area of TBM performance.

Figure 15: The interactive effects of TFC and RPM on AR prediction

5 Conclusion

Previous studies have observed that the RF model has been applied as a standalone predictive
technique in only a few instances of TBM construction research. Therefore, this study aimed to
develop new metaheuristic optimization-based hybrid RF models to predict TBM performance (i.e.,
AR). Following the construction of the model and multiple tests, the GOGHS algorithm—with
its enhanced global search capability based on HS improvement—was identified as the optimal
algorithm for adjusting the hyperparameters of RF. The predictive capacity of the GOGHS-RF model
was systematically verified using a variety of evaluation indicators and compared with three other
metaheuristic-based models, i.e., GA-RF, PSO-RF, and ABC-RF. This comparison underscored the
distinct advantages of the GOGHS algorithm over the other three tuning strategies.

In this context, the study further examined the performance of the GOGHS-RF model. Perfor-
mance indexes (R2, RMSE, and MAPE) and a comprehensive ranking system were utilized to assess
modeling capacity. GOGHS-RF achieved an R2 of 0.9937 on the training set and 0.9844 on the test
set in the model comparison. Additionally, the index values for RMSE and MAPE on the training
and test sets were 0.0529 (0.081) and 5.9810 (11.8260), respectively. The results indicated an excellent
regression effect, and the prediction error of GOGHS-RF on the entire TBM dataset was extremely
small, demonstrating its outstanding learning performance. The GOGHS-RF model obtained the
most comprehensive prediction performance among all proposed RF-based models based on these
metric values. This highlights the strong merit-seeking capability of the GOGHS method in this study
and its high potential for engineering applications. Moreover, a Taylor diagram was used to compare
the performances of CatBoost, ANN, SVM, AdaBoost, and the hybrid RF models, with the results
also showcasing the excellent performance of GOGHS-RF. Lastly, a Shapley-value was employed to
study and analyze the relative importance of the influencing variables of TBM AR. Based on the
optimal RF model, the input parameter importance was scored and ranked, with the results revealing
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that TFC had the highest importance score of 0.4245. TFC was found to be the most crucial factor
affecting TBM AR, aligning with previous findings and the relevance of the input parameter statistics.

In the end, intelligent hybrid RF-based models have shown significant promise in predicting
TBM excavation performance. Among them, the proposed GOGHS-RF model exhibited satisfactory
data learning capability and predictive performance. Despite limitations and shortcomings, such
as poor data quality and an insufficient sample size, the approach holds potential for broader
application in rock mechanics and engineering geology. Future studies could address these limitations
by implementing data cleaning techniques, feature selection, and incorporating more available data to
enhance model performance.
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